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Preprint

Topological properties of thinning in 2-D pseudomanifolds

Nicolas Passat· Michel Couprie · Loïc Mazo · Gilles Bertrand

Abstract Preserving topological properties of objects dur-
ing thinning procedures is an important issue in the field of
image analysis. In the case of 2-D digital images (i.e. images
defined onZ2) such procedures are usually based on the no-
tion of simple point. In contrast to the situation inZn, n ≥ 3,
it was proved in the 80’s that the exclusive use of simple
points inZ2 was indeed sufficient to develop thinning pro-
cedures providing an output that is minimal with respect to
the topological characteristics of the object. Based on the
recently introduced notion ofminimal simple set (general-
ising the notion of simple point), we establish new proper-
ties related to topology-preserving thinning in 2-D spaces
which extend, in particular, this classical result to cubical
complexes in 2-D pseudomanifolds.

Keywords topology preservation· simple points· sim-
ple sets· cubical complexes· collapse· confluence·
pseudomanifolds

1 Introduction

Topological properties are fundamental in many applications
of image analysis, in particular in cases where the retrieval
and/or the preservation of topology of real complex struc-
tures is required. In this context, numerous methods have
been developed to process discrete 2-D and 3-D binary im-
ages, essentially to perform skeletonisation, homotopic trans-
forms or segmentation (seee.g. [1–3]).
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Such methods are generally based on the notion ofsim-
ple point [4,5]. Intuitively, a point (or pixel) of a discrete
objectX is said to be simple if it can be removed fromX
without altering its topology.

Let us consider an objectX, i.e. a set of points inZn,
and a subsetY of X called constraint set. A very common
topology-preserving thinning scheme [6] consists of repeat-
ing the following steps until stability:

– choose (according to a given priority function) a pointx
in X \ Y that is simple forX;

– removex from X.

(a) (b) (c)

Fig. 1 (a) An objectX (in white) and a subsetY of X (two pixels
marked by black dots). (b) A homotopic skeleton ofX (empty con-
straint set). (c) A homotopic skeleton ofX constrained byY.

The result of such a procedure, called homotopic skele-
ton of X constrained byY, is a subsetZ of X, which (i) is
topologically equivalent toX, (ii) includesY and (iii) has no
simple point outside ofY. We show an illustration in Fig. 1,
notice in particular that the constraint set is useful to pre-
serve some geometrical characteristics of the object.

The following question is fundamental with regard to the
behaviour of sequential thinning procedures:

(1) IsZ always a minimal result, in the sense that it does not
strictly include a subsetZ′ having the same properties
(i), (ii) and (iii)?
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If we consider the 3-D case, the answer to this question is no.
For example, ifX is a cuboid andY = ∅, then, depending on
the order of the point removals, the resultZ of the above pro-
cedure might not be composed of a single point. As pointed
out recently [7], there exist various kinds of configurations
in which a 3-D topology-preserving thinning algorithm can
be “blocked” before reaching a minimal result.

In the discrete planeZ2, question (1) was answered pos-
itively by C. Ronse in the 80’s, after a partial answer was
given in the early 70’s by A. Rosenfeld.

In 1970, in the same article where he introduced the no-
tion of simple point [8], A. Rosenfeld proved that any finite
subset ofZ2 that is connected and has no holes, can be re-
duced to a single point by iterative removal of simple points,
in any order. In [9], he also proved that any connected object
with one hole reduces in the same way to a closed curve.

In 1986, C. Ronse introduced the notion of strong delet-
ability in Z2 [10]. It is, to the best of our knowledge, the first
attempt to explicitly1 generalise the notion of simple points
to a more general notion of simple sets.

According to Def. 2.5 of [10], and skipping formal de-
tails, a subsetS of X ⊆ Z2 is strongly deletable from X
if (i) each connected component ofX includes exactly one
connected component ofX \S , and (ii) each connected com-
ponent ofX ∪ S includes exactly one connected component
of X, whereX denotes the complement ofX in Z2.

In the same article, C. Ronse proposed several results
related to strongly deletable sets, which can be summarised
as follows (see also [12], Prop. 2.4.).

Theorem 1 (From [10], Lem. 3.1, 3.2, Prop. 3.3)Let X ⊆
Z2. Let S ⊆ X. If S is strongly deletable from X, then:

– there exists x ∈ S such that x is a simple point for X;
– for all x ∈ S such that x is a simple point for X, S \ {x}

is strongly deletable for X \ {x}.

Consequently, ifY ⊆ X ⊆ Z2 and Y is topologically
equivalent toX (more precisely, ifX \Y is strongly deletable
from X), thenY may be obtained fromX by iterative removal
of simple points, in any arbitrary order.

To summarise, question (1) received a positive answer in
Z2 and a negative one inZ3 (and also for higher dimensions).
Still, there are spaces for which this question remained open
until now: the case of two-dimensional structures inn-dimen-
sional spaces,n ≥ 3. Such structures are often used in prac-
tice, e.g. to represent thin objects or (parts of) boundary of
objects in 3-D image analysis and in finite element mod-
elling.

The main outcome of this article is a theorem (Th. 3)
that states a property analogous to Th. 1, holding in a large

1 Note that A. Rosenfeld proved, ten years earlier [11], that the sets
of points deleted by certain parallel thinning algorithms satisfy the con-
ditions used to define strong deletability.

family of 2-D digital spaces, namely the pseudomanifolds
(see Fig. 9 where some pseudomanifolds are depicted).

This study is developed in the framework of cubical com-
plexes [13], in which we can retrieve and generalise the con-
cepts of digital topology inZn. The definition of simple sets
that we use here is based on the operation of collapse, a
topology-preserving transformation known in algebraic to-
pology. This definition makes sense whatever the dimension.

The proof of Th. 3 is based on a property of collapse, that
we call a confluence property (Th. 2), which is introduced
and proved in this article.

Th. 3 is also closely related to the notion of minimal
simple set introduced by some of the authors (see [7]), as we
derive it using the following property: ifX is a strict subset
of a pseudomanifold, then any minimal simple subset ofX
is a simple point (Prop. 22).

Thanks to a correspondence between the notion of mini-
mal simple set used here and the one of simple point [14], we
retrieve as particular cases of Th. 3 the results of A. Rosen-
feld and C. Ronse discussed before. However, the techniques
of proof used in this article are essentially different from the
ones used by these authors, and the generalisation of their
results is not trivial.

Finally, we devote a section (Sec. 7) to a result related
to parallel thinning that can be derived from Th. 3, based on
the notion of critical kernel [15,16].

This article is self-contained. Notice that all notions, prop-
erties and proofs presented hereafter can be easily trans-
posed in the framework of simplicial complexes (i.e., trian-
gulated objects).

2 Background notions

In this section, we provide basic definitions and properties
related to the notions of cubical complexes, collapse and
simple sets (the last two ones enabling to modify a complex
without altering its topology), see also [13,16,17].

2.1 Cubical complexes

If T is a subset ofS , we write T ⊆ S . Let Z be the set of
integers. Letk, ℓ ∈ Z, we denote by [k, ℓ] the set{i ∈ Z | k ≤
i ≤ ℓ}.

We consider the families of setsF1
0, F1

1, such thatF1
0 =

{{a} | a ∈ Z}, andF1
1 = {{a, a + 1} | a ∈ Z}. A subsetf of Zn

(n ≥ 2) that is the Cartesian product ofm elements ofF1
1 and

n − m elements ofF1
0 is called aface or anm-face of Zn, m

is thedimension of f , we write dim(f ) = m (see Fig. 2a,b).
If n ≥ 2, we denote byFn the set composed of all faces

of Zn.
An m-face of Zn is called apoint if m = 0, a(unit) edge

if m = 1, a(unit) square if m = 2.
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Let f be a face inFn. We set f̂ = {g ∈ Fn | g ⊆ f }. Any
g ∈ f̂ is aface of f (or of f̂ ).

If X is a set of faces ofFn, we writeX− =
⋃

f∈X f̂ , and
we say thatX− is theclosure of X.

A setX of faces ofFn is acell or anm-cell if there exists
anm-face f ∈ X, such thatX = f̂ . Theboundary of a cell f̂
is the setf̂ ∗ = f̂ \ { f } (see Fig. 2).

x y

z t
(a) (b) (c) (d) (e) (f)

Fig. 2 (a) Four points ofZ2: x = (0, 1); y = (1, 1); z = (0, 0); t = (1, 0).
(b) A graphical representation of the set of faces{ f0, f1, f2} in F2, where
f0 = {z} = {0} × {0} (a 0-face),f1 = {x, y} = {0, 1} × {1} (a 1-face), and
f2 = {x, y, z, t} = {0, 1} × {0, 1} (a 2-face). (c) A 1-cell ˆc. (d) A 2-cell d̂.
(e) The boundary ˆc∗ of ĉ. (f) The boundaryd̂∗ of d̂.

A finite setX of faces ofFn is a complex (in Fn) if for
any f ∈ X, we havef̂ ⊆ X.

Let S , X be two sets of faces ofFn. If X is a complex and
X ⊆ S , we writeX � S . Furthermore, ifS is also a complex,
then we say thatX is asubcomplex of S .

Let X ⊆ Fn. A face f ∈ X is a facet of X if there is no
g ∈ X such thatf ∈ ĝ∗, in other words, iff is maximal for
inclusion. A facet ofX that is anm-face is also called anm-
facet of X. We denote byX+ the set composed of all facets
of X (see Fig. 3). Note that the notion of facet of a com-
plex can intuitively be seen as the analogue of the notions of
pixels and voxels in the framework of 2-D and 3-D digital
topology.

If X is a complex, observe that in general,X+ is not a
complex, and that (X+)− = X. More generally, for any subset
Y of Fn, (Y+)− = Y−.

(a) (b)

(c) (d)

Fig. 3 (a) A setX of 0-, 1- and 2-faces inF3, which is not a complex.
(b) The setX+, composed by all facets ofX. (c) The setX−, i.e. the
closure ofX, which is a complex. (d) A subcomplex ofX−.

Let X ⊆ Fn, X , ∅. Thedimension of X is the number
dim(X) = max{dim( f ) | f ∈ X}, and we set dim(∅) = −1.
We say thatX is pure if for each f ∈ X+, we have dim(f ) =
dim(X). Let m be an integer. We say thatX is anm-complex
if X is a complex and dim(X) = m. If X is anm-complex
with m ≤ 1, then we also say thatX is a graph (see [18]).

Let Y � X � Fn. If Y+ ⊆ X+, we say thatY is aprincipal
subcomplex of X and we writeY ⊑ X (see Fig. 4).

(a) (b) (c)

Fig. 4 (a) A complexX. (b) A subsetY of X, which is a principal sub-
complex ofX (i.e., Y ⊑ X). (c) A subsetZ of X, which is a subcomplex
of X but not a principal subcomplex ofX.

Let X ⊆ Fn. A sequenceπ = 〈 fi〉ℓi=0 (ℓ ≥ 0) of faces inX
is apath in X (from f0 to fℓ) if for eachi ∈ [0, ℓ − 1], either
fi is a face offi+1 or fi+1 is a face offi; the integerℓ is the
length of π. The pathπ is said to beclosed wheneverf0 = fℓ,
it is a trivial path wheneverℓ = 0.

Let X ⊆ Fn. A path inX made of 0- and 1-faces is called
a 1-path. A 1-path from a 0-facex to a 0-facey (with pos-
sibly x = y), is said to beelementary if its 1-faces are all
distinct. A non-trivial elementary closed path is called acy-
cle.

Let X ⊆ Fn. We say thatX is connected if, for any pair
of faces (f , g) in X, there is a path inX from f to g. It is
easily shown that, ifX is a complex, thenX is connected if
and only if there exists an elementary path fromx to y in X
wheneverx andy are 0-faces inX.

Let X ⊆ Fn, and letY be a non-empty subset ofX, we say
thatY is aconnected component of X if Y is connected and if
Y is maximal for these two properties (i.e., if we haveZ = Y
wheneverY ⊆ Z ⊆ X andZ is connected). We will some-
times writecomponent as a shortcut for connected compo-
nent. The number of components ofX is denoted by|C(X)|.
Notice that|C(∅)| = 0.

2.2 Collapse

Let X be a complex inFn and let f ∈ X. If there exists a face
g ∈ f̂ ∗ such thatf is the only face ofX that strictly includes
g, theng is said to befree for X, and the pair (f , g) is said to
be afree pair for X. Notice that, if (f , g) is a free pair forX,
then we have necessarilyf ∈ X+ and dim(g) = dim( f ) − 1.

Let X be a complex, and let (f , g) be a free pair forX.
Let m = dim( f ). The complexX \ { f , g} is anelementary
collapse of X, or anelementary m-collapse of X.
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Let X, Y be two complexes. We say thatX collapses onto
Y, and we writeX ց Y, if there exists acollapse sequence
from X to Y, i.e., a sequence of complexes〈Xi〉

ℓ
i=0 (ℓ ≥ 0)

such thatX0 = X, Xℓ = Y, andXi is an elementary collapse
of Xi−1, for eachi ∈ [1, ℓ] (see Fig. 5). LetJ = 〈( fi, gi)〉ℓi=1
be the sequence of pairs of faces ofX such thatXi = Xi−1 \

{ fi, gi}, for any i ∈ [1, ℓ]. We also call the (possibly empty)
sequenceJ acollapse sequence (from X to Y). If X collapses
ontoY andY is a complex made of a single point, we say that
X is collapsible.

(a) (b)

(c) (d)

Fig. 5 (a) A complexX. (d) A subcomplexY of X. (a,b,c,d) A collapse
sequence fromX to Y.

The following property is easy to prove.

Proposition 1 Let X � Fn, let h, k be two faces of X and let
( f , g) be a free pair for X such that {h, k}∩{ f , g} = ∅. If there
exists a path from h to k in X, then there exists a path from h
to k in X \ { f , g}.

Let Y, X ⊆ Fn. We say thatX is an extension of Y if Y ⊆ X
and each connected component ofX includes exactly one
connected component ofY (see [19]). The following propo-
sition easily follows from Prop. 1.

Proposition 2 Let Y � X � Fn. If X ց Y, then X is an ex-
tension of Y. In consequence, collapse preserves the number
of connected components.

Although initially formulated and proved in a framework
of graphs, the next proposition and its proof can be straight-
forwardly adapted to cubical complexes.

Proposition 3 ([19], theorem 4)Let Z ⊆ Y ⊆ X ⊆ Fn be
such that X is an extension of Z. The subset Y is an extension
of Z if and only if X is an extension of Y.

Let X � Fn, the complex that is the closure of the set
of all free faces forX, is called theboundary of X, and is
denoted byBd(X). We denote byBd1(X) the complex that is
the closure of the set of all free 1-faces forX (see Fig. 6). Of
course, we haveBd1(X) � Bd(X).

(a) (b)

Fig. 6 (a) Bd(X), whereX is the complex of Fig. 5a. (b)Bd1(X).

Proposition 4 Let Y � X � Fn, let α be a set of facets of
X that are not in Y, i.e., α ⊆ X+ \ Y. If Bd(α−) ⊆ Y, then X
does not collapse onto Y.

Proof The proposition trivially holds whenX = Y ∪ α−.
Suppose that (f , g) is a free pair forX outsideY. We see that
g cannot be inα because it is not a facet, and thatf can-
not be inα, otherwise (f , g) would also be a free pair forα−

outsideY (a contradiction withBd(α−) ⊆ Y). By induction
we deduce that any complexZ such thatY � Z andX ց Z
includesY ∪ α−, hence the proposition.�

The following property can be easily derived from Prop. 4.

Proposition 5 Let Y � X � Fn be such that dim(X \ Y) = 1.
If there exists a cycle in X that contains at least one 1-facet
of X which is outside Y, then X does not collapse onto Y.

Proposition 6 Let Z � X � Fn be two complexes such that
X ց Z. Let J = 〈( fi, gi)〉ℓi=1 be a collapse sequence from X
to Z. Suppose that there exists Y � X such that Z � Y and
for any i ∈ [1, ℓ], either { fi, gi} ⊆ Y or { fi, gi} ⊆ X \ Y. Then,
X ց Y and Y ց Z.

Proof Let k ∈ [2, ℓ] be such thatfk, gk < Y and fk−1, gk−1 ∈

Y, if such an integer exists. Sincegk * fk−1 (otherwisegk ∈

Y− = Y), ( fk, gk) is a free pair forX \ { fi, gi}
k−2
i=1 and we can

swap the two pairs inJ, still getting a collapse sequence. By
repeating this procedure, we can build a collapse sequence
from X to Z where the firstm pairs (m ∈ [0, ℓ]) are not inY
and the lastℓ−m pairs are inY. It can easily be seen that the
first m pairs (resp. the lastℓ − m pairs) of this new sequence
constitute a collapse sequence fromX to Y (resp. fromY
to Z). �

Let J = 〈( fi, gi)〉ℓi=1 be a collapse sequence. This collapse
sequence is said to bedecreasing if for any i ∈ [1, ℓ− 1], we
have dim(fi) ≥ dim( fi+1). Prop. 7 may be proved in a similar
manner as Prop. 6.

Proposition 7 ([20])Let Y � X � Fn. If X collapses onto Y,
then there exists a decreasing collapse sequence from X to Y.

Let X, Y be two complexes. LetZ be such thatX ∩ Y �
Z � Y, and let f , g ∈ Z \ X. The pair (f , g) is a free pair
for X ∪ Z if and only if ( f , g) is a free pair forZ. Thus, by
induction, we have the following property.
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Proposition 8 ([15])Let X, Y � Fn. The complex X ∪Y col-
lapses onto X if and only if the complex Y collapses onto X∩Y.

2.3 Simple sets

The operation of detachment allows us to remove a subcom-
plex from a complex while guaranteeing that the result is
still a complex (see Fig. 7).

Definition 1 ([15]) Let Y � X � Fn. We setX ⊘ Y =
(X+ \ Y+)−. The setX ⊘ Y is a complex that is called the
detachment of Y from X.

Intuitively a cell f̂ or a subcomplexY of a complexX is
simple if its removal fromX “does not modify the topology
of X”. Let us now recall a definition of simplicity [15] based
on the collapse operation, which can be seen as a discrete
counterpart of the one given by T.Y. Kong [14].

Definition 2 ([15]) Let Y � X � Fn. We say thatY is simple
for X if X collapses ontoX ⊘ Y. If f̂ is a simple cell, we will
also say thatf is simple.

(a) (b) (c)

(d) (e)

Fig. 7 (a) A complexX. (b) A subcomplexY of X that is simple forX.
(c) The detachment ofY from X. (d) The attachment ofY to X. (e) A
subcomplexZ of X that isnot simple forX.

The following remarks highlight some links between this
framework and digital topology:

(a) If P is any finite set of faces inFn such that no element
of P is contained in another element ofP, then one can
define a simple subset ofP to be a subsetS of P such
that S − is simple forP− (or, equivalently,P− collapses
to (P \ S )−.

(b) If P is any finite set of 2-faces inF2 (i.e., a “finite set of
pixels”), then a subset ofP would be simple in the sense
of (a) if and only if that subset is strongly deletable (see
introduction).

(c) There are some papers on digital topology in which the
concept of a simple subset is defined in a different way
that is inequivalent to (a) whenP− is an arbitrary cubical
complex; a fairly recent example is [21].

The notion of attachment, as introduced by T.Y. Kong
[22,14], leads to a local characterisation of simple sets (Prop. 9).

Let Y � X � Fn. Theattachment of Y for X is the com-
plex defined byAtt(Y, X) = Y∩ (X ⊘ Y) (see Fig. 7). Remark
that any facetf of X such thatAtt( f̂ , X) , f̂ ∗ includes a free
face forX.

Prop. 9 is a special case of Prop. 8, as we have (X ⊘ Y)∪
Y = X.

Proposition 9 ([15]) Let Y � X � Fn. The complex Y is
simple for X if and only if Y collapses onto Att(Y, X).

For example in Fig. 7, it may be easily checked, both
from the definition and using Prop. 9, thatY is simple forX.

Remark 1 If Y = ∅, or if Y � X contains no facet ofX, then
Y is obviously a simple set forX, as we haveX ⊘ Y = X.
More generally, it can be proved [17] that the detachment
of a subcomplexY from X is equal to the detachment of
the maximal principal subcomplexZ of X included inY.
Without loss of generality, the study of the simple setsY of
a complexX can then be restricted to those verifyingY ⊑ X
andY , ∅. From now on, we will always implicitly consider
that a simple set verifies these hypotheses.

3 Confluence properties in cubical complexes

Consider three complexesA, B,C. If A collapses ontoC and
A collapses ontoB, then we know thatA, B andC “have
the same topology”. If furthermore we haveC � B � A, it is
tempting to conjecture thatB collapses ontoC. We call this a
confluence property. For example, this property implies that
any complex inF2 obtained by a collapse sequence from a
full rectangle indeed collapses onto a point.

Quite surprisingly, such a property does not hold inF3

(more generally inFn, n ≥ 3), and this fact constitutes one
of the principal difficulties when dealing with certain global
topological properties. A classical counter-example to this
assertion is Bing’s house ([23], see also [7,5]). In Fig. 8,
we see a classical representation of Bing’s house. The house
has two rooms separated by a floor; one can enter the lower
room of the house by the chimney passing through the upper
room, and vice-versa. A realisation of Bing’s house as a 2-
complex can be obtained by collapse from a full cuboid, and
has no free face: it is thus a counter-example for the above
conjecture, withA: a cuboid,B: Bing’s house, andC: a point
in B.
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Fig. 8 Bing’s house with two rooms (classical representation). The
four rectangles in light grey are not part of the house, thus the lower
room can be reached through the upper chimney, and vice-versa.

As we will show in this article, in the two-dimensional
discrete planeF2 and more generally in the class of dis-
crete spaces called pseudomanifolds, a confluence property
indeed holds (Th. 2).

We first establish a confluence property that is essen-
tially 1-dimensional, a step for proving more general con-
fluence properties.

A tree is a graph that is collapsible. It may be easily
proved that a graph is a tree if and only if it is connected
and does not contain any cycle (see [18]).

Let X � Fn be a complex. The set of alli-faces ofX,
with i ∈ [0, n], is denoted byFi(X). We denote by|Fi(X)| the
number ofi-faces ofX, i ∈ [0, n]. TheEuler characteristic of
X, writtenχ(X), is defined byχ(X) =

∑n
i=0(−1)i|Fi(X)|. The

Euler characteristic is a well-known topological invariant; it
can be easily seen that collapsing preserves it.

The following property generalises a classical charac-
terisation of trees: a graphX is a tree if and only ifX is
connected andχ(X) = 1.

Proposition 10 Let X, Y be such that Y � X � Fn, and
dim(X \ Y) ≤ 1. Then, X collapses onto Y if and only if
X is an extension of Y and χ(Y) = χ(X).

From Prop. 10 (which is proved in the appendix), we can
establish the following property, from which derives Prop.12.

Proposition 11 Let C � B � A � Fn be such that dim(A \
C) ≤ 2 and A collapses onto C. Then B collapses onto C if
and only if B is an extension of C and χ(B) = χ(C).

Proof The “only if” part of the proof is straightforward, let
us prove the “if” part. SinceA collapses ontoC, we know
that there exists a collapse sequenceS = 〈( fi, gi)〉ℓi=1 from A
to C. As B � A and dim(A \ C) ≤ 2, no 2-face inB \ C is a
gi, and so each 2-face inB \C is an fi.

We claim that the subsequence ofS that consists of the
pairs (fi, gi) for which fi is a 2-face inB \ C is a collapse
sequence fromB to a complexB′ such thatC � B′ and
dim(B′\C) ≤ 1. To justify this claim, consider the first index
t such thatft is a 2-face inB \C, if any such face exists (oth-
erwise our claim holds withB′ = B). Let A1 = A \ { fi, gi}

t−1
i=1.

We know that (ft, gt) is free for A1, that is, ft is the only
face of A1 that strictly includesgt. Since dimB \ A1 ≤ 1
(by definition of ft) and ft ∈ B, we see thatft is also the
only face ofB that strictly includesgt, i.e., ( ft, gt) is free
for B. Let B1 = B \ { ft, gt}, we haveC � B1 � B � A
andB collapses ontoB1. Still considering the same collapse
sequenceS , and substitutingB1 to B, we can repeat the
same argument. Eventually, we obtain a collapse sequence
〈B, B1, . . . , Bk = B′〉 such thatC � B′ and dim(B′ \C) ≤ 1.

Now, suppose thatB is an extension ofC andχ(C) =
χ(B). As B collapses toB′, we have thatB is an extension of
B′ (Prop. 2), and by Prop. 3 we deduce thatB′ is an exten-
sion ofC. Furthermore,χ(B′) = χ(B) = χ(C). So Prop. 10
implies thatB′ collapses ontoC, henceB collapses ontoC.�

Prop. 12 is an immediate corollary of Prop. 11.

Proposition 12 (Downstream confluence)Let A, B,C be
such that C � B � A � Fn and such that dim(A \ C) ≤ 2. If
A collapses onto C and A collapses onto B, then B collapses
onto C.

From Props. 3, 10, and the fact that collapse preserves
the Euler characteristic, we also derive straightforwardly the
following proposition.

Proposition 13 (1-D Upstream confluence)Let A, B,C be
such that C � B � A � Fn and such that dim(A\B) ≤ 1. If A
collapses onto C and B collapses onto C, then A collapses
onto B.

The following property of graphs, a necessary and suf-
ficient condition which accounts for both downtream and
upstream confluences, derives immediately from Props. 12
and 13.

Proposition 14 (Confluence in graphs)Let A be a graph
and let B,C be such that C � B � A and A collapses onto C.
Then, B collapses onto C if and only if A collapses onto B.

4 Two-dimensional pseudomanifolds

Intuitively, a (2-D) manifold2 is a 2-D (finite or infinite)
space which is locally “like” the 2-D Euclidean space (spheres
and tori are, for instance, manifolds).

The notion of (2-D) pseudomanifold is less restrictive
since it authorises several pieces of surface to be adjacent
in a singular point (as two cones sharing the same apex, for
instance). Note that any manifold is a pseudomanifold, but
the converse is not true. Some examples of pseudomanifolds
are provided in Fig. 9.

2 In this article, the notions of manifold and pseudomanifoldwill
implicitly refer to objectswithout boundary. Formal definitions of
these notions may be founde.g. in [24].
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(a)

(b) (c)

Fig. 9 2-D pseudomanifolds. (a) A topological sphere. (b) A topolog-
ical torus. (c) A pinched torus. (a) and (b) are manifolds (thus also
pseudomanifolds), (c) is a pseudomanifold but not a manifold.

In the framework of cubical complexes, a 2-D pseudo-
manifold can be defined as follows. We denote byFn

2 the set
composed of allm-faces ofZn, with m ∈ [0, 2]. We say that
π is a 2-path (in X) if π is a path inX composed of 1- and
2-faces.

Definition 3 Let M ⊆ Fn
2 be such that dim(M) = 2. We

say thatM is a (2-D) pseudomanifold if the following four
conditions hold:

(i) for any f ∈ M, we havef̂ ⊆ M;
(ii) M is pure;

(iii) for any pair of 2-faces (f , g) in M, there is a 2-path inM
from f to g;

(iv) any 1-face ofM is included in exactly two 2-faces ofM.

Notice that, in particular,F2
2 = F

2 (namely the discrete
plane) is a pseudomanifold. Notice also that, ifM is a finite
pseudomanifold, thenM is a pure 2-complex that cannot be
collapsed, sinceM has no free face by definition.

In the sequel, we focus on complexes that are strict sub-
sets of a pseudomanifold, as illustrated in Fig. 10.

Proposition 15 Let M ⊆ Fn
2 be a pseudomanifold, and let

X � M. Then, Bd(Bd1(X)) = Bd(Bd(X)) = ∅.

Proof It is plain thatBd(Bd1(X)) = Bd(Bd(X)). Let p be
a point in Bd1(X), and letE (resp.S ) be the set of edges
(resp. squares) ofX including p. We writedk to denote the

(a)

(b)

(c)

Fig. 10 (a) A 2-D pseudomanifoldM, having the topology of a (hol-
low) torus. (b) A subcomplexX of M (some disks have been removed).
(c) Another subcomplexY of M, such thatX collapses ontoY.

number of edges ofE included in exactlyk squares ofS .
As M is a pseudomanifold,dk = 0 for all k > 2. Of course,
each square ofS includes exactly two edges ofE. Thus,
2|S | = 0d0 + 1d1 + 2d2, implying thatd1 is even, hencep <
Bd(Bd1(X)). Since this holds for anyp ∈ Bd1(X), we have
Bd(Bd1(X)) = ∅. �
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Proposition 16 Let M ⊆ Fn
2 be a pseudomanifold, let B �

M such that dim(B) = 2 and B , M, let f be a 2-face of B,
and let g be a 2-face in M \ B. If π is a 2-path from f to g in
M, then π necessarily contains a 1-face of Bd(B).

Proof Let h be the first 2-face ofπ that is not inB, let k be
the last 2-face ofπ beforeh (thusk is in B), and lete = k∩ h
be the 1-face ofπ betweenk andh. SinceM is a pseudo-
manifold,e is included in exactly two 2-faces ofM and in
exactly one 2-face ofB, that is,e ∈ Bd1(B). �

Prop. 17 follows easily from Prop. 16.

Proposition 17 Let M ⊆ Fn
2 be a pseudomanifold, let B �

M. If dim(B) = 2 and B , M, then there exists at least one
pair ( f , g) that is free for B, with dim( f ) = 2.

5 A confluence property in 2-D pseudomanifolds

Recall thatX collapses ontoY if and only if X is an exten-
sion of Y andχ(Y) = χ(X), provided thatY � X � Fn and
dim(X \ Y) ≤ 1 (Prop. 10). It is tempting to try to generalise
this property to the case whereX and Y are any subcom-
plexes of a pseudomanifold, for confluence properties would
immediately follow from such a result. But in fact, the back-
ward implication of Prop. 10 does not hold in the general
case (that is, when dim(X \ Y) is not constrained), even ifX
andY are complexes that are subsets of a pseudomanifold.

To get a counter-example, let us consider asX, the com-
plex Z of Fig. 7(e) (which can be embedded in a pseudo-
manifold, for instance the boundary of a cube), and letY =
Bd(X) (a topological circle). It is plain thatX is an extension
of Y, while χ(X) = χ(Y) = 0. However, by construction,X
has no free face outsideY, thusX does not collapse ontoY.

Nevertheless, we can prove the following property, that
will be used in the next section.

Proposition 18 Let M ⊆ Fn
2 be a pseudomanifold, and let

X � M, X , M. The complex X is collapsible if and only if
|C(X)| = χ(X) = 1.

Proof The forward implication is immediate, let us prove
the converse. Suppose that|C(X)| = χ(X) = 1. If dim(X) ≤ 1
(i.e., if |F2(X)| = 0), then by Prop. 10 we deduce thatX is
collapsible.
Suppose now that dim(X) = 2. SinceX , M, by Prop. 17 we
know thatX has at least one free pair, and the result follows
by induction on|F2(X)|. �

We already know that the downstream confluence prop-
erty holds in 2-D pseudomanifolds, as a particular case of
Prop. 12. To have a general confluence property, similar to
Prop. 14 in graphs, we need to prove the upstream conflu-
ence.

Proposition 19 (Upstream confluence)Let M ⊆ Fn
2 be a

pseudomanifold, and let C � B � A � M. If A collapses
onto C and B collapses onto C, then A collapses onto B.

Proof If |F2(A)| = 0 then by Prop. 13,A ց B. Suppose
that |F2(A)| > 0 and that the proposition holds whenA is
replaced with anyA′ such that|F2(A′)| < |F2(A)|. Consider
the setα of 1-faces that are free forA and not inC, i.e.,
α = F1(Bd(A) \C). If α = ∅, then the hypothesisAց C im-
plies that|F2(A)| = |F2(C)| = |F2(B)|, and the result follows
from Prop. 13. We now suppose thatα , ∅. By Prop. 15,
no face inBd(A) is free forBd(A), hence no face inα− is
free forα− ∪ C. Thus, the faces inα cannot all be facets of
B, for otherwise, by Prop. 4,B could not collapse ontoC.
From this, we deduce that there exists a 1-faceg in α such
that eitherg ∈ Bd(B) or g < B. Let f be the 2-face ofA that
includesg.
Case 1:g ∈ Bd(B). Thus, (f , g) is a free pair for bothA
and B. Let A′ = A \ { f , g} and B′ = B \ { f , g}. We have
C � B′ � A′, A′ ց C (by Prop. 12) andB′ ց C (also by
Prop. 12), thus by the recurrence hypothesisA′ ց B′. Since
A′ collapses ontoB′ = B ∩ A′, it follows from Prop. 8 that
B ∪ A′ = A collapses ontoB.
Case 2:g < B. Thus, (f , g) is a free pair forA that is not
in B, let A′ = A \ { f , g}. We haveC � B � A′, A′ ց C
(by Prop. 12) andBց C, thus by the recurrence hypothesis
A′ ց B henceAց B. �

The following theorem follows from Props. 12 and 19.

Theorem 2 (Confluence)Let M ⊆ Fn
2 be a pseudomani-

fold, and let C � B � A � M be such that A collapses
onto C. Then, A collapses onto B if and only if B collapses
onto C.

6 Minimal simple sets in pseudomanifolds

Informally, a minimal simple set is a simple set which does
not strictly include any other simple set. In [17,7,25] the
notion of minimal simple set is studied and several examples
of non-trivial minimal simple sets inF3 and inF3

2 are given.
In this section, we first establish the equivalence between

the notions of simple cell and minimal simple set in pseu-
domanifolds (Prop. 22). Then we demonstrate that, in such
spaces, any simple set can be fully detached by iterative de-
tachment of simple cells, in any possible order (Th. 3).

Definition 4 ([17]) Let X � Fn andS ⊑ X. The subcomplex
S is aminimal simple set (for X) if S is a nonempty simple
set forX andS is minimal with respect to the relation⊑ (i.e.
Z = S whenever∅ , Z ⊑ S andZ is a simple set forX).

Proposition 20 (See also [17])Let S ⊑ X � Fn
2 such that

S is a minimal simple set for X. Then, S is connected.
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Proof Let S 1 be a connected component ofS . Remark that
S 1 , ∅ andS 1 ⊑ S . Let J = 〈( fi, gi)〉ℓi=1 be a collapse se-
quence fromX to X ⊘ S . Any pair (fi, gi) is either inX ⊘ S 1

or in S 1 \ Att(S 1, X) = X \ (X ⊘ S 1), thus by Prop. 6,
X ց X ⊘ S 1. HenceS 1 is a simple set forX, and the mini-
mality of S then implies thatS = S 1. �

Proposition 21 Let X � Fn be a connected 2-complex, let
S ⊑ X be a simple subcomplex of X, and let f be a facet of
S such that Att( f̂ , X) is not empty and not connected. Then,
X ⊘ f̂ is an extension of Att( f̂ , X).

Proof Let us assume that dim(f ) = 2 (the case where
dim( f ) = 1 is similar and simpler). Let us writeA = Att( f̂ , X)
andB = X ⊘ f̂ . All the different possible configurations for
A, up to symmetries and rotations, are shown below. The el-
ements ofA are depicted by black vertices and bold edges.

Consider two distinct connected componentsC,D in A.
Choose a 1-faceg in f̂ ∗ \ A such that there exists an elemen-
tary pathπ from a 0-facec of C to a 0-faced of D in f̂ ∗ that
does not containg nor any 1-face ofA. One can verify by
inspection that such a choice is possible in all eight configu-
rations above, whatever the consideredC,D. The pair (f , g)
is obviously free forX.
Let X′ = X \ { f , g}. SinceX ց X ⊘ S and X ց X′, by
Prop. 12 we haveX′ ց X ⊘ S , and by Prop. 7 there exists
a sequence of 2-collapse operations fromX′ to a complexZ
such thatX ⊘ S � Z andZ has no 2-face outsideX ⊘ S . By
Prop. 7 we also deduceZ ց X ⊘ S , and observe thatπ is in
Z since any 1-face ofπ is not in any 2-face ofX′.
Suppose thatC andD are in a same connected component
of B = X ⊘ f̂ . Then, by Prop. 1 there exists an elementary
pathσ from d to c in Z ⊘ f̂ . It can be seen that, by construc-
tion, σ cannot contain any 1-face ofπ, and that any 1-face
of π cannot be inX ⊘ S . Thus the concatenation ofσ and
π forms a cycle inZ having at least a 1-face outsideX ⊘ S ,
contradicting Prop. 5 and the fact thatZ ց X ⊘ S . We con-
clude that any two distinct components ofA are in distinct
components ofB. Since furthermore each component ofA
is included in a component ofB, we get the result.�

Proposition 22 Let M ⊆ Fn
2 be a pseudomanifold, and let

S ⊑ X � M such that S is a minimal simple set for X. Then,
S is necessarily a 1-cell or a 2-cell.

Proof Suppose thatS is not just one cell. Then, each facet
of S must be non-simple forX. However, sinceS is simple,
no facet f of S is such thatAtt( f̂ , X) = ∅. If S contains a
1-facet, then letf be such a facet. IfS is a pure 2-complex,
then at least one 2-face ofS must include a free face forX,

sinceX collapses ontoX ⊘ S , and we assume thatf is such
a 2-face. LetA = Att( f̂ , X). In both cases (dim(f ) = 1 or
dim( f ) = 2), we know thatA is disconnected. We claimS
has a nonempty subcomplex that is simple forX but does not
contain f . This claim contradicts the minimality ofS , so if
we can justify it then the proof will be complete. In justify-
ing this claim, we suppose that dim(f ) = 2 (the case where
dim( f ) = 1 is similar and simpler).
From Prop. 20,S is connected and from Props. 9 and 2,
Att(S , X) is connected. Without loss of generality, we as-
sume thatX is connected (otherwise we replaceX by the
component ofX that includesS ). By Prop. 21, each com-
ponent ofX ⊘ f̂ includes exactly one component ofA. Let
X1 be the component ofX ⊘ f̂ that includesAtt(S , X) (and
thus alsoX ⊘ S ), and letA1 be the component ofA that is
in X1. Let g andh be the two 1-faces of̂f ∗ \ A that each in-
clude a 0-face ofA1. Obviously (f , g) is a free pair forX; let
X′ = X \ { f , g}. Thenh is a facet ofX′. We haveX ց X′ and
X ց X ⊘ S , so by Prop. 12 we deduceX′ ց X ⊘ S .
Let J = 〈( fi, gi)〉ℓi=1 be a collapse sequence fromX′ to X ⊘ S .
Let t ∈ [1, ℓ] be such thatft = h. It can be seen thatgt < X1

(otherwise the result of the collapse operation would be dis-
connected, for by construction any path inX′ from X ⊘ S
to the remaining face inh would containh), and of course
ft < X1. Furthermore, any other pair ofJ is either inX1 or in
X′ \ X1, since the only facet ofX′ \ X1 that includes a face of
X1 is ft. Thus by Prop. 6,X′ ց X1, henceX ց X1.
It is plain that f̂ ց A1, thus by Prop. 8 we haveX1∪ f̂ ց X1;
and sinceX ց X1, by Prop. 19 we deduce thatX ց X1 ∪ f̂ ,
i.e., X ⊘ (X1 ∪ f̂ ) is a simple set forX. This justifies our
claim and contradicts the minimality ofS , since it follows
from the definition ofX1 thatX ⊘ (X1 ∪ f̂ ) ⊑ S . �

From Props. 22 and 12, we derive straightforwardly our main
theorem.

Theorem 3 Let M ⊆ Fn
2 be a pseudomanifold, and let ∅ ,

S ⊑ X � M such that S is a simple set for X. Then:

(i) there is a facet of X in S which is simple for X; and
(ii) for any cell f̂ in S which is simple for X, S ⊘ f̂ is a

simple set for X ⊘ f̂ .

To illustrate this property, consider the 2-complexesM,
X andY displayed in Fig. 10. If we know thatX collapses
onto Y (i.e., X ⊘ Y is a simple set forX), then Th. 3 tells
us that we can obtainY from X by sequentially removing
simple cells fromX ⊘ Y, in any arbitrary order.

It has to be noticed, that the pseudomanifold hypothesis
is essentially used to prove Prop. 19. All other intermediate
steps do not directly need this hypothesis. Then, a natural
question follows: does Prop. 19 (and also Th. 3 by conse-
quence) extends to the family of unrestricted 2-complexes
in Fn?
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The answer to this question is negative, for there ex-
ists some minimal simple sets in this family which are not
single cells, and there exists some non-trivial collapsible 2-
complexes that do not contain any simple facet. Examples
of such configurations are given in [25]. The same counter-
examples forbid to generalize Prop. 19 to the case where
dim(A \C) ≤ 2, like in Prop. 12, instead of assumingA, B,C
to be subcomplexes of a pseudomanifold.

A proposition derived from Prop. 18 and Th. 3, pre-
sented below (see also [26]), will serve us to establish a new
property relative to parallel thinning (Th. 5, Sec. 7).

Proposition 23 Let M ⊆ Fn
2 be a pseudomanifold, and let

X � M, X , M. If |C(X)| = χ(X) = 1 and X has no simple
facet, then X is a single cell.

Proof Suppose that|C(X)| = χ(X) = 1, thatX has no simple
facet, and thatX is not a single cell. By Prop. 18 we know
that X is collapsible,i.e., there is a point (i.e., a 0-face)g
in X such thatX ց ĝ; let f be a facet ofX that includes
g. We haveX ց ĝ and f̂ ց ĝ, thus by Th. 2 we deduce
X ց f̂ , i.e., the setS = X ⊘ f̂ is a simple set forX. Since
X , X ⊘ S = f̂ , by Th. 3 we know thatS contains a facet of
X which is simple forX, a contradiction.�

7 Parallel thinning, critical kernels

Th. 3 is in relation with sequential thinning algorithms. In
this section, we derive from Th. 3 (more precisely, from
Prop. 23) a property, Th. 5, that relates to parallel homo-
topic thinning. Let us first recall the framework introduced
by G. Bertrand in [15] for thinning, in parallel, discrete ob-
jects with the warranty that we do not alter the topology of
these objects. We focus here on the two-dimensional case,
however this method is actually valid for complexes of arbi-
trary dimension.

The critical kernels framework is based solely on three
notions, the notion of an essential face which enables to de-
fine the core of a face, and the notion of a critical face. In
the sequel,X represents an object andK a constraint set (see
Sec. 1).

Definition 5 ([15]) Let X � Fn
2 and let f ∈ X. We say thatf

is anessential face for X if f is precisely the intersection of
all facets ofX which includef , i.e., if f = ∩{g ∈ X+ | f ⊆
g}. We denote byEss(X) the set composed of all essential
faces ofX. If f is an essential face forX, we say thatf̂ is an
essential cell for X.

Observe that a facet ofX is necessarily an essential face
for X, i.e., X+ ⊆ Ess(X).

Definition 6 ([15]) Let K � X � Fn
2 and let f ∈ Ess(X).

Thecore of f̂ for 〈X | K〉 (read:X constrained byK) is the

complex, denoted byCore( f̂ , X,K), which is the union of all
essential cells forX and all cells ofK which are in f̂ ∗, i.e.,
Core( f̂ , X,K) = ∪{ĝ | g ∈ [K ∪ Ess(X)] ∩ f̂ ∗}.

Definition 7 ([15]) Let X � Fn
2 and let f ∈ X. We say that

f and f̂ are regular for 〈X | K〉 if f ∈ Ess(X) and if f̂
collapses ontoCore( f̂ , X,K). We say thatf and f̂ arecritical
for 〈X | K〉 if f ∈ Ess(X) and if f is not regular for〈X | K〉.
If X � Fn

2, we setCritic(X,K) = ∪{ f̂ | f is critical for
〈X | K〉}, Critic(X,K) is thecritical kernel of 〈X | K〉, of
simply thecritical kernel of X if K = ∅.

Prop. 24 follows straightforwardly from the definitions.

Proposition 24 ([16])Let X � Fn
2 and let f ∈ X+. We have

Core( f̂ , X, ∅) = Att( f̂ , X), thus the facet f is regular for 〈X |
∅〉 if and only if f is simple for X.

Remark that Prop. 24 has the following consequences:

(1) No simple facet ofX lies in the critical kernel ofX.
(2) If X has no simple facet, then the critical kernel ofX is

X itself.

The following theorem holds for complexes of arbitrary
dimension (see [15]), it may be proved in a simple manner
in the 2-D case (first, we collapse regular 2-faces onto their
core, then we collapse regular 1-faces onto their core). This
is the basic result in this framework.

Theorem 4 ([15]) Let K � Y ⊑ X � Fn
2. The complex X

collapses onto its critical kernel. Furthermore, if Y includes
the critical kernel of 〈X | K〉, then X collapses onto Y.

In [16], several parallel thinning algorithms for arbitrary
2-dimensional cubical complexes are proposed. The fact that
they all preserve topology directly follows from Th. 4. The
most fundamental thinning scheme in this framework con-
sists of iteratively computing the critical kernel of the pre-
vious result, until stability. The output of this procedureis
defined below, and illustrated in Figs. 11 and 12.

Definition 8 Let K � X � Fn
2. We set

– Critic0(X,K) = X;
– Critici(X,K) = Critic(Critici−1(X,K),K), for i > 0;
– Critic∞(X,K) = Critick(X,K)

if Critick(X,K) = Critick+1(X,K).

The complexCritic∞(X,K) is called thecritical skeleton of
〈X | K〉, or simply thecritical skeleton of X if K = ∅.

From remarks (1) and (2) above, we can deduce that

(a) The critical skeleton has no simple facet.
(b) If X has no simple facet, then the critical skeleton ofX

is X itself.

From these properties of the critical skeleton and Prop. 23,
we deduce the following result.

Theorem 5 Let M ⊆ Fn
2 be a pseudomanifold, and let X �

M, X , M. If |C(X)| = χ(X) = 1, then the critical skeleton
of X is a single cell.
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(a) (b)

(c) (d)

Fig. 11 (a) A 2-complexX = X0 in F3
2. (b) The critical kernelX1

of X (highlighted). (c) The critical kernelX2 of X1 (highlighted).
(d) Critic(X2, ∅) = X2 = Critic∞(X, ∅), the critical skeleton ofX.

(a) (b)

Fig. 12 (a) A complexX ⊑ F2, and a constraint setK (highlighted).
(b) The critical skeleton of〈X | K〉.

8 Conclusion

In this article we have established, in the case of digital 2-
D pseudomanifolds, a confluence property of the collapse
operation (Th. 2). From this result, we have proved that in
2-D pseudomanifolds any minimal simple set is a simple
cell (Prop. 22). This led us to the property stating that any
simple set can be removed by iterative removal of simple
cells in any order (Th. 3), and to a new property related to
parallel thinning and critical kernels (Th. 5).

It is indeed possible to retrieve Ronse’s theorem (Th. 1)
from the results presented above, based on the equivalence
betweenZ2 equipped with a (8, 4)-adjacency framework and
the set of pure 2-complexes inF2 [14]. For this purpose, it
is necessary to prove that any subcomplexS ⊑ X (whereX
is a pure 2-complex inF2) that is strongly deletable forX is
also simple forX in the sense of Def. 2 (the converse also
holds). This can be proved using Rosenfeld’s digital Jordan
curve theorem (see,e.g., Th. 7.6 of [27]).

The next step of this work will consist in studying the
possible extension of these properties to 2-D complexes that
are not embedded in 2-D digital spaces, but inn-D ones (n ≥
3). First results will be proposed in [25].
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Appendix

Proof of Prop. 10 The forward implication is immediate,
let us prove the converse. Suppose thatX is an extension of
Y andχ(Y) = χ(X). Let D = X \ Y, andk = |D|. If k = 0
then Y = X and we are done. Suppose now thatk > 0,
and suppose that the proposition holds for any complexX′

instead ofX, wheneverk′ < k (with k′ = |X′ \ Y |). We write
dZ(x) to denote the number of 1-faces of a complexZ that
include a given 0-facex of Z. Since each 1-face includes
exactly two 0-faces, we have

2|F1(X)| =
∑

x∈F0(X)

dX(x) =
∑

x∈F0(Y)

dX(x) +
∑

x∈F0(D)

dX(x) . (1)

SinceY � X, we havedX(x) ≥ dY(x) for any x in F0(Y).
Sincek > 0, we know thatD , ∅. Furthermore, we cannot
have dim(D) = 0 because otherwise,X would not be an
extension ofY. Thus, there is at least one 1-face inD. Let X1

be a connected component ofX that contains at least one 1-
face ofD. SinceX is an extension ofY, there is a connected
componentY1 of Y that is included inX1. Let f ∈ X1 \ Y1

andg ∈ Y1. SinceY (hence alsoY1) is a complex, the first
elementx of Y1 in a path fromf to g in X1 is necessarily a 0-
face ofY, andx is included in a 1-face ofD by construction.
We can see thatdX(x) > dY(x). Thus, we have∑

x∈F0(Y)

dX(x) >
∑

x∈F0(Y)

dY(x) = 2|F1(Y)| . (2)

From (1) and (2), we deduce

2|F1(X)| − 2|F1(Y)| >
∑

x∈F0(D)

dX(x) . (3)

SinceX is an extension ofY, there is no 0-facex in D = X\Y
such thatdX(x) = 0.
Suppose that all free 0-faces ofX (if any) are inY. Then, any
0-facex of D is such thatdX(x) ≥ 2, hence∑

x∈F0(D)

dX(x) ≥
∑

x∈F0(D)

2 = 2|F0(D)| = 2|F0(X)|−2|F0(Y)| .(4)

From (3) and (4), we derive|F1(X)| − |F1(Y)| > |F0(X)| −
|F0(Y)|, i.e., |F0(X)| − |F1(X)| < |F0(Y)| − |F1(Y)|. Since
dim(X \ Y) ≤ 1, for all i ≥ 2 we have|Fi(X)| = |Fi(Y)|,
henceχ(X) < χ(Y), a contradiction.
From this, we deduce thatX has at least one free 0-faceg
that is not inY, hence there is a free pair (f , g) for X such
thatg < Y and f < Y (otherwiseg would be inY sinceY is a
complex). LetX′ = X \ { f , g}. By the recurrence hypothesis,
X′ ց Y and thusX ց Y. �


