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Preprint

Topological properties of thinning in 2-D pseudomanifolds

Nicolas Passat: Michel Couprie - Loic Mazo - Gilles Bertrand

Abstract Preserving topological properties of objects dur-  Such methods are generally based on the notiainef
ing thinning procedures is an important issue in the field ofple point [4,5]. Intuitively, a point (or pixel) of a discrete
image analysis. In the case of 2-D digital images (mages objectX is said to be simple if it can be removed froh
defined oriz?) such procedures are usually based on the nowithout altering its topology.

tion of simple point. In contrast to the situationfi, n > 3, Let us consider an object, i.e. a set of points irz",

it was proved in the 80’s that the exclusive use of simpleand a subseY of X called constraint set. A very common
points inZ? was indeed dficient to develop thinning pro- topology-preserving thinning scheme [6] consists of répea
cedures providing an output that is minimal with respect tang the following steps until stability:

the topological characteristics of the object. Based on the_ cnoose (according to a given priority function) a point
recently introduced notion afinimal simple set (general- in X\ Y that is simple foiX;

ising the notion of simple point), we establish new proper- _ yemovex from X.

ties related to topology-preserving thinning in 2-D spaces
which extend, in particular, this classical result to cabic
complexes in 2-D pseudomanifolds.

Keywords topology preservationsimple points sim-
ple sets- cubical complexes collapse- confluence
pseudomanifolds
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1 Introduction
Fig. 1 (&) An objectX (in white) and a subseY of X (two pixels

. . . .. marked by black dots). (b) A homotopic skeletonXflempty con-
Topological properties are fundamentalin many applicetio straint set). (c) A homotopic skeleton ¥fconstrained by.

of image analysis, in particular in cases where the rettieva

andor the preservation of topology of real complex struc-

tures is required. In this context, numerous methods have . <\t of such a procedure, called homotopic skele-
been develotpe”d JEEO pro;:ess dllsfrfte 2? ancki1 3D ?ng_/ '™Mon of X constrained by, is a subse¥ of X, which (i) is
ages, essentially fo perform skeletonisation, homotoa topologically equivalent t&X, (ii) includesY and (iii) has no

forms or segmentation (se. [1-3]). simple point outside of. We show an illustration in Fig. 1,
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behaviour of sequential thinning procedures:



If we consider the 3-D case, the answer to this question is ndamily of 2-D digital spaces, namely the pseudomanifolds
For example, iX is a cuboid an&/ = 0, then, depending on (see Fig. 9 where some pseudomanifolds are depicted).

the order of the point removals, the restilbf the above pro- This study is developed in the framework of cubical com-
cedure might not be composed of a single point. As pointeglexes [13], in which we can retrieve and generalise the con-
out recently [7], there exist various kinds of configurason cepts of digital topology itZ". The definition of simple sets

in which a 3-D topology-preserving thinning algorithm canthat we use here is based on the operation of collapse, a
be “blocked” before reaching a minimal result. topology-preserving transformation known in algebraic to

In the discrete plang?, question (1) was answered pos- pology. This definition makes sense whatever the dimension.
itively by C. Ronse in the 80's, after a partial answer was  The proof of Th. 3 is based on a property of collapse, that
given in the early 70’s by A. Rosenfeld. we call a confluence property (Th. 2), which is introduced

In 1970, in the same article where he introduced the noand proved in this article.
tion of simple point [8], A. Rosenfeld proved that any finite ~ Th. 3 is also closely related to the notion of minimal
subset ofZ? that is connected and has no holes, can be resimple set introduced by some of the authors (see [7]), as we
duced to a single point by iterative removal of simple pqints derive it using the following property: X is a strict subset
in any order. In [9], he also proved that any connected objeatf a pseudomanifold, then any minimal simple subseX of
with one hole reduces in the same way to a closed curve. is a simple point (Prop. 22).

In 1986, C. Ronse introduced the notion of strong delet- Thanks to a correspondence between the notion of mini-
ability in Z2 [10]. Itis, to the best of our knowledge, the first mal simple set used here and the one of simple point [14], we
attempt to explicitly generalise the notion of simple points retrieve as particular cases of Th. 3 the results of A. Rosen-
to a more general notion of simple sets. feld and C. Ronse discussed before. However, the techniques

According to Def. 2.5 of [10], and skipping formal de- of proof used in this article are essentiallytdrent from the
tails, a subseB of X C Z? is strongly deletable from X  ones used by these authors, and the generalisation of their
if (i) each connected component ¥fincludes exactly one results is not trivial.
connected component &f\ S, and (ii) each connected com- Finally, we devote a section (Sec. 7) to a result related
ponent ofX U S includes exactly one connected componento parallel thinning that can be derived from Th. 3, based on
of X, whereX denotes the complement Xfin Z2. the notion of critical kernel [15, 16].

In the same article, C. Ronse proposed several results This article is self-contained. Notice that all notionsypr
related to strongly deletable sets, which can be summarisegfties and proofs presented hereafter can be easily trans-
as follows (see also [12], Prop. 2.4.). posed in the framework of simplicial complexe®( trian-

gulated objects).
Theorem 1 (From [10], Lem. 3.1, 3.2, Prop. 3.3)et X C

Z2. Let' S C X. If Sisstrongly deletable from X, then:

. . . _ 2 Background notions
— thereexists x € S such that x isa simple point for X;

— forall x € S such that x isa simple point for X, S\ {X} | this section, we provide basic definitions and properties
is strongly deletable for X\ {x}. related to the notions of cubical complexes, collapse and
simple sets (the last two ones enabling to modify a complex

. 5 . .
Consequently, iff ¢ X < z* and is topologically without altering its topology), see also [13,16,17].

equivalent toX (more precisely, iX\ Y is strongly deletable
from X), thenY may be obtained frorX by iterative removal
of simple points, in any arbitrary order. 2.1 Cubical complexes

To summarise, question (1) received a positive answer in
z? and a negative one I° (and also for higher dimensions). |f T is a subset 08, we write T C S. Let Z be the set of
Still, there are spaces for which this question remainetopejntegers. Lek, ¢ € Z, we denote byK, ¢] the set{i € Z | k <
until now: the case of two-dimensional structuresdidimen-  j < ¢},
sional spaces) > 3. Such structures are often used in prac- e consider the families of sel, FL, such that} =
tice, e.g. to represent thin objects or (parts of) boundary of((a) | a4 € 7}, andF! = {{a,a+ 1) | a € Z}. A subsetf Of 7n
objects in 3-D image analysis and in finite element modyn > 2) that is the Cartesian productmfelements oF} and
elling. n — melements off} is called aface or anm-face of Z”

The main outcome of this article is a theorem (Th. 3)js thedimension of f we write dim(f) = m (see Fig. 2a,b).
that states a property analogous to Th. 1, holding in alarge |f n > 2, we denote by" the set composed of all faces

n
1 Note that A. Rosenfeld proved, ten years earlier [11], thatdets of Z". e L. .
of points deleted by certain parallel thinning algorithragsfy the con- An m-face of Z" is called apoint if m = 0, a(unit) edge
ditions used to define strong deletability. if m= 1, a(unit) squareif m= 2.
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Let f be a face irfF". We setf = {g e F" | g C f}. Any
ge fis afaceof f (orof f).

If X is a set of faces df", we write X~ = [Jex f, and
we say thaX™ is theclosure of X.

A setX of faces off" is acell or anm-cell if there exists
anmfacef € X, such thaiX = f. Theboundary of a cell f
is the setf* = f \ {f} (see Fig. 2).
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Fig. 2 (a) Four points oZ2: x = (0,1);y = (1,1); z= (0,0); t = (L, 0).
(b) A graphical representation of the set of fatgs fi, f,} in B2, where
fo = {z} = {0} x {0} (a O-face),f; = {x,y} = {0, 1} x {1} (a 1-face), and
f, = {xy,zt} =1{0, 1} x {0, 1} (a 2-face). (c) A 1:ce|t.“(d) A 2-celld.
(e) The boundarg*of €. (f) The boundand* of d.

A finite setX of faces ofF" is acomplex (in F") if for
anyf e X, we havef ¢ X.

LetS, X be two sets of faces @. If X is a complex and
X C S, we writeX < S. Furthermore, ifS is also a complex,
then we say thaX is asubcomplex of S.

Let X C F". Afacef € X is afacet of X if there is no
g € X such thatf € §*, in other words, iff is maximal for
inclusion. A facet oiX that is anm-face is also called am-

Let X € F", X # 0. Thedimension of X is the number
dim(X) = maxXdim(f) | f € X}, and we set dinf) = —1.
We say thaiX is pureif for each f € X*, we have dim{) =
dim(X). Letmbe an integer. We say th&tis anm-complex
if X is a complex and dinX) = m. If X is anm-complex
with m < 1, then we also say thatis a graph (see [18]).

LetY < X <F". If Y* C X*, we say thaY is aprincipal
subcomplex of X and we writeY C X (see Fig. 4).

,,,,,,,,,,,
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Fig. 4 (a) A complexX. (b) A subsety of X, which is a principal sub-
complex ofX (i.e,, Y C X). (c) A subse® of X, which is a subcomplex
of X but not a principal subcomplex of.

Let X C F". A sequencer = (fi>f:0 (¢ = 0) of faces inX
is apathin X (from fy to f,) if for eachi € [0, ¢ — 1], either
fi is a face offi;1 or fi,1 is a face off;; the integel is the
length of 7. The pathr is said to beclosed wheneverfy = f,,
itis atrivial path whenever = 0.

Let X C F". A path inX made of 0- and 1-faces is called
a 1-path. A 1-path from a O-facex to a O-facey (with pos-
sibly x = y), is said to beclementary if its 1-faces are all

facet of X. We denote byX* the set composed of all facets distinct. A non-trivial elementary closed path is calledya
of X (see Fig. 3). Note that the notion of facet of a com-cle.

plex can intuitively be seen as the analogue of the notions of Let X ¢ F". We say thak is connected if, for any pair
pixels and voxels in the framework of 2-D and 3-D digital of faces §, g) in X, there is a path irX from f to g. It is

topology.

If X is a complex, observe that in genersl, is not a
complex, and that(*)~ = X. More generally, for any subset
Yof F", (Y) =Y.
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Fig. 3 (a) A setX of 0-, 1- and 2-faces if#®, which is not a complex.
(b) The setX*, composed by all facets of. (c) The setX", i.e. the
closure ofX, which is a complex. (d) A subcomplex &f .

easily shown that, iK is a complex, theiX is connected if
and only if there exists an elementary path frano y in X
whenevex andy are 0-faces irX.

LetX € F", and letY be a non-empty subset ¥f we say
thatY is aconnected component of X if Y is connected and if
Y is maximal for these two propertieisg, if we haveZ = Y
whenevery ¢ Z € X andZ is connected). We will some-
times writecomponent as a shortcut for connected compo-
nent. The number of componentsXis denoted byC(X)|.
Notice thatiC(0)| = 0.

2.2 Collapse

Let X be a complex i and letf € X. If there exists a face
ge f* such thatf is the only face oK that strictly includes
g, thengis said to bdree for X, and the pair{, g) is said to
be afree pair for X. Notice that, if (f, g) is a free pair forX,
then we have necessarifye X* and dim@) = dim(f) — 1.

Let X be a complex, and letf(g) be a free pair foix.
Let m = dim(f). The complexX \ {f, g} is anelementary
collapse of X, or anelementary m-collapse of X.



Let X, Y be two complexes. We say théicollapses onto
Y, and we writeX Y\ Y, if there exists aollapse sequence
from X to Y, i.e, a sequence of complexexi>f:0 (¢ = 0)
such thatXp = X, X, = Y, andX; is an elementary collapse
of Xi_1, for eachi € [1,¢] (see Fig. 5). Letl = ((fi, gi))_;
be the sequence of pairs of faceso$uch thatX; = X;_1 \
{fi, g}, for anyi € [1, ¢]. We also call the (possibly empty) Fig. 6 (a) Bd(X), whereX is the complex of Fig. 5a. (Bd;(X).
sequencd acollapse sequence (from X to Y). If X collapses
ontoY andY is a complex made of a single point, we say that

(b)

Xiscollapsible. Proposition4 Let Y < X < F", let  be a set of facets of
XthatarenotinV,ie,a € X"\ Y. IfBd(a™) C Y, then X
I ° I ° does not collapse onto Y.
/ » // Proof The proposition trivially holds wheiX = Y U o™
& & Suppose thatf( g) is a free pair foiX outsideY. We see that
¢ V g cannot be inx because it is not a facet, and thfatan-
@) (b) not be ina, otherwise €, g) would also be a free pair for

outsideY (a contradiction withBd(e™) € Y). By induction
we deduce that any compl&xsuch thaty < Z andX \, Z

/:/: /-/: includesY U a~, hence the propositiom

- I/ i I The following property can be easily derived from Prop. 4.

(©) (d) Proposition 5 Let Y < X < F" be such that dim(X\ Y) = 1.
i If there exists a cycle in X that contains at least one 1-facet
Fig.5 (a) A lexX. (d) A sub lexy of X. (a,b,c,d) A coll o _
S,'e?]ue,ﬁ?e frf)?,;(“ﬁ)i, () A subcomplex? of X. (2.b.c,c) A collapse of X whichisoutside Y, then X does not collapse onto Y.

Proposition 6 Let Z < X < F" be two complexes such that
_ _ XN Z Letd = ((fi,gi)>f:l be a collapse sequence from X
The following property is easy to prove. to Z. Suppose that there exists Y < X such that Z < Y and

Proposition 1 Let X < F", let h, k betwo facesof X andlet ~ for anyi € [1, 7], either {fi, gi} C Y or {fi,gi} € X\ Y. Then,
(f, g) beafreepair for X suchthat {h,k}n{f, g} = 0. If there XN YandY ™ Z.
existsa pathfromhtokin X, thenthereexistsapathfromh  p.qof etk e [2, €] be such thaff, gk ¢ Y and fi_1, g1 €

tokin X\ {f,g}. Y, if such an integer exists. Singg ¢ fi_1 (otherwisegy €
LetY, X C F". We say thaK isanextensionof Yif Y c X Y~ = Y), (fi gk is & free pair forX \ {fi, 6i}ic7 and we can
and each connected componentofncludes exactly one Swap the two pairs id, still getting a collapse sequence. By

connected component ¥f(see [19]). The following propo- repeating this procedure, we can build a collapse sequence
sition eas"y follows from Prop_ 1. from X to Z where the firsm pairs Q’n € [0, f]) are notinY

. . and the last — mpairs are inY. It can easily be seen that the
Proposition 2 Let Y < X < F". If X\, Y, then X isan&-  irst m pairs (resp. the lagt— m pairs) of this new sequence
tension of . In consequence, collapse preservesthenumber  ongiitute a collapse sequence frofrto Y (resp. fromY
of connected components. t02). o

Although initially formulated and proved in a framework
of graphs, the next proposition and its proof can be straight ~ LetJ = ((fi,g)){_, be a collapse sequence. This collapse
forwardly adapted to cubical complexes. sequence is said to lecreasing if for any i € [1, - 1], we
have dim;) > dim(fi1). Prop. 7 may be proved in a similar

Proposition 3 ([19], theorem 4)Let Z C Y € X C F" be manner as Prop. 6.

such that X isan extension of Z. The subset Y isan extension
of Z if and only if X isan extension of Y. Proposition 7 ([20])Let Y < X < F". If X collapsesonto Y,

. then there exists a decreasing collapse sequencefrom X to Y.
Let X < F", the complex that is the closure of the set gcotiapsese

of all free faces forX, is called theboundary of X, and is Let X, Y be two complexes. Lef be such thakK n'Y <
denoted byBd(X). We denote byad; (X) the complexthatis Z < Y, and letf,g € Z\ X. The pair {,g) is a free pair
the closure of the set of all free 1-faces ¥(see Fig. 6). Of for X U Z if and only if (f, g) is a free pair forZ. Thus, by
course, we havBd; (X) < Bd(X). induction, we have the following property.



Proposition 8 ([15])Let X,Y < F". Thecomplex XUY col-  (c) There are some papers on digital topology in which the

lapsesonto X if and only if the complex Y collapsesonto XNY. concept of a simple subset is defined in fiedent way
that is inequivalent to (a) whelPr is an arbitrary cubical
complex; a fairly recent example is [21].

2.3 Simple sets . .
P The notion of attachment, as introduced by T.Y. Kong

The operation of detachment allows us to remove a subconl;zz' 14], leads to a local characterisation of simple sefs{(F9).

plex from a complex while guaranteeing that the result is  L€tY = X < . Theattachment of Y for X is the com-
still a complex (see Fig. 7). plex defined byAtt(Y, X) = YN (X 9 Y) (see Fig. 7). Remark

that any facef of X such thaitt(f, X) # f* includes a free

Definition 1 ([15]) Let Y < X < F". We setX © Y = faceforX.
(X*\ Y*)~. The setX ® Y is a complex that is called the Prop. 9 is a special case of Prop. 8, as we have {Y) U
detachment of Y from X. Y =X

Intuitively a cell f or a subcompleX of a complexX is Proposition9 ([15]) Let Y < X < F". The complex Y is
simple if its removal fromX “does not modify the topology simplefor X if and only if Y collapses onto Att(Y, X).
of X”. Let us now recall a definition of simplicity [15] based
on the collapse operation, which can be seen as a discrete For example in Fig. 7, it may be easily checked, both
counterpart of the one given by T.Y. Kong [14]. from the definition and using Prop. 9, théats simple forX.

Definition 2 ([15]) LetY < X < F". We say thalf issmple  Remark 1 If Y = 0, orif Y < X contains no facet oX, then

for Xif X collapses ontX © Y. If f is a simple cell, we will v jg obviously a simple set fax, as we haveX © Y = X.

also say thaf is simple. More generally, it can be proved [17] that the detachment
of a subcomplexy from X is equal to the detachment of
the maximal principal subcomplex of X included inY.

I d gyow e Without loss of generality, the study of the simple sétsf

° I ,,,,,, L e 4 a complexX can then be restricted to those verifyiMa- X
andY # 0. From now on, we will always implicitly consider
that a simple set verifies these hypotheses.

(]

3 Confluence properties in cubical complexes

Consider three complexds B, C. If A collapses ont€ and
A collapses ontd, then we know tha#, B and C “have
the same topology”. If furthermore we ha@e< B < A, itis

_ o tempting to conjecture th&collapses ont€. We call this a
Fig. 7 (a) A complexX. (b) A subcomplexY of X that is simple forX.

(c) The detachment of from X. (d) The attachment of to X. (e) A confluence property. For example, this property implies tha
subcomplexZ of X that isnot simple forX. any complex inf? obtained by a collapse sequence from a

full rectangle indeed collapses onto a point.
Quite surprisingly, such a property does not holdFi

(more generally irF",n > 3), and this fact constitutes one

of the principal dfficulties when dealing with certain global

topological properties. A classical counter-example tig th

(a) If Pis any finite set of faces iA" such that no element assertion is Bing's house ([23], see also [7,5]). In Fig. 8,
of P is contained in another elementBf then one can we see a classical representation of Bing’s house. The house
define a simple subset &f to be a subse$ of P such  has two rooms separated by a floor; one can enter the lower
that S~ is simple forP~ (or, equivalentlyP~ collapses room of the house by the chimney passing through the upper
to(P\S)". room, and vice-versa. A realisation of Bing’s house as a 2-

(b) If Pis any finite set of 2-faces i/? (i.e., a “finite set of complex can be obtained by collapse from a full cuboid, and
pixels”), then a subset ¢f would be simple in the sense has no free face: it is thus a counter-example for the above
of (a) if and only if that subset is strongly deletable (seeconjecture, withA: a cuboid B: Bing’s house, an@: a point
introduction). in B.

(S

(d)

The following remarks highlight some links between this
framework and digital topology:



7 We know that , ;) is free for A, that is, f; is the only
] face of A; that strictly includesy;. Since dimB\ A; < 1
(by definition of f;) and f; € B, we see thaf is also the
A only face ofB that strictly includesy, i.e., (f,, g) is free
for B. Let B; = B\ {f;,g}, we haveC < B; < B < A
P andB collapses ont®;. Still considering the same collapse
sequences, and substitutingB; to B, we can repeat the
same argument. Eventually, we obtain a collapse sequence
Fig. 8 Bing's house with two rooms (classical representation)e Th (B, By, ..., Bx = B’) such thaC < B’ and dim@’ \ C) < 1.
four rectangles in light grey are not part of_ the house, t_lhmsl@wer Now, suppose thaB is an extension o€ andy(C) =
room can be reached through the upper chimney, and vicexvers ¥(B). As B collapses t@®’, we have thaB is an extension of
B’ (Prop. 2), and by Prop. 3 we deduce tBats an exten-

As we will show in this article, in the two-dimensional Sion ofC. Furthermorey(B’) = x(B) = x(C). So Prop. 10
discrete plané®2 and more generally in the class of dis- implies that’ collapses ont@, henceB collapses ont€. o

crete spaces called pseudomanifolds, a confluence property
indeed holds (Th. 2). Prop. 12 is an immediate corollary of Prop. 11.

We fi lish fl hat i - "
. © |_rst est_ab ISh & confluence .propertyt atis essenProposmon 12 (Downstream confluence)et A, B,C be
tially 1-dimensional, a step for proving more general con-

. suchthat C < B < A < F" and such that dim(A\ C) < 2. If
fluence properties.

A tree is a graph that is collapsible. It may be easily'A‘CO“apS&GontOC and A collapses onto B, then B collapses

proved that a graph is a tree if and only if it is connectedOnto c.

and does not contain any cycle (see [18]). From Props. 3, 10, and the fact that collapse preserves

Let X < F" be a complex. The set of alifaces ofX,  the Euler characteristic, we also derive straightforwattie
withi € [0, n], is denoted b)F|(X) We denote bM:|(X)| the fo"owing proposition.

number ofi-faces ofX, i € [0, n]. TheEuler characteristic of

X, written y(X), is defined by (X) = 3 ,(-1)|Fi(X)|. The  Proposition 13 (1-D Upstream confluence) et A, B, C be

Euler characteristic is a well-known topological invatigh ~ suchthat C < B < A < F" and such that dim(A\ B) < 1. If A

can be easily seen that collapsing preserves it. collapses onto C and B collapses onto C, then A collapses
The following property generalises a classical characonto B.

terisation of trees: a grapK is a tree if and only ifX is

connected ang(X) = 1.

The following property of graphs, a necessary and suf-
ficient condition which accounts for both downtream and
Proposition 10 Let X,Y be such that Y < X < F", and  upstream confluences, derives immediately from Props. 12
dim(X \ Y) < 1. Then, X collapses onto Y if and only if ~ and 13.

Xisanedension of Y and (Y) = x(X). Proposition 14 (Confluence in graphs) et A be a graph

From Prop. 10 (which is proved in the appendix), we carnd &t B, C be such thatq <Bx Agnd Acollapsesonto C.
establish the following property, from which derives Prbp. ~ Then, B collapses onto C if and only if A collapses onto B.

Proposition 11 Let C < B < A < F" be such that dim(A \ _ _ _
C) < 2 and A collapses onto C. Then B collapsesonto C if 4 Two-dimensional pseudomanifolds

and only if B isan extension of C and x(B) = x(C). . . . . .
Intuitively, a (2-D) manifold is a 2-D (finite or infinite)

Proof The “only if” part of the proof is straightforward, let space whichis locally “like” the 2-D Euclidean space (sgiser
us prove the “if” part. SinceéA collapses ont«, we know and tori are, for instance, manifolds).

that there exists a collapse sequeBice ((fi,gi»{:l from A The notion of (2-D) pseudomanifold is less restrictive
toC. AsB < Aand dim@\ C) < 2, no 2-face irB\ Cisa since it authorises several pieces of surface to be adjacent
g, and so each 2-face B\ Cis anf;. in a singular point (as two cones sharing the same apex, for

We claim that the subsequenceSthat consists of the instance). Note that any manifold is a pseudomanifold, but
pairs (fi, g;) for which f; is a 2-face inB \ C is a collapse the converse is not true. Some examples of pseudomanifolds
sequence fronB to a complexB’ such thatC < B’ and are provided in Fig. 9.

dim(8"\C) S_ L. TOJUStIf_y this Cl,alm’ consider the f_IrSt index In this article, the notions of manifold and pseudomanifali
t such thatf; is a 2-face irB\ C, if any such face exists (oth- implicitly refer to objectswithout boundary. Formal definitions of
erwise our claim holds wit®’ = B). LetA; = A\ {fi, i }itj. these notions may be fouredy. in [24].
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Fig. 9 2-D pseudomanifolds. (a) A topological sphere. (b) A togelo
ical torus. (c) A pinched torus. (a) and (b) are manifoldsugttalso
pseudomanifolds), (c) is a pseudomanifold but not a mashifol

In the framework of cubical complexes, a 2-D pseudo-
manifold can be defined as follows. We denoteffyhe set
composed of alin-faces ofzZ", with m € [0, 2]. We say that
nis a 2path (in X) if 7 is a path inX composed of 1- and
2-faces.

Definition 3 Let M C F be such that dinNl) = 2. We
say thatM is a(2-D) pseudomanifold if the following four
conditions hold:

(i) forany f € M, we havef ¢ M;
(i) Mis pure;
(i) for any pair of 2-faces {, g) in M, there is a 2-path iiv
from f tog;
(iv) any 1-face ofM is included in exactly two 2-faces ™.

Notice that, in particularf2 = F2 (namely the discrete Fig. 10 (a) A 2-D pseudomanifold, having the topology of a (hol-
plane) is a pseudomanifold. Notice also thatlifis a finite low) torus. (b) A subcompleX of M (some disks have been removed).
pseudomanifold, theM is a pure 2-complex that cannot be (c) Another subcompleX of M, such tha collapses ontd.
collapsed, sinc® has no free face by definition.

In the sequel, we focus on complexes that are strict sub-
sets of a pseudomanifold, as illustrated in Fig. 10. number of edges of included in exactlyk squares ofS.

. i As M is a pseudomanifolaly = O for all k > 2. Of course,
Proposition 15 Let M < F; be a pseudomanifold, and et o501 square o8 includes exactly two edges &. Thus,

X < M. Then, Bd(Bd1(X)) = Bd(Bd(X)) = 0. 2|S| = 0dp + 1d; + 2dy, implying thatd; is even, hence ¢
Proof It is plain thatBd(Bd:(X)) = Bd(Bd(X)). Let p be Bd(Bd;(X)). Since this holds for anp € Bdi(X), we have
a point inBdy(X), and letE (resp.S) be the set of edges Bd(Bd.(X)) = 0.0

(resp. squares) of including p. We write di to denote the
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Proposition 16 Let M C ) be a pseudomanifold, let B <
M such that dim(B) = 2and B # M, let f be a 2-face of B,
and let g bea2-facein M \ B. If risa 2-pathfrom f togin
M, then = necessarily contains a 1-face of Bd(B).

Proof Leth be the first 2-face ot that is not inB, let k be
the last 2-face of beforeh (thuskis in B), and lete = knh
be the 1-face ofr betweenk andh. SinceM is a pseudo-
manifold, e is included in exactly two 2-faces &l and in
exactly one 2-face dB, that is,e € Bd1(B). O

Prop. 17 follows easily from Prop. 16.

Proposition 17 Let M C F) be a pseudomanifold, let B <
M. If dim(B) = 2 and B # M, then there exists at least one
pair (f,g) that isfree for B, with dim(f) = 2.

5 A confluence property in 2-D pseudomanifolds

Recall thatX collapses ontd if and only if X is an exten-
sion of Y andy(Y) = yx(X), provided thaty < X < F" and

dim(X\Y) < 1 (Prop. 10). It is tempting to try to generalise
this property to the case whekeandY are any subcom-

Proposition 19 (Upstream confluence).et M C F) be a
pseudomanifold, and let C < B < A < M. If A collapses
onto C and B collapses onto C, then A collapses onto B.

Proof If |[F2(A)| = 0 then by Prop. 13A N\, B. Suppose
that |F2(A)] > 0 and that the proposition holds whénis
replaced with anyy’ such thatF,(A’)| < |[F2(A)|. Consider
the seta of 1-faces that are free fok and not inC, i.e,
a = F1(Bd(A)\ C). If @ = 0, then the hypothesia N\, C im-
plies thatiF2(A)| = |[F2(C)| = [F2(B)|, and the result follows
from Prop. 13. We now suppose that# 0. By Prop. 15,
no face inBd(A) is free forBd(A), hence no face i~ is
free fora~ U C. Thus, the faces i cannot all be facets of
B, for otherwise, by Prop. 4B could not collapse ont@.
From this, we deduce that there exists a 1-fgde a such
that eitherg € Bd(B) or g ¢ B. Let f be the 2-face oA that
includesg.

Case 1:g € Bd(B). Thus, (,0) is a free pair for bothA
andB. Let A/ = A\ {f,g} andB’ = B\ {f,g}. We have
C<B <A, A, C(byProp. 12) and® , C (also by
Prop. 12), thus by the recurrence hypothésis\, B’. Since
A’ collapses ont®’ = BN A, it follows from Prop. 8 that
BU A’ = Acollapses ontd.

plexes of a pseudomanifold, for confluence propertieswoulcgzase 29 ¢ B. Thus, ,g) is a free pair forA that is not

immediately follow from such a result. But in fact, the bac

k-1n B, letA” = A\ {f,g}. We haveC < B < A", A’ \, C

ward implication of Prop. 10 does not hold in the general(by Prop. 12) and® \, C, thus by the recurrence hypothesis

case (that is, when diri(\ Y) is not constrained), even X

A’ N\, BhenceA \, B.O

andY are complexes that are subsets of a pseudomanifold,

To get a counter-example, let us consideKathe com-

plex Z of Fig. 7(e) (which can be embedded in a pseudopaorem 2 (Confluence)Let M

manifold, for instance the boundary of a cube), andvlet
Bd(X) (a topological circle). It is plain thaX is an extension
of Y, while y(X) = x(Y) = 0. However, by constructiorX
has no free face outsidé thusX does not collapse onto.

The following theorem follows from Props. 12 and 19.

¢ F be a pseudomani-
fold, and let C < B < A < M be such that A collapses
onto C. Then, A collapses onto B if and only if B collapses
onto C.

Nevertheless, we can prove the following property, that

will be used in the next section.

Proposition 18 Let M c F) be a pseudomanifold, and let
X < M, X # M. The complex X is collapsibleif and only if
ICX) = x(X) = 1.

Proof The forward implication is immediate, let us prove

the converse. Suppose thafx)| = y(X) = 1. Ifdim(X) < 1
(i.e, if |[F2(X)| = 0), then by Prop. 10 we deduce théts
collapsible.

Suppose now that diff) = 2. SinceX # M, by Prop. 17 we

know thatX has at least one free pair, and the result follow:

by induction onF,(X)|. O

6 Minimal simple sets in pseudomanifolds

Informally, a minimal simple set is a simple set which does
not strictly include any other simple set. In [17,7,25] the
notion of minimal simple set is studied and several examples
of non-trivial minimal simple sets if® and in]Fg are given.

In this section, we first establish the equivalence between
the notions of simple cell and minimal simple set in pseu-
domanifolds (Prop. 22). Then we demonstrate that, in such
spaces, any simple set can be fully detached by iterative de-

Stachment of simple cells, in any possible order (Th. 3).

Definition 4 ([17]) Let X < F"andS C X. The subcomplex
Sis aminimal simple set (for X) if S is a nonempty simple

We already know that the downstream confluence propget forx ands is minimal with respect to the relatian(i.e.

erty holds in 2-D pseudomanifolds, as a particular case 0§ _ g \wheneve) + Z C S andZ is a simple set foK).
Prop. 12. To have a general confluence property, similar to

Prop. 14 in graphs, we need to prove the upstream confliProposition 20 (See also [17])Let S £ X < [} such that

ence.

Sisaminimal simple set for X. Then, S is connected.



Proof LetS; be a connected component®fRemark that sinceX collapses ontX © S, and we assume thétis such
S; # 0andS; C S. LetJ = ((fi,gi))i‘;1 be a collapse se- a 2-face. LetA = Att(f, X). In both cases (dinf() = 1 or
quence fromXto X © S. Any pair (fi, g)) is eitherinX© S;  dim(f) = 2), we know thatA is disconnected. We claii@
orin S; \ Att(S;, X) = X\ (X © S;), thus by Prop. 6, hasanonempty subcomplex thatis simpleXdiut does not
X\, X O S;. HenceS; is a simple set foX, and the mini- containf. This claim contradicts the minimality &, so if
mality of S then implies that = S;. O we can justify it then the proof will be complete. In justify-

ing this claim, we suppose that difj)(= 2 (the case where
Proposition 21 Let X < F" be a connected 2-complex, let dim(f) = 1 is similar and simpler).
S C X bea simple subcomplex of X, and let f beafacet of  From prop. 20S is connected and from Props. 9 and 2,
S such that Att(f, X) is not empty and not connected. Then,  At(S, X) is connected. Without loss of generality, we as-
X ® f isan extension of Att(f, X). sume thatX is connected (otherwise we replaieby the
Proof Let us assume that dirfi{ = 2 (the case where component 0fX Fhat includesS). By Prop. 21, each com-
dim(f) = 1is similar and simpler). Let us writ& = Att(f, X) ponent ofX ©  includes exgctly o.ne componentAfLet

X1 be the component o © f that includesAtt(S, X) (and

andB=Xo f. AI! the dlfferen't possible configurations for thus alsoX © S), and letA, be the component ok that is
A, up to symmetries and rotations, are shown below. The el-

: : in X;. Letg andh be the two 1-faces of* \ A that each in-
ements ofA are depicted by black vertices and bold edges. clude a 0-face ofy. Obviously (1, g) is a free pair forx: let

X" = X\ {f,g}. Thenhis a facet ofX". We haveX \, X" and

; . P P . P ‘ . ‘ XN\, XO S, so by Prop. 12 we deduc€ \, X© S.
L GRS GRS GNP G S G .l ,,,,,,, 6 —o LetJ = ((fi, g)))’_, be a collapse sequence frothto X © S.
Lett € [1, (] be such thaff; = h. It can be seen thak ¢ X;

Consider two distinct connected compone@t® in A.  (otherwise the result of the collapse operation would be dis
Choose a 1-facgin f*\ A such that there exists an elemen- connected, for by construction any pathXhfrom X © S
tary pathr from a O-facec of C to a O-faced of D in f* that  to the remaining face il would containh), and of course
does not contaiig nor any 1-face ofA. One can verify by  f; ¢ X;. Furthermore, any other pair dfis either inX; orin
inspection that such a choice is possible in all eight corfiguX’\ Xy, since the only facet ok’ \ X; that includes a face of
rations above, whatever the conside@d. The pair f,g)  X; is f;. Thus by Prop. 6X’ \, X1, henceX Y\ X;.
is obviously free foiX. Itis plain thatf \, Ay, thus by Prop. 8 we hav& U f \, Xi;
Let X* = X\ {f,g}. SinceX \y X © SandX N\, X', by and sinceX \, Xy, by Prop. 19 we deduce th&t\, X; U f,
Prop. 12 we havX’ N\, X © S, and by Prop. 7 there exists i.e, X © (Xy U fA) is a simple set foiX. This justifies our
a sequence of 2-collapse operations frgfrto a compleXZ  claim and contradicts the minimality &, since it follows
such thalX © S < Z andZ has no 2-face outsid¢ © S. By  from the definition ofX; thatX © (X; U fA) CS.O
Prop. 7 we also deducg™\, X© S, and observe thatis in
Z since any 1-face of is not in any 2-face oK'. From Props. 22 and 12, we derive straightforwardly our main
Suppose tha€ andD are in a same connected componenttheorem.
of B= X © f. Then, by Prop. 1 there exists an elementary
patho fromdtocinZ o f. It can be seen that, by construc- Theorem 3 Let M C F be a pseudomanifold, and let 0 #
tion, o cannot contain any 1-face af and that any 1-face SC X < M suchthat Sisasimple set for X. Then:
of 7 cannot be inX © S. Thus the concatenation of and
n forms a cycle inZ having at least a 1-face outsideS S,
contradicting Prop. 5 and the fact that\, X © S. We con-
clude that any two distinct componentsAfare in distinct
components oB. Since furthermore each componentAof
is included in a component &, we get the resulta

¢ 96 e o0 ee—s—op—oo—o

(i) thereisafacet of X in S whichissimple for X; and
(i) for any cell f in S which issimple for X, S © fisa
simpleset for X © f.

To illustrate this property, consider the 2-complekés
X andY displayed in Fig. 10. If we know thaX collapses

Proposition 22 Let M C FJ be a pseudomanifold, and let ontoY (i.e, X © Y is a simple set foX), then Th. 3 tells
SC X < M suchthat S isaminimal smpleset for X. Then, ~ US that we can obtailf from X by sequentially removing
S is necessarily a 1-cell or a 2-cell. simple cells fromX ® Y, in any arbitrary order.

It has to be noticed, that the pseudomanifold hypothesis
Proof Suppose tha$ is not just one cell. Then, each facet is essentially used to prove Prop. 19. All other intermexdiat
of S must be non-simple foX. However, sincé is simple,  steps do not directly need this hypothesis. Then, a natural
no facetf of S is such thattt(f, X) = 0. If S contains a question follows: does Prop. 19 (and also Th. 3 by conse-
1-facet, then lef be such a facet. I$ is a pure 2-complex, quence) extends to the family of unrestricted 2-complexes
then at least one 2-face 8fmust include a free face fof, inF"?
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The answer to this question is negative, for there exeomplex, denoted b@ore(f, X, K), which is the union of all
ists some minimal simple sets in this family which are notessential cells foX and all cells ofK which are inf*, i.e,
single cells, and there exists some non-trivial collapsibl Core(f, X,K)=U{g|ge[KUEs(X)]n f*).
complexes that do not contain any simple facet. Exampleﬁefinition 7 ([15]) Let X < F and letf € X. We say that
of such configurations are given in [25]. The same countery ond f are regular for (X | K) if f € Ess(X) and if f
examples forbid to generalize Prop. 19 to the case Wherg,|ianses ont@ore(f, X, K). We say thaf andf arecritical
dim(A\C) < 2, like in Prop. 12, msteaq of assumiAgB,C ¢, (X | KYif feEsy(X)andiff is not regular forxX | K).
to be subcomplexes of a pseudomanifold. f X < FJ, we setCritic(X,K) = U{f | f is critical for

) : |
A proposition derived from. Prop. 18 and Th. '3, pre- (X | K)}, Critic(X, K) is thecritical kernel of (X | K), of
sented below (see also [26]), will serve us to establish a NeWimply thecritical kernel of X if K = 0.

property relative to parallel thinning (Th. 5, Sec. 7). ] o
Prop. 24 follows straightforwardly from the definitions.

Proposition 23 Let M C F be a pseudomanifold, aﬂd let Proposition 24 ([16])Let X < F and let f € X*. We have
X =M, X# MIFICX)| = x(X) = Land X hasno simple  core( X 0) = Att(f, X), thus the facet f isregular for (X |
facet, then X isa single cell. 0) if and only if f issimple for X.

Proof Suppose thdC(X)| = x(X) = 1, thatX has no simple Remark that Prop. 24 has the following consequences:
facet, and thak is not a single cell. By Prop. 18 we know (1) No simple facet oK lies in the critical kernel oi.

that X is collapsible,i.e., there is a pointi(e,, a O-face)g  (2) If X has no simple facet, then the critical kerneDofs
in X such thatX N\, §; let f be a facet oiX that includes X itself.

g- We haveX \, gandf ™\ g, thus by Th. 2 we deduce  Tpe following theorem holds for complexes of arbitrary

XN\ f,i.e, the selS = X © fis a simple set foX. Since  gimension (see [15]), it may be proved in a simple manner

X#XOS =1, DbyTh. 3we know thab contains a facetof i, the 2-p case (first, we collapse regular 2-faces onto their

X which is simple forX, a contradictiono core, then we collapse regular 1-faces onto their cores Thi
is the basic result in this framework.

7 Parallel thinning, critical kernels Theorem 4 ([15])Let K < Y C X < F,. The complex X
collapsesontoitscritical kernel. Furthermore, if Y includes
Th. 3 is in relation with sequential thinning algorithms. In the critical kernel of (X | K), then X collapses onto Y.

this section, we derive from Th. 3 (more precisely, from |, 116], several parallel thinning algorithms for arbityar
Prop. 23) a property, Th. 5, that relates to parallel homoy_gimensional cubical complexes are proposed. The fatt tha
topic thinning. Let us first recall the framework introduced they all preserve topology directly follows from Th. 4. The
by G. Bertrand in [15] for thinning, in parallel, discrete-0b  most fundamental thinning scheme in this framework con-

jects with the warranty that we do not alter the topology Ofssts of iteratively computing the critical kernel of theepr
these objects. We focus here on the two-dimensional casgyg,s result, until stability. The output of this procedise

however this method is actually valid for complexes of arbi-qefined below, and illustrated in Figs. 11 and 12.
trary dimension. finit N
The critical kernels framework is based solely on three™€ 'n'_t'928 LetK < X < . We set
notions, the notion of an essential face which enables to de= Critic’(X Ky =X; . _
fine the core of a face, and the notion of a critical face. In = Critic (X, K) = CV'F'G(kaltIC'_ (X, K), K), fori > 0;
the sequelX represents an object aida constraint set (see  — Critic™(X, K) = Critic*(X, K)
Sec. 1). if Critick(X, K) = Critic**}(X, K).
The complexCritic™ (X, K) is called thecritical skeleton of

is anessential face for X if f is precisely the intersection of

all facets ofX which includef,i.e,if f =n{ge X* | f C
gl. We denote byEs(X) the set composed of all essential (&) The critical skeleton has no simple facet.

faces ofX. If f is an essential face fot, we say thaff isan  (b) If X has no simple facet, then the critical skeletorXof
essential cell for X. is X itself.

From these properties of the critical skeleton and Prop. 23,
Observe that a facet of is necessarily an essential face e geduce the following result.

for X, i.e, X* € Esg(X).

From remarks (1) and (2) above, we can deduce that

Theorem 5 Let M C ) be a pseudomanifold, and let X <
Definition 6 ([15]) LetK < X < Fj and letf € Esg(X). M, X # M.IFIC(X)| = x(X) = 1, then the critical skeleton
Thecoreof f for (X | K) (read:X constrained byK) is the ~ of Xisasinglecell.
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Appendix

Proof of Prop. 10 The forward implication is immediate,
let us prove the converse. Suppose thas an extension of
Y andy(Y) = y(X). LetD = X\ Y,andk = [ID|. If k =0
thenY = X and we are done. Suppose now tkat- 0O,
and suppose that the proposition holds for any complex
instead ofX, whenevek’ < k (with k' = |X"\ Y[). We write
dz(X) to denote the number of 1-faces of a complethat
include a given O-facex of Z. Since each 1-face includes
exactly two O-faces, we have
AF)I= D dk()= > dk()+ D dk(®. (1)
xeFo(X) xeFo(Y) xeFo(D)
SinceY =< X, we havedx(x) > dy(x) for any x in Fo(Y).
Sincek > 0, we know thaD # (). Furthermore, we cannot
have dimp) = 0 because otherwis& would not be an
extension ofY. Thus, there is at least one 1-facddnLet X;
be a connected component¥that contains at least one 1-
face ofD. SinceX is an extension oY, there is a connected
componenty; of Y that is included inX;. Let f € X3\ Y3
andg € Y;. SinceY (hence alsor;) is a complex, the first
elemenix of Yy in a path fromf to gin X; is necessarily a 0-
face ofY, andxis included in a 1-face dD by construction.
We can see thaix(x) > dy(X). Thus, we have

DL x> D dv() = 2Fa (Y, )

xeFo(Y) xeFo(Y)

From (1) and (2), we deduce

2F(X) - 2Fi (M > > dx(x) . (3)
xeFo(D)

SinceX is an extension oY, there is no O-fac&in D = X\Y
such thatyx(x) = 0.

Suppose that all free 0-facesX{if any) are inY. Then, any
O-facex of D is such thatlx(x) > 2, hence

D, &M= > 2=2Fo(D)l = 2Fo(X)I-2Fo(Y)l (4)

xeFo(D) xeFo(D)



