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Abstract

This paper summarizes some results of the authors concerning watershed divides and
their use in region merging schemes.
The first aspect deals with properties of watershed divides that can be used in particular

for hierarchical region merging schemes. We introduce the mosaic to retrieve the altitude
of points along the divide set. A desirable property is that, when two minima are separated
by a crest in the original image, they are still separated by a crest of the same altitude in
the mosaic. Our main result states that this is the case if and only if the mosaic is obtained
through a topological thinning.
The second aspect is closely related to the thinness of watershed divides. We present

fusion graphs, a class of graphs in which any region can be always merged without any
problem. This class is equivalent to the one in which watershed divides are thin. Topological
thinnings do not always produce thin divides, even on fusion graphs. We also present the
class of perfect fusion graphs, in which any pair of neighbouring regions can be merged
through their common neighborhood. An important theorem states that the divides of any
ultimate topological thinning are thin on any perfect fusion graph.
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Introduction

A popular approach to image segmentation, called region merging [18, 21], consists
of progressively merging pairs of regions until a certain criterion is satisfied. The
criterion which is used to identify the next pair of regions which will merge, as well
as the stopping criterion are specific to each particular method.
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Preprint submitted to Proc. of the Kiselmanfest 16 April 2008



(a) (b) (c)

x
y w

z

A B

C

D

(d) (e)

Fig. 1. (a): Original image (cross-section of a brain, after applying a gradient operator).
(b): Watershed of (a) with the 4-adjacency (in black). (c): Interior points for the previous
image (in black). (d): A zoom on a part of (b). The points z and w are interior points. (e):
Watershed of (a) with the 8-adjacency (in black). There are no interior points.

Given a grayscale image, how is it possible to obtain an initial set of regions for
a region merging process? The watershed transform [4, 14, 22] is a powerful tool
for solving this problem. Let us consider a 2D grayscale image as a topographical
relief, where dark pixels correspond to basins and valleys, whereas bright pixels
correspond to hills and crests. Suppose that we are interested in segmenting “dark”
regions. Intuitively, the watersheds of the image are constituted by the crests which
separate the basins corresponding to regional minima (see Fig. 1a,b). Due to noise
and texture, real-world images often have a huge number of regional minima, hence
the “mosaic” aspect of Fig. 1b. In the case of a graph (e.g., an adjacency graph
defined on a subset of Z2), a watershed may be thought of as as a “separating set”
of vertices which cannot be reduced without merging some connected components
of its complementary set.

Surprisingly, for various reasons, some watershed algorithms do not always pro-
duce a watershed (in the sense stated above), although they produce a thick divide
set that separates the dark regions. For implementing region meging schemes, such
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thickness is a problem. On the other hand, the use of watershed divides in hierar-
chical region merging schemes [3, 17] impose some constraints on the placement
of those divides, and we have to check the effectiveness of divides with respect to
such constraints.

This paper summarizes some of the main results [1, 5, 6, 8, 11, 12, 16] obtained by
the authors regarding these two questions.

To evaluate the effectiveness of divides, we have to consider the altitude of points
of the original image along the divide set. We call the greyscale image thus ob-
tained a mosaic. A first goal of this paper is to examine some properties of mosaics
related to image segmentation. We say informally that a watershed algorithm pro-
duces a “separation” if the minima of the mosaic are of the same altitude as the
ones of the original image and if, when two minima are separated by a crest in the
original image, they are still separated by a crest of the same altitude in the mosaic.
The formal definition relies on the altitude of the lowest pass which separates two
minima, named connection value (see also [1, 15, 16]). An important theorem [16]
states that a mosaic is a separation if and only if it is obtained through a topological
thinning [1, 5], a transform that modifies the original image while preserving some
topological properties, namely the connectivity of each lower cross-section.

However, a topological thinning does not always give a watershed. Furthermore,
even in the case where the result of a watershed algorithm is a watershed, the ques-
tion of the thinness of the watershed is not solved. Indeed, let us look at the fol-
lowing example. Given a subset E of Z2 and the graph (E, Γ1) which corresponds
to the usual 4-adjacency relation, we observe that a watershed may contain some
“interior points”, i.e., points which are not adjacent to any point outside the wa-
tershed (see Fig. 1c,d). We can say that a watershed on Γ1 is not necessarily thin.
On the other hand, such interior points do not seem to appear in any watershed on
Γ2, which corresponds to the 8-adjacency. Are the watersheds on Γ2 always thin?
We will see that it is indeed true. More interestingly, we summarize in this paper
a framework that allows the study of the property of thinness of watersheds in any
kind of graph. One of the main theorems of [8] is the identification of the class of
graphs in which any watershed is necessarily thin (see Th. 24).

Let us now turn back to the region merging problem. What happens if we want to
merge a couple of neighboring regionsA and B, and if each pixel adjacent to these
two regions is also adjacent to a third one, which is not wanted in the merging?
Fig. 1d illustrates such a situation, where x is adjacent to regions A, B, C and y
to A, B, D. This problem has been identified in particular by T. Pavlidis (see [18],
section 5.6: “When three regions meet”), and has been dealt with in some practical
ways, but until now a systematic study of properties related to merging in graphs has
not been done. A major contribution of [8] is the definition and the study of four
classes of graphs, with respect to the possibility of “getting stuck” in a merging
process (Sec. 3.1, Sec. 3.3). In this paper, we expose two of these four classes
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of graphs. In particular, we say that a graph is a fusion graph if any region A in
this graph can always be merged with another region B, without problems with
other regions. The most striking outcome of [8] is that the class of fusion graphs is
precisely the class of graphs in which any watershed is thin (Th. 24).

For morphological merging schemes, it is important to obtain a watershed which is
both thin and which is a separation. We thus have to obtain a topological thinnning
whose divide is thin. In one of the four classes of graphs introduced in [8], called the
class of perfect fusion graphs, any pair of neighboring regions A, B can always be
merged, without problems with other regions, by removing all the pixels which are
adjacent to both A and B. We will see that the divide of any ultimate topological
thinning is thin on perfect fusion graphs [11]. Such properties show that perfect
fusion graphs offer an ideal framework for region merging schemes.

In the last section of this paper, we give an intuitive idea of a graph onZn (for any n)
that we call the perfect fusion grid [8], which is indeed a perfect fusion graph, and
which is “between” the direct adjacency graph (which generalizes the 4-adjacency
to Zn) and the indirect adjacency graph (which generalizes the 8-adjacency). Fur-
thermore, in [7], we prove that this n-dimensional grid is the unique grid (up to a
translation) that possesses those two properties.

1 Discrete watersheds: definitions and heuristic

1.1 Basic notions and notations

Let A and B be two sets, we write A ⊆ B if A is a subset of B, we write A ⊂ B if
A is a proper subset of B (i.e. if A is a subset of B and A ̸= B).

In this paper, E stands for a finite nonempty set. We denote by |E| the number of
elements of E, and by 2E the set composed of all the subsets of E. We writeX the
complementary set of X in E, i.e., X = E \ X .

We define a graph as a pair (E, Γ) where Γ is a binary relation on E (i.e., Γ ⊆
E × E), which is reflexive (for all x in E, (x, x) ∈ Γ) and symmetric (for all x, y
in E, (y, x) ∈ Γ whenever (x, y) ∈ Γ). Each element of E is called a vertex or a
point. We will also denote by Γ the map from E to 2E such that, for all x ∈ E,
Γ(x) = {y ∈ E | (x, y) ∈ Γ}. If y ∈ Γ(x), we say that y is adjacent to x. We
define also the map Γ∗ such that for all x ∈ E, Γ∗(x) = Γ(x) \ {x}. Let X ⊆ E,
we define Γ(X) = ∪x∈XΓ(x), and Γ∗(X) = Γ(X) \ X . If y ∈ Γ(X), we say that
y is adjacent to X . If X, Y ⊆ E and Γ(X) ∩ Y ̸= ∅, we say that Y is adjacent
to X (or that X is adjacent to Y , since Γ is symmetric). Let G = (E, Γ) be a
graph and let X ⊆ E, we define the subgraph of G induced by X as the graph
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GX = (X, Γ ∩ [X × X]). In this case, we also say that GX is a subgraph of G.

Let (E, Γ) be a graph, let X ⊆ E, a path in X is a sequence π = ⟨x0, ..., xl⟩ such
that xi ∈ X , i ∈ [0, l], and xi ∈ Γ(xi−1), i ∈ [1, . . . , l]. We also say that π is a path
from x0 to xl in X . Let x, y ∈ X . We say that x and y are linked for X if there
exists a path from x to y in X . We say that X is connected if any x and y in X are
linked for X .

Let Y ⊆ X . We say that Y is a connected component ofX , or simply a component
ofX , if Y is connected and if Y is maximal for this property, i.e., Z = Y whenever
Y ⊆ Z ⊆ X and Z connected.
We denote by C(X) the set of all the connected components of X .

In image processing, we are often interested by vertex-weigthed graphs. We denote
byF(E) the set composed of all maps fromE to Z. A map F ∈ F(E) is also called
an image, and if x ∈ E, F (x) is called the altitude of x (for F ). Let F ∈ F(E).
We write Fk = {x ∈ E | F (x) ≥ k} with k ∈ Z, Fk is called an upper section
of F , and Fk is called a lower section of F . A non-empty connected component
of a lower section Fk is called a (level k) lower-component of F . A level k lower-
component of F that does not contain a level (k − 1) lower-component of F is
called a (regional) minimum of F . We denote byM(F ) the set of minima of F .

A subsetX ofE is flat for F if any two points x, y ofX are such that F (x) = F (y).
If X is flat for F , we denote by F (X) the altitude of any point of X for F .

Important remark. From now, (E, Γ) denotes a graph, and we furthermore as-
sume for simplicity that E is connected.
Notice that, nevertheless, the subsequent definitions and properties may be easily
extended to non-connected graphs.

1.2 Watersheds

Informally, in a graph, a watershed may be thought of as a “separating set” of
vertices which cannot be reduced without merging some components of its com-
plementary set (see Fig. 2d). We first give formal definitions of these concepts
(see [1, 5]) and related ones, then we derive some properties which will be used in
the sequel.

Definition 1. Let X ⊆ E, and let p ∈ X .
We say that p is W-simple (for X) if p is adjacent to exactly one component of X.

In this definition and the following ones, the prefix “W-” stands for watershed. In
Fig. 2a, x is a W-simple point for the set X constituted by the black vertices.
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We are now ready to define the notion of watershed which is central to this section.

Definition 2. Let X ⊆ E, let Y ⊆ X .
We say that Y is a W-thinning of X , written X ↘W Y , if
i) Y = X or if
ii) there exists a set Z ⊆ X which is a W-thinning ofX and a point p ∈ Z which is
W-simple for Z, such that Y = Z \ {p}.
A set Y ⊆ X is a watershed (in (E, Γ)) if Y ↘W Z implies Z = Y .
A subset Y of X is a watershed of X if Y is a W-thinning of X and if Y is a
watershed.
A watershed Y is non-trivial if Y ̸= ∅ and Y ̸= E.

x y

(a) (b) (c) (d)

Fig. 2. Illustration of W-thinning and watershed. (a): A graph (E,Γ) and a subsetX (black
points) of E. The point x is a border point which is W-simple, and y ∈ int(X) (see
section 3.2). (b): The set Y = X \ {x} (black points) is a W-thinning of X. (c): The set
Z (black points) is a W-thinning of both X and Y . The sets Y and Z are not watersheds:
some W-simple points exist in both sets. (d): A watershed of X (black points), which is
also a watershed of Y and of Z .

Definition 3. Let X , Y be non-empty subsets of E. We say that Y is an extension
of X if X ⊆ Y and if each component of Y contains exactly one component of X .
We also say that Y is an extension of X if X and Y are both empty.

Theorem 4 ([1]). LetX and Y be subsets of E. The subset Y is a W-thinning ofX
if and only if Y is an extension of X .

1.3 Extension-by-flooding: a heuristic for watersheds

0 1 2 3 2 1 1

1 2 3 4 3 2 1

2 3 4 5 4 3 2

3 4 5 6 5 4 3

2 3 4 5 4 3 2

2 2 3 4 3 2 1

2 2 2 3 2 1 0

1 1 1 0 1 1 1

1 1 1 0 1 1 1

1 1 1 0 1 1 1

0 0 0 0 0 0 0

1 1 1 0 1 1 1

1 1 1 0 1 1 1

1 1 1 0 1 1 1

0 0 0 3 1 1 1

0 0 0 4 1 1 1

0 0 0 5 1 1 1

3 4 5 6 5 4 3

2 2 2 5 0 0 0

2 2 2 4 0 0 0

2 2 2 3 0 0 0

(a) (b) (c)

Fig. 3. (a) An image, (b) a minima extension of (a), and (c) the associated mosaic.
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Numerous segmentation algorithms associate an influence zone to each minimum
of the image, by producing an extension of the set of minima of the image. This is in
particular the case for most of the algorithms proposed in the literature to compute
watersheds of grayscale maps.

Let X be a subset of E, and let F ∈ F(E). We say that X is a minima extension
of F if X is an extension of M(F ), the set of minima of F . The complementary
set of a minima extension of F in E is called a divide set of F . Figure 3 shows a
simple example of a minima extension. Excepted when specified otherwise, in the
examples of the paper, the underlying graph (E, Γ) corresponds to the 4-adjacency
relation on a subset E ⊂ Z2, i.e., for all x = (x1, x2) ∈ E, Γ(x) = {(x1, x2), (x1 +
1, x2), (x1 − 1, x2), (x1, x2 + 1), (x1, x2 − 1)} ∩ E.

A popular presentation of the watershed in the morphological community is based
on a flooding paradigm. Let us consider the grayscale image as a topographical
relief: the grey level of a pixel becomes the elevation of a point, the basins and
valleys of the relief correspond to the dark areas, whereas the mountains and crest
lines correspond to the light areas. Let us imagine the surface being immersed in a
lake, with holes pierced in local minima. Water fills up basins starting at these local
minima, and, at points where waters coming from different basins would meet,
dams are built. As a result, the surface is partitioned into regions or basins separated
by dams, called watershed divides.

Among the numerous algorithms [19, 22] that were developed following this idea,
F. Meyer’s algorithm [13] (called flooding algorithm in the sequel) is probably the
simplest to describe and understand. It is based on a simple heuristics that consists
in looking at the pixels of the image by increasing grey levels. Starting from an
image F ∈ F(E) and the set M composed of all points belonging to the regional
minima of F , the flooding algorithm expands as much as possible the setM , while
preserving the connected components of M . This heuristic can be described as
follows:

(1) Attribute to each minimum a label, two distinct minima having distinct labels;
mark each point belonging to a minimum with the label of the corresponding
minimum. Initialize two sets Q and V to the empty set.

(2) Insert every non-marked neighbor of every marked point in the set Q;
(3) Extract from the setQ a point x which has the minimal altitude, that is, a point

x such that F (x) = min{F (y) | y ∈ Q}. Insert x in V . If all marked points in
Γ(x) have the same label, then
• Mark x with this label; and
• Insert in Q every y ∈ Γ(x) such that y /∈ Q ∪ V ;

(4) Repeat step 3 until the set Q is empty.

Let F ∈ F(E), and let X be the set composed of all the points labeled by the
flooding algorithm applied on F . We call any such setX produced by the flooding
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algorithm an extension-by-flooding (of F ). Note that, in general, there may exists
several extension-by-flooding of a given map F . It is easy to prove the following
result: any extension-by-flooding is indeed a minima extension of F , and further-
more, the complementary set of any extension-by-flooding is a watershed in the
sense of definition 2.
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2 2 20 20 20 2 2

2 20 10 10 10 20 2
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1 30 10 10 10 30 0

1 1 30 10 30 0 0
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A A A A A A A

A A 20 20 20 A A

A 20 10 10 10 20 A

30 30 10 10 10 30 30

B 30 10 10 10 30 C

B B 30 10 30 C C

B B B 10 C C C
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x

A A A A A A A

A A 20 A 20 A A
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B 30 10 10 10 30 C

B B 30 10 30 C C
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A A A A A A A

A A 20 A 20 A A
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30 30 A A A 30 30

B 30 A A A 30 C

B B 30 A 30 C C

B B B 10 C C C

(a) (b) (c) (d)
A A A A A A A

A A A A A A A

A A A A A A A

30 30 A A A 30 30

B 30 A A A 30 C

B B 30 A 30 C C

B B B 10 C C C

A A A A A A A

A A A A A A A

A A A A A A A

30 A A A A A 30

B 30 A A A 30 C

B B 30 A 30 C C

B B B 10 C C C

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

0 1 1 1 1 1 0

1 0 1 1 1 0 1

1 1 0 1 0 1 1

1 1 1 0 1 1 1

2 2 2 2 2 2 2

2 2 2 2 2 2 2

2 2 2 2 2 2 2

30 2 2 2 2 2 30

1 30 2 2 2 30 0

1 1 30 2 30 0 0

1 1 1 10 0 0 0

(e) (f) (g) (h)

Fig. 4. (a): Original image. (b-f): several steps of the extension algorithm. (g) The exten-
sion-by-flooding of (a), and (h) the associated mosaic. One can note that the contour at
altitude 20 in the original image (a) is not present in the mosaic (h).

The extension-by-flooding of the image depicted in figure 3.a is the image depicted
in figure 3.b. Let us illustrate the behaviour of the algorithm on another example,
the one of figure 4.a which presents an image with three minima at altitudes 0, 1
and 2.

- The minima at altitudes 2, 1, 0 are marked with the labels A, B, C respectively
(figure 4.b). All the non-marked neighbors of the marked points are put into the
set Q.
- The first point which is extracted from the setQ is the point x at altitude 10, which
has points marked B and C among its neighbors (figure 4.b). This point cannot be
marked.
- The next point to process is one of the points at altitude 20, for instance y (fig-
ure 4.b). The only marked points in the neighborhood of such a point are marked
with the label A, and thus y is marked with the label A (figure 4.c), and the points
at altitude 10 which are neighbors of y are put into the set Q.
- The next points to process are points at altitude 10. A few steps later, all points at
altitude 10 but x are processed, and marked with the label A (figure 4.d).
- Then the other points at altitude 20 are processed. They are marked with the label
A (figure 4.e). The next points to process are those at altitude 30, and we finally
obtain the set of labeled points shown in figure 4.f.
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Figure 4.g shows the extension-by-flooding of figure 4.a.

1.4 Minima extensions and mosaics

Intuitively, for application to image analysis, the divide set represents the location
of points which best separate the dark objects (regional minima), in terms of grey
level difference (contrast). In order to evaluate the effectiveness of this separation,
we have to consider the values of points along the divide set. This motivates the
following definition.

Definition 5. Let F ∈ F(E) and let X be a minima extension of F . The mosaic
of F associated with X is the map FX ∈ F(E) such that
- for any x /∈ X , FX(x) = F (x); and
- for any x ∈ X , FX(x) = min{F (y) | y ∈ Cx}, where Cx denotes the connected
component of X that contains x.

The term ‘mosaic’ for this kind of construction, was coined by S. Beucher [2]. The
image of figure 3.c is the mosaic associated with the extension-by-flooding of 3.b.
The image of figure 4.h is the mosaic associated with the extension by flooding 4.g.

We now state two fundamental remarks that we are going to develop.

Remark 6. We observe that (informally speaking) the extension-by-flooding algo-
rithm does not preserve the “contrast” of the original image. In the original image,
to go from, e.g., the minimum at altitude 0 to the minimum at altitude 2, one has to
climb to at least an altitude of 20. We observe that such a “contour” is not present
in the mosaic produced by the algorithm. Let us emphasize that configurations sim-
ilar to the examples presented in this paper are found in real-world images, with
all usual adjacencies.

Remark 7. We observe that the extension-by-flooding algorithm is not monotone,
in the sense where several pixels at altitude 20 are extracted forom the queue Q
after some pixels at altitude 30.

2 Minima extensions, separations and topological watershed

This section introduces the formal framework that leads to a better understanding
of the previous observations. In particular, two notions are pivotal in the sequel:
minima extension for maps, and separation.

Let F be a map and let FX be the mosaic of F associated with a minima extension
X of F . It is natural to try to associate any regional minimum of FX to a connected
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component of X and conversely, and to compare the altitude of each minimum of
FX to the altitude of the corresponding minimum of F . We will see with forthcom-
ing properties and examples, that both problems are in fact closely linked.

Let F and G in F(E). We note G ≤ F if for all x ∈ E, G(x) ≤ F (x).

The following definition extends to maps the minima extension previously defined
for sets.

Definition 8. Let F and G in F(E) such that G ≤ F . We say that G is a minima
extension (of F ) if:
i) the set composed by the union of all the minima ofG is a minima extension of F .
ii) for anyX ∈ M(F ) and Y ∈ M(G) such thatX ⊆ Y , we have F (X) = G(Y ).

15 15 15 15 15 15 15

15 15 20 20 20 15 15

15 20 10 10 10 20 15

30 30 10 10 10 30 30

1 30 10 10 10 30 0

1 1 30 10 30 0 0

1 1 1 10 0 0 0

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

0 1 1 1 1 1 0

1 0 1 1 1 0 1

1 1 0 1 0 1 1

1 1 1 0 1 1 1

10 10 10 10 10 10 10

10 10 10 10 10 10 10

10 10 10 10 10 10 10

30 10 10 10 10 10 30

1 30 10 10 10 30 0

1 1 30 10 30 0 0

1 1 1 10 0 0 0

(a) (b) (c)

Fig. 5. (a) An image, (b) the extension-by-flooding of (a), and (c) The mosaic of (a) asso-
ciated to (b).

The image 4.h is an example of a mosaic that is a minima extension of the im-
age 4.a. On the other hand, figure 5.a shows an image F and figure 5.c shows the
mosaic FX associated with the extension-by-floodingX of F (figure 5.b). One can
notice that the connected component of X which corresponds to the minimum of
altitude 15 for F has an altitude of 10 for FX , and is not a minimum of FX . Thus,
this mosaic FX is not a minima extension of F .

We can now turn back to a more precise analysis of remark 6. To this aim, we
present the connection value and the separation. Intuitively, the connection value
between two points corresponds to the lowest altitude to which one has to climb to
go from one of these points to the other.

Definition 9. Let F ∈ F(E). Let π = ⟨x0, . . . , xn⟨ be a path in the graph (E, Γ),
we set F (π) = max{F (xi) | i = 0, . . . , n}.
Let x, y be two points ofE, the connection value forF between x and y isF (x, y) =
min{F (π) | π ∈ Π(x, y)}, where Π(x, y) is the set of all paths from x to y.
Let X, Y be two subsets of E, the connection value for F between X and Y is
defined by F (X, Y ) = min{F (x, y), for any x ∈ X and any y ∈ Y }.

A notion equivalent to the connection value up to an inversion of F (that is, replac-
ing F by−F ), has been introduced by A. Rosenfeld [20] under the name of degree
of connectivity for studying connectivity in the framework of fuzzy sets. Figure 6
illustrates the connection value on the image F of figure 4.a.
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Fig. 6. Illustration of paths and connection values on the image F of figure 4.a. (a) A path
π1 from the point x to the point y such that F (π1) = 30. (b) A path π2 from the point x to
the point y such that F (π2) = 20. It is not possible to find a path from x to y with a lower
maximal altitude, hence F (x, y) = 20. (c) A path π3 from the point x to the point z such
that F (π3) = 10, and we can easily check that F (x, z) = 10.

Informally, a transformation “preserves the separation” if, when two points are sep-
arated by a crest in the original map, they are still separated by a crest of the same
“height” in the transform.

Definition 10 ([1]). Let F ∈ F(E), let x, y ∈ E. We say that x and y are separated
(for F ) if F (x, y) > max{F (x), F (y)}.
We say that x and y are k−separated (for F ) if they are separated for F and if
k = F (x, y).
Let G ∈ F(E), with G ≤ F . We say that G is a separation of F if, for all x and y
in E, whenever x and y are k-separated for F , x and y are k-separated for G.
We say that G is a strong separation of F is G is both a separation of F and a
minima extension of F .

Remark 11. We can now restate the remark 6 using the notions introduced in
this section. Figure 4 shows that a mosaic produced by the flooding algorithm is
not always a minima extension of the original map. Figure 5 shows that a mosaic
produced by the flooding algorithm, even in the case where it is a minima extension,
is not necessarily a separation of the original map.

2.1 Mosaics and topological watersheds

A different approach to the watershed was presented by M. Couprie and G. Ber-
trand [5]. The idea is to transform the image F into an image G while preserving
some topological properties of F , namely the number of connected components of
the lower cross-sections of F . A minima extension of F can then be obtained easily
from G, by extracting the regional minima of G.

Thanks to the notion of cross-sections, we extend W-simple points to grayscale
images, and we introduce W-thinnings and topological watersheds.

Definition 12. Let F ∈ F(E), x ∈ E, and k = F (x).
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The point x isW-destructible (for F ) if x is W-simple for the upper section Fk.
We say thatG ∈ F(E) is aW-thinning of F ifG = F or if G may be derived from
F by iteratively lowering W-destructible points by one.
We say that G ∈ F(E) is a topological watershed of F if G is a W-thinning of F
and if there is no W-destructible point for G.

As a consequence of the definition, a topological watershed G of a map F is a map
which has the same number of regional minima as F . Furthermore, the number of
connected components of any lower cross-section is preserved during this transfor-
mation. Quasi-linear algorithms for computing the topological watershed transform
can be found in [6].

By the very definition of a W-destructible point, it may easily be proved that, if G
is a W-thinning of F , then the union of all minima ofG is a minima extension of F .
This motivates the following definition.

Definition 13. Let F ∈ F(E) and let G be a W-thinning of F . The mosaic of F
associated with G is the mosaic of F associated with the union of all minima of G.

We have the following property.

Property 14 ([16]). Let F ∈ F(E), let G be a W-thinning of F , and let H be the
mosaic of F associated with G. Then H is a minima extension of F .

2 2 2 2 2 2 2

2 2 20 20 20 2 2

2 20 1 10 0 20 2

20 1 1 10 0 0 20

1 1 1 10 0 0 0

1 1 1 10 0 0 0

1 1 1 10 0 0 0

2 2 2 2 2 2 2

2 2 20 20 20 2 2

2 20 1 10 0 20 2

30 1 1 10 0 0 30

1 1 1 10 0 0 0

1 1 1 10 0 0 0

1 1 1 10 0 0 0

(a) (b)

Fig. 7. Example of topological watershed. (a) a topological watershed of figure 4.a (b) the
associated mosaic.

Notice that in general, there exist different topological watersheds for a givenmapF .
Figure 7.a presents one of the possible topological watersheds of figure 4.a, and fig-
ure 7.b shows the associated extension map. One can note that both figure 7.a and
figure 7.b are separations of figure 4.a.

2.2 Mosaics and separations

Recently, G. Bertrand [1] showed that a mathematical key underlying the topo-
logical watershed is the separation. The following theorem states the equivalence
between the notions of W-thinning and strong separation. The “if” part implies
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in particular that a topological watershed of an image F preserves the connection
values between the minima of F . Furthermore, the “only if” part of the theorem
mainly states that if one needs a lowering transformation which is guaranteed to
preserve the connection values between the minima of the original map, then this
transformation is necessarily a W-thinning.

Theorem 15 ([1]). Let F and G be two elements of F(E). The map G is a W-
thinning of F if and only if G is a strong separation of F .

We have proved [16] that the mosaic associated with any W-thinning of a map F
is also a W-thinning of F (and thus, it is a separation of F ). Furthermore, we have
also proved that an arbitrary mosaic FX of a map F is a separation of F if and only
if FX is a W-thinning of F .

Theorem 16 ([16]). Let F ∈ F(E), let X be a minima extension of F , and let FX

be the mosaic of F associated with X . Then FX is a separation of F if and only if
FX is a W-thinning of F .

3 Fusion graphs

Region merging [18, 21] is a popular approach to image segmentation. Starting with
an initial partition of the image pixels into connected regions, which can in some
cases be separated by some boundary pixels, the basic idea consists of progressively
merging pairs of regions until some criterion is satisfied. The criterion which is
used to identify the next pair of regions which will merge, as well as the stopping
criterion are specific to each particular method. Certain methods do not use graph
vertices in order to separate regions, nevertheless even these methods fall in the
scope of this study through the use of line graphs [9, 10].

3.1 Merging

y
z

w

x
y
z

w

x
y
z

w

x

(a) (b) (c)

Fig. 8. Illustration of merging. (a): A graph (E,Γ) and a subset X of E (black points).
(b): The black points represent X \ S with S = {x, y, z}. (c): The black points represent
X \ S′ with S′ = {w}.
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Consider the graph (E, Γ) depicted in Fig. 8a, where a subset X of E (black ver-
tices) separates its complementary set X into four connected components. If we
replace the set X by, for instance, the set X \ S where S = {x, y, z}, we obtain a
set which separates its complementary set into three components, see Fig. 8b: we
can also say that we “merged two components of X through S”. This operation
may be seen as an “elementary merging” in the sense that only two components
of X were merged. On the opposite, replacing the set X by the set X \ S ′ where
S ′ = {w}, see Fig. 8c, would merge three components of X . We also see that the
component of X which is below w (in light gray) cannot be merged by an “ele-
mentary merging” since any attempt to merge it must involve the point w, and thus
also the three components of X adjacent to this point. In this section, we introduce
definitions and basic properties related to such merging operations in graphs.

Definition 17. Let X ⊂ E and S ⊆ X . We say that S is F-simple (for X) if S is
adjacent to exactly two componentsA, B ∈ C(X) such thatA∪B∪S is connected.
Let p ∈ X . We say that p is F-simple (for X) if {p} is F-simple for X .

In this definition, the prefix “F-” stands for fusion. For example, in Fig. 8a, the
point z is F-simple while x, y, w are not. Also, the sets {z}, {x, y}, {x, z}, {y, z},
{x, y, z} are F-simple, but the sets {x}, {y} and {w} are not.

Definition 18. Let X ⊂ E. Let A and B ∈ C(X), with A ̸= B. We say that A and
B can be merged (for X) if there exists S ⊆ X such that S is F-simple for X , and
A andB are precisely the two components of X̄ adjacent to S. In this case, we also
say that A and B can be merged through S (for X).
We say that A can be merged (for X) if there exists B ∈ C(X) such that A and B
can be merged for X .

For example, in Fig. 8a, the component of X in light gray cannot be merged, but
each of the three white components can be merged for X .

From Def. 2 and Th. 4, if X is a watershed, any extension of X is equal to X . We
have the following corollary.

Property 19. Let (E, Γ) be a graph, letX ⊂ E be a watershed and let A ∈ C(X).
The subset A can be merged for X if and only if there exists a vertex x ∈ Γ∗(A)
which is F-simple for X .

3.2 Thinness, region merging and watersheds

From the definition of an F-simple point, it appears that merging regions will be
more or less difficult depending on the thinness of watersheds. The notions of thin-
ness and interior are closely related.
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Definition 20. LetX ⊆ E, the interior ofX is the set int(X) = {x ∈ X | Γ(x) ⊆
X}. We say that the set X is thin if int(X) = ∅.

w

z

(a) (b) (c) (d) (e)

Fig. 9. Illustration of thin and non-thin watersheds. (a): A graph (E,Γ) and a subset X
(black points) of E. (b): A subset Y (black points) of E which is a thin watershed; it is
a watershed of the set X shown in (a). The points z and w are both separating for Y .
(c, d, e): The subset X represented by black and gray points is a watershed which is not
thin: int(X) is depicted by the gray points.

A watershed is a set which contains no W-simple point, but some of the examples
given in Fig. 2 show that such a set is not always thin (in the sense of Def. 20).
Fig. 2d and Fig. 9b are two examples of watersheds which are thin: in both cases,
the set of black points has no W-simple point and no inner point. Fig. 9c,d show
two examples of non-thin watersheds.

2 3 50 2

3 50 3 50

255 128 50 4

2 255 128 50

1 2 255 5

(a)

2 2 50 2

2 50 3 50

255 1 50 4

1 1 1 50

1 1 255 5

(b)

2 2 50 2

2 50 3 50

255 50 50 4

1 255 50 50

1 1 255 5

(c)

Fig. 10. Divides of topological watershed are not always watersheds. (a): An image, (b): the
mosaic of the extension-by-flooding of (a), (c): the topological watershed of (a).

When looking at gray-level images, things get even worse. The preservation of con-
nection values has an impact on the thinness of topological watersheds. As shown
in Fig. 10.c, divides of topolological watersheds can be thick, and furthermore they
are not always watersheds. On the contrary, the extension-by-flooding Fig. 10.b is
a watershed, but it does not preserve the connection values.

Section 3.1 and the next one constitute a theoretical basis for the study of region
merging methods. The problems encountered by certain of these methods (see [18],
section 5.6: “When three regions meet”) can be avoided by using exclusively the
notion of merging introduced in section 3.1. In the sequel, we investigate several
classes of graphs with respect to the possibility of “getting stuck” in a merging
process. The most striking result of the next section is a theorem which states the
equivalence between one of these classes and the class of graphs in which any
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binary watershed is thin. In section 3.4, we will see that there exists a class of graphs
in which extension-by-floodings are W-thinnings, a result which is non trivial.

3.3 Fusion and perfect fusion graphs

We begin with the definition of two classes of graphs adapted for merging.

Definition 21. We say that a graph (E, Γ) is a fusion graph if for any X ⊆ E such
that |C(X)| ≥ 2, each A ∈ C(X) can be merged for X .

LetX ⊂ E, and let A and B ∈ C(X), A ̸= B. We set Γ∗(A, B) = Γ∗(A)∩Γ∗(B).
We say that A and B are neighbors if Γ∗(A, B) ̸= ∅.

Definition 22. We say that the graph (E, Γ) is a perfect fusion graph if, for any
X ⊆ E, any A and B ∈ C(X) which are neighbors can be merged through
Γ∗(A, B).

Basic examples and counter-examples of fusion and perfect fusion graphs are given
in Fig. 11.

These classes are linked by inclusion relations. The following property clarifies
these links.

Property 23 ([8]). Any perfect fusion graph is a fusion graph. The converse is not
true.

(g) (f) (p)

Fig. 11. Examples and counter-examples for different classes of graphs. (g): A graph which
is not a fusion graph, (f): a fusion graph which is not a perfect fusion graph, (p): a perfect
fusion graph. In the graphs (g, f), the black vertices constitute a set X which serves to
prove that the graph does not belong to the pre-cited class.

Now, we present the main theorem of this section, which establishes that the class
of graphs for which any watershed is thin is precisely the class of fusion graphs. As
an immediate consequence of this theorem and Prop. 23, we see that all watersheds
in perfect fusion graphs are thin.

Theorem 24 ([8]). A graph G is a fusion graph if and only if any non-trivial wa-
tershed in G is thin.
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Let us look at some examples to illustrate this property. The graphs of Fig. 9c,
Fig. 9d and Fig. 9e are not fusion graphs; we see that they may indeed contain
a non-thin watershed. Fig. 9d shows that the usual 4-adjacency relation is not a
fusion graph. On the other hand, we have proved that the usual 8-adjacency is a
fusion graph, and thus any watershed is thin on an 8-adjacency graph.

We give below three necessary and sufficient conditions for characterizing perfect
fusion graphs. Recall that in perfect fusion graphs, any two components A, B of
C(X) which are neighbors can be merged through Γ∗(A) ∩ Γ∗(B). Thus, perfect
fusion graphs constitute an ideal framework for region merging methods. In the
sequel, we will use the symbolG! to denote the graph of Fig. 12.

Fig. 12. Graph G! used for a characterization of perfect fusion graphs (Th. 25).

Theorem 25 ([8]). Let (E, Γ) be a graph.
The four following statements are equivalent:
i) (E, Γ) is a perfect fusion graph;
ii) for any non-trivial watershed Y in E, each point x in Y is F-simple;
iii) for any connected subset A of E, the subgraph of (E, Γ) induced by A is a
fusion graph;
iv) the graphG! is not a subgraph of (E, Γ);

(a) (b)

Fig. 13. Illustration of theorem 25. (a): G! (in bold) is a subgraph of the 8-adjacency
relation. (b): G! is not a subgraph of this perfect fusion graph.

As an illustration of theorem 25, we can see on figure 13 that the graph G! is
a subgraph of the usual 8-adjacency relation, and thus graphs induced by the 8-
adjacency relation are not perfect fusion graphs.

We conclude this section with a nice property of perfect fusion graphs, which can
be useful to design hierarchical segmentation methods based on watersheds and
region splitting. Consider the example of Fig. 14a, where a watershed X (black
points) in the graph G separates X into two components. Consider now the set Y
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(gray points) which is a watershed in the subgraph of G induced by one of these
components. We can see that the union of the watersheds,X∪Y , is not a watershed,
since the point x is W-simple for X ∪ Y . Prop. 26 shows that this problem cannot
occur in any perfect fusion graph.

x

(a) (b)

Fig. 14. Illustrations for Prop. 26. (a): The graph (8-adjacency relation) is not a perfect
fusion graph, and the union of the watersheds is not a watershed. (b): The graph is a perfect
fusion graph, the property holds.

Property 26 ([8]). Let G = (E, Γ) be a graph. If G is a perfect fusion graph,
then for any watershed X ⊂ E in G and for any watershed Y ⊂ A in GA, where
A ∈ C(X) andGA is the subgraph ofG induced byA, the setX∪Y is a watershed
in G.

3.4 Topological watersheds and perfect fusion graphs

In the previous section, we have seen that an interesting framework for region merg-
ing is the class of perfect fusion graphs. For morphological merging schemes [3,
17], we still have to preserve the connection values. One of the consequences is
that the divide of a topological watershed can be thick, even on fusion graphs. The
following theorem show that this is not the case anymore on perfect fusion graphs.
Furthermore, we can compute a W-thinning using the flooding algorithm.

Theorem 27 ([12]). Let G = (E, Γ) be a perfect fusion graph and let F ∈ F(E).
The divide of any topological watershed of F is thin.
Let X be an extension-by-flooding of F . Then the mosaic FX associated with X is
a W-thinning of F . Furthemore X is a thin watershed.

Note that the previous statement is false on fusion graphs which are not perfect
fusion graphs (see counter-examples in [12]).

Another property states [12] that on perfect fusion graphs, the flooding algorithm
is monotone, in the sense of remark 7: points of E are processed according to
increasing altitude.
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3.5 Perfect fusion grids

We conclude this section by intuitively introducing the perfect fusion grid [8]: this
is a grid for structuring n-dimensional digital images that is a perfect fusion graph,
whatever the dimension n. It is depicted in 2D on Fig. 14b and Fig. 15(b,c).

BA

D

C

A

D

E

(a) (b) (c)

Fig. 15. (a): A watershed of Fig. 1a obtained on the perfect fusion grid; (b): a zoom of a
part of (a) where the regions A, B, C andD correspond to the regions shown in Fig. 1c; in
gray, the corresponding perfect fusion grid is superimposed; (c): same as (b) after having
merged B and C to form a new region, called E.

It does thus constitute a structure on which neighboring regions can always be
merged through their common neighborhood without problem with other regions.
Fig. 15a shows a watershed of Fig. 1a obtained on this grid. Remark that the prob-
lems pointed out in the introduction do not exist in this case. The watershed does
not contain any inner point. Any pair of neighboring regions can be merged by
simply removing from the watershed the points which are adjacent to both regions
(Fig. 15b,c). Furthermore, the resulting set is still a watershed. Observe that this
grid is “between” the usual grids. In a forthcoming paper [7], we intend to prove
that this is the unique such graph.

4 Conclusion

(a) (b) (c)

Fig. 16. Region merging on perfect fusion grid. (a,b,c) Several steps of merging starting
from Fig. 15a.
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In this paper, we have presented a framework that allows in particular the analysis
of watershed algorithms.We have also described some classes of graphs adapted for
region merging schemes. An important goal of this framework is to help the design
of such schemes (see Fig. 16), and in particular morphological hierarchical merging
schemes known under the name of geodesic saliency of watershed contours [17]
schemes.

In a forthcomming paper [10], we also study definitions and properties of wa-
tersheds in the framework of edge-weighted graphs, a subclass of perfect fusion
graphs. An important result is that in this framework, watersheds can be defined fol-
lowing the intuitive idea of flowing drops of water. Moreover, we have established
the consistency of these watersheds with respect to definition in terms of catchment
basins, and proved their optimality in terms of minimum spanning forests.
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