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ABSTRACT

Spatially variant morphological operators can signifi-

cantly improve filtering capabilities or object detection score

of various applications. Whereas an effort has been made to

define the theoretical background, the efficient implementa-

tion of adaptable algorithms remained far less considered.

In this paper, we present an efficient, one-scan, linear al-

gorithm for 1-D grey-scale dilations/erosions with spatially

variant structuring elements. The proposed algorithm pro-

cesses data in stream, can work in place and produces results

with minimal latency. The computing time is independent of

the structuring element size.

1. INTRODUCTION

The concept of adaptive filters is well known in the image

processing community since years [16, 15, 12]. The general

principle consists in applying a filtering process which de-

pends on internal, local properties of image [11], [3] or on

external, application dependent context, as e.g. in [16, 8], or

[13] where the distance-to-camera or wide-angle deforma-

tions require adapting the structuring element.

In the domain of mathematical morphology, a consid-

erable effort has been made to define the theoretical back-

ground. In [14], Roerding has assembled his work on spa-

tially variant morphology in the general framework of Group

Morphology. Charif-Chefchaouni and Schonfeld [4], and

also Bouaynaya et al [1] and [2] examine a theory of spa-

tially variant binary and functional mathematical morphol-

ogy where the structuring elements can vary both in size and

shape.

There is an evident lack of efficient implementations on

gray-scale images needed for practical applications, e.g. Ler-

allut [11] states running time in 3-D images up to hours.

1.1 Efficient implementations

Whereas the efficient algorithms have beeen proposed for

translation invariant structuring elements (SE) for both bi-

nary and grey-scale images, the efficient algorithms address-

ing the spatially variant SE are very limited.

Van Herk [17] proposes a 1-D fast algorithm, indepen-

dent of the SE size, requiring three scans. The extension to

translation invariant SE is not straightforward as the algo-

rithm relies on a fixed division of the processed line by the

size of SE.

Lemonnier and Klein [10] (also [9]) propose a fast di-

lation with large 1D for symetric SE that completes in two

scans of each line. The principle is the propagation of max-

ima according to the SE size. The first scan can result an

error to be corrected by the second scan. The extension to

adaptable SEs is either difficult or impossible.

Van Droogenbroeck and Talbot [7] propose an algorithm

based on a histogram, updated as the SE slides over the im-

age. The extension to spatially variant SE is direct. Comput-

ing the histogram however requires additional memory re-

sources and brings in an additional computing complexity.

Notice also that the histogram is not usable on floating-point

data.

In the domain of adaptable SE, several efficient algo-

rithms have been published for binary domain, see e.g. [6].

It proposes a spatially variant binary morphology, using as

kernels balls in various norms. Dilations are obtained by

thresholding the distance function to objects. Local adapt-

ability is achieved by thresholding at different levels. The

computational complexity is the one of computing the dis-

tance. However, the only possible extension to the grey-scale

domain is by decomposing the image into a set of binary im-

ages, bringing in an overwhelming increase of computational

burden.

Hedberg et al. [8] propose an efficient algorithm for spa-

tially variant binary morphology. The algorithm accepts non

centered resizable rectangles, uses little memory and its la-

tency strictly equals the one imposed by data dependency.

In the gray-scale domain, Cheng [5] proposes a fast algo-

rithm for SE with adaptable shape and size. The algorithm

proceeds by SE decomposition in smaller 2-D SE. Hence,

the computing complexity heavily depends on the SE size

and shape.

The algorithm presented in this paper is one-scan, linear

algorithm for 1-D dilation with spatially variant, non cen-

tered SEs. The computing time is independent of the SE size.

It’s can be considered as an extension to gray-scale domain

of the Hedberg algorithm.

The paper is organized as follows. Section 2 discusses the

constraints applying to adaptable SEs. Then the algorithm

is described in the Section 3. Finally Section 4 gives some

application results. The text concludes with discussion of the

properties and extension to higher dimensions.



2. ALGORITHMIC ISSUES

Consider a 1-D binary object X : R→ {0,1}, see Fig. 1a.

Consider a collection of flat, one-sided structuring elements

B defined for all x ∈R called origin by the length β : R→R

measured from x. Hence, every B is an interval in R delim-

ited by (x,x + β (x)) ⊂ R. Notice that β can be positive or

negative for SEs stretching right- or leftwards from the ori-

gin.
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Figure 1: (a) A 1-D binary object X . (b) Dilation δBX with a

flexible SE B(x). (c) Example of a discontinuous result δBX

with B varying “too fast”.

The morphological dilation of X by B is defined δBX =
∪b∈BX + b. Fig. 1b shows an example of dilation of X by a

function B1, illustrated at i and j (the origin of B1(i) is given

by the black dot above i). Notice that B1( j) may be different

from B1(i). The dilated object δB1
X(x) = 0, for x = i, j.

Fig. 1c shows the same X dilated by a different function

B2. The dilated object δB2
X(i) = 0 but δB2

X( j) = 1 since

B2( j) doesn’t extend inside X as does B1( j) in Fig. 1b. Di-

lating by B2 has created an echo of X at i instead of dilating

it.

SE size map B preventing this undesired behaviour needs

to verify following restrictions :
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For the rest of the paper, consider Z instead of R, and bidi-

rectional structuring elements as intervals B : Z→ (a,b)⊂Z,

a≤ x≤ b, encoded by distance from the origin x towards left

and right L(x) = x− a and R(x) = b− x. Hence, ∀x ∈ Z we

have B(x) = (L, R), with L,R ∈ Z
+.

The condition Eq.1 becomes
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These conditions allow a fast implementation of dilations,

and appear several times below throughout the description of

the algorithm.

3. ALGORITHM DESCRIPTION

Dilation and thresholding commute. This well known prop-

erty is utilized for brute-force implementations of dilations

of functions. A function is decomposed into a collection of

binary cuts obtained by thresholding it at every level. Every

cut is dilated and the function recomposed by superposition.

The fact that not all binary dilations in this collection are nec-

essary gave birth to the following algorithm. The algorithm

consists of two main stages.

1) Anti-causal to causal conversion

Suppose input data f arriving in a stream, see Fig. 2b.

Any operation utilizing a bi-directional structuring element

B = (L,R) with R > 0 is an anticausal operation, Fig. 2a.

Computing the result δ fB(x) depending of future samples of

the signal will require storing f in memory. Utilising the

property that dilation and translation commute

δB−t f (x)≡ δB f (x+ t)

any anticausal B = (L,R) has a causal equivalent B< = (L+
R,0), see Fig. 2c, yielding, after translation, an identical re-

sult

2) Propagating values

The algorithm reads in a stream the input data and the lo-

cal structuring element size and writes in a stream the output,

every sample is read/written once and only once. No jumps

ahead or backwards are used. Notice that the reading and

writing positions are not the same. Their difference is the

algorithm latency.

See the result by definition Fig. 2f, dilating f by some B

assigns δB(x) f (x) the maximum found in the interval covered

by B(x). Using a causal B< can be seen as propagating some

values f (x) a number of positions towards right. The propa-

gation distance, see Fig.2d, is determined by finding the last

B<(x + k), k > 0, that still includes x. Formally, the signal

value f (x) is dilated at most until x + d(x), i.e. d(x) steps

ahead:

d(x) = max
k≥0

{k | x+ k−L(x+ k)≤ x} (3)

Utilizing Eq. 2, it can be shown that Eq. 3 can be imple-

mented efficiently by

d(x) = max
k≥d(x−1)

{k | x+ k−L(x+ k)≤ x} (4)

a scheme which allows sequential reading on both signal and

structuring element data.

Algorithm

Not all values can propagate as soon as they are read.

This happens whenever a higher value is already being prop-

agated. Smaller, more recent values need to be stored for

possible later propagation. However, not all stored values

are necessarily propagated. They can get masked by another

incoming higher value.

Values stored for later propagation are memorized in a

queue structure. This queue behaves like a FIFO, supporting

inserting new elements with push and retrieving the oldest



Figure 2: 1-D dilation algorithm: (a) input two-sided struc-

turing element (circle denotes origin), (b) input signal, (c)

causal structuring element, (d) distance to propagate the in-

put signal samples, (e) algorithm result, (f) result by defini-

tion.

one with pop, and like a LIFO retrieving the most recent ele-

ment with dequeue. The structure supports enquiries about

the content of the oldest or most recent element oldestor

recent, and about the emptiness of the queue isempty.

The stored data are triplets value (Fval), position (rp) and

distance to propagate (dd).

Refer to the pseudo code in Appendix. The propagation

algorithm consits of following stages :

1) Read next signal value Fnext

2) Compute distance to propagate using scheme Eq. 4.

3) Compute the right and left edge (RE), (LE) of the struc-

turing element at given writing position (wp). Note that be-

fore outputting a value (at positionwp), all input data covered

by its structuring elements need to be read: (cycle while

1), broken by one of breaks as soon as new value can be

written.

4) Dequeue all stored smaller values that will never prop-

agate, being masked by Fval.

5) Detect a downstep and store the corresponding triplet

for the future propagation.

6) Compare the value currently being propagated with

Fval. If Fval is higher, use Fval for propagation. Otherwise,

dequeue all smaller values than Fval, then store Fval, its po-

sition x and distance d(x).

7) Detect the end of current propagation

TT(2)+TT(3)<wp, meaning compare whether its

initial position+distance is shorter that the current output

position wp. If yes, find another value to propagate: erase

too old values from the queue (no longer covered by current

structuring element), and pop - if exists - next stored

value higher that Fval, otherwise, use Fval for propaga-

tion. Memorize in TT its value, position and distance to

propagate.

Whenever the reading position reaches RE(wp), write at

wp of the output dF the maximum of Fval and the currently

propagated value T.

3.1 Algorithm Features

Input/Output data are read/written sequentially in a stream,

every sample is read/written once and only once.

The algorithm latency (difference between reading and

writing position) is at any moment strictly equal to the data

dependency.

Data don’t need to be allocated in the memory, i.e. there’s

no memory limitation to size of images.

Algorithm is able to run in place, i.e. input data can be

overwritten by output data.

3.2 Computation Complexity and Memory require-

ments

The algorithm complexity is O(N), N being the amount of

data (e.g. the number of pixels). Every sample is read and

processed (or dequeued) only once. The complexity is con-

stant with respect to the size of structuring element.

The data can be read and output in a stream, and don’t

even need to be stored in memory. Therefore, the only mem-

ory occupation is given by the maximal depth of the FIFO.

The worst case memory occupation of the algorithm is ob-

tained on a non-increasing interval, larger than the structur-

ing element size used at this position.

4. EXPERIMENTAL RESULTS

Consider detail-preserving noise filtering or contour-aware

image simplification. We illustrate the performance on the

Manet’s Le fifre painting, given by Fig. 3a. The contours

to preserve (c) can be detected with any usual edge detector

(we omit details here). Obviously, the contour preserving

filtering must use spatially variant (SV) SE that do not cross

these contours. Moreover, techniques based on mathematical

morphology using SV SE yield in less iterations better results

than with translation invariant (TI) SE.

After decomposition into 1-D, the present algorithm can

be used as follows: (e) shows horizontal then vertical dila-

tion by linear SV SE of size locally equal the distance (d)

to contours. In this way it approximates1 2-D dilation with

SV squares. The panel (f) gives approximation of closing,

and (g) approximation of opening•closing (one stage ASF

filter). Compare these results with TI ASF (h), obtained with

1unlike TI, unconstrained SV rectangular SE are not separable into 1-D.



(a) Original (b) zoom (c) Contours (d) SE map

(e) SV Dilation (f) SV Closing (g) SV ASF (h) TI ASF

Figure 3: Image simplification application

squares 3×3 that, though lesser filtering the background,

makes disappear the details from the face.

4.1 Extension to higher dimensions

Although 2-D dilation by a TI rectangles can be implemented

by decomposition into two 1-D dilations (horizontal and ver-

tical), separability of SV SE is not straightforward. For the

present algorithm, restrictions on the SE map have to be in-

troduced during its generation. Exact formulation of these

restrictions is under investigation and will be published sep-

arately.

4.2 Benchmarks

Experiments confirm linear execution time with respect to

size of data and constant time with respect to mean size of

SE, see Fig. 4, obtained on a 2GHz Intel Core 2 CPU, with

800MHz DDR2 RAM.

(a) (b)

Figure 4: Execution time (a) vs. size of data, (b) vs. mean

SE size (image 800x800 pixels)

5. CONCLUSION

This paper presents fast, 1-D, spatially variant, grey-scale di-

lation, obtained in one scan of data. Its complexity is linear

with respect to size of data, and constant with size of struc-

turing elements. Its latency is the strict minimum imposed by

the operator dependency on input data. The memory require-

ments are only bounded by the maximal size of structuring

element. Input/output data being read/written sequentially,

the implementation is independent of size of data. This is

extremely interesting for filtering large data with cascade fil-

ters, e.g. ASF, under severe time or memory constraints.

These interesting properties make this algorithm useful

not only for spatially variant morphological filtering, but also

with translation-invariant structuring elements.

In general, this algorithm represents a next step in the ef-

fort towards efficient implementation of grey-scale morphol-

ogy with spatially variant arbitrary-shaped structuring ele-

ments.
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————————————————————————

Appendix: One-Scan Dilation Algorithm pseudo code

————————————————————————

The following symbols denote ’←’ affectation, ’=’ equal test

and ’!’ logical negation.

————————————————————————

Inputs: F - input signal

L, R - structuring element width

Output: dF - output signal

————————————————————————

; initialization

Q.clear ; initialize empty queue

T← 0; ; currently dilated sample

wp← 1 ; output writing position

rp← 0 ; input reading position

N← length(F) ; size of data

Fnext← F(1); ; read first sample

for all wp ∈ 1<N,

RE← wp + R(wp) ; right edge of struct. element

LE← RE - L(wp) ; left edge of struct. element

while 1,

if rp < RE,

rp←rp+1 ; increment reading position

; compute the distance to propagate

dd← d (rp, R+L, R);

; read next input sample

Fval← Fnext;

if rp<N,

Fnext← F(rp+1);

else

Fnext← 0;

end;

end;

; dequeue smaller values

while !Q.isempty and Q.recent<Fval,

Q.dequeue

end;

; downstep detection,

if Fnext<Fval,

; store its value, position and distance

if Q.isempty or Q.recent 6= (Fval; rp; dd),

Q.push (Fval; rp; dd);

end;

end;

; compare last enqueued value

if !Q.isempty and Q.recent(2)≤rp,

; if it is higher use it for propagation

if Q.oldest(1)≥T and rp - Q.oldest(2). . .

≤ Q.oldest(3),

TT← Q.pop ; ok, use the enqueued one

T← TT(1);

end;

end;

; detect end of propagation

if TT(2)+TT(3)<wp,

T← Fval;

; find new maximum value

if !Q.isempty and Q.oldest(2)≤rp,

while !Q.isempty,

if wp - Q.oldest(2)> Q.oldest(3),

; erase too old samples

TT← Q.pop

else

if Q.recent(1)≥T,

TT← Q.pop

T← TT(1);

break while;

end;

end;

end;

else

if !Q.isempty and Q.oldest(2)≤rp,

TT← Q.pop;

T← TT(1);

end;

end;

end ; end of propagation

; write output

if rp=RE,

dF(wp)← max(Fval, T)

break while;

end;

end;

end;


