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Abstract. Toric spaces being non-simply connected, it is possible to
find in such spaces some loops which are not homotopic to a point:
we call them toric loops. Some applications, such as the study of the
relationship between the geometrical characteristics of a material and its
physical properties, rely on three dimensional discrete toric spaces and
require detecting objects having a toric loop.
In this work, we study objects embedded in discrete toric spaces, and
propose a new definition of loops and equivalence of loops. Moreover, we
introduce a characteristic of loops that we call wrapping vector : relying
on this notion, we propose a linear time algorithm which detects whether
an object has a toric loop or not.

1 Introduction

Topology is used in various domains of image processing in order to perform
geometric analysis of objects. In porous material analysis, different topologi-
cal transformations, such as skeletonisation, are used to study the relationships
between the geometrical characteristics of a material and its physical properties.

When simulating a fluid flow through a porous material, the whole material
can be approximated by the tessellation of the space made up by copies of one of
its samples, under the condition that the volume of the sample is superior to the
so-called Representative Elementary Volume (REV) of the material [1]. When
the whole Euclidean space is tiled this way, one can remark that the result of
the fluid flow simulation is itself the tessellation of the local flow obtained inside
any copy of the sample (see Fig. 1-a). When considering the flow obtained inside
the sample, it appears that the flow leaving the sample by one side comes back
by the opposite side (see Fig. 1-b). Thus, it is possible to perform the fluid flow
simulation only on the sample, under the condition that its opposite sides are
joined: with this construction, the sample is embedded inside a toric space [2] [3].
In order to perform geometric analysis of fluid flow through porous materials,
we therefore use topological tools adapted to toric spaces.

Considering the sample inside a toric space leads to new difficulties. In a real
fluid flow, grains of a material (pieces of the material which are not connected
with the borders of the sample) do not have any effect on the final results, as



Fig. 1. Simulating a fluid flow - When simulating a fluid flow, a porous material
(in gray) can be approximated by the tessellation of one of its samples (see a). When
the results of the simulation are obtained (the dotted lines), one can see that the fluid
flow through the mosaic is the tessellation of the fluid flow simulation results obtained
in one sample. For example, one can look at the bold dotted line in a): the flow going
from A1 to B1 is the same than the flow going from A2 to B2. It is therefore possible to
perform the fluid flow simulation through only one sample and, in order to obtain the
same results than in a), connect the opposite sides of the sample (see b): the sample
is embedded inside a toric space.

these grains eventually either evacuate the object with the flow or get blocked
and connect with the rest of the material. Thus, before performing a fluid flow
simulation on a sample, it is necessary to remove its grains (typically, in a finite
subset S of Z

n, a grain is a connected component which does not ‘touch’ the
borders of S). However, characterizing a grain inside a toric space, which does
not have any border, is more difficult than in Z

n. On the contrary of the discrete
space Z

n, n-dimensional discrete toric spaces are not simply connected spaces
[3]: some loops, called toric loops, are not homotopic to a point (this can be easily
seen when considering a 2D torus). In a toric space, a connected component may
be considered as a grain if it contains no toric loop. Indeed, when considering a
sample embedded inside a toric space, and a tessellation of the Euclidean space
made up by copies of this sample, one can remark that the connected components
of the sample which do not contain toric loops produce grains in the tessellation,
while the connected components containing toric loops cannot be considered as
grains in the tiling (see Fig. 2).

In this work, we give a new definition of loops and homotopy class, adapted
to n-dimensional discrete toric spaces. Relying on these notions, we also intro-
duce wrapping vectors, a new characteristic of loops in toric spaces which is the
same for all homotopic loops. Thanks to wrapping vectors, we give a linear time
algorithm which allows to decide whether an n-dimensional object contains a
toric loop or not.



Fig. 2. Grains in toric spaces - The image in a) contains no grain based on the
‘border criterion’; when the Euclidean space is tessellated with copies of the image,
grains appear (the circled connected component is an example of grain). In b), the
connected component has toric loops (e.g. the dotted line) and when the Euclidean
space is tessellated with copies of the image, no grain appear.

This paper is an extension of a paper submitted for a conference [4]. In
addition, it contains an algorithm which not only allows to detect when an
object contains a toric loop (as the algorithm proposed in [4]) but also allows to
build a basis characterizing all toric loops contained in an object. Furthermore,
it contains a comparison between loop homotopy defined in this article and loop
equivalence defined in [5].

2 Basic Notions

2.1 Discrete Toric Spaces

A n-dimensional torus is classically defined as the direct product of n circles
(see [2]). In the following, we give a discrete definition of toric space, based on
modular arithmetic (see [6]).

Given d a positive integer, we set Zd = {0, ..., d − 1}. We denote by ⊕d the
operation such that for all a, b ∈ Z, (a ⊕d b) is the element of Zd congruent to
(a + b) modulo d. We point out that (Zd,⊕d) forms a cyclic group of order d.

Let n be a positive integer, d = (d1, ..., dn) ∈ N
n, and T

n = Zd1
× ... × Zdn

,
we denote by ⊕d the operation such that for all a = (a1, ..., an) ∈ Z

n and
b = (b1, ..., bn) ∈ Z

n, a ⊕d b = (a1 ⊕d1
b1, ..., an ⊕dn

bn). The group (Tn,⊕d)
is the direct product of the n groups (Zdi

,⊕di
)(1≤i≤n), and is an n-dimensional

discrete toric space [2].
The scalar di is the size of the i-th dimension of T

n, and d is the size (vector)
of T

n. For simplicity, the operation ⊕d will be also denoted by ⊕.

2.2 Neighbourhoods in Toric Spaces

As in Z
n, various adjacency relations may be defined in a toric space.



Definition 1. A vector s = (s1, ..., sn) of Z
n is an m-step (0 < m ≤ n) if, for

all i ∈ [1;n], si ∈ {−1, 0, 1} and

n
∑

i=1

|si| ≤ m.

Two points a, b ∈ T
n are m-adjacent if there exists an m-step s such that

a ⊕ s = b.

In 2D, the 1- and 2-adjacency relations respectively correspond to the 4-
and 8-neighbourhood [7] adapted to bidimensional toric spaces. In 3D, the 1-,
2- and 3-adjacency relations can be respectively seen as the 6-, 18- and 26-
neighbourhood [7] adapted to three-dimensional toric spaces.

Based on the m-adjacency relation previously defined, we can introduce the
notion of m-connectedness.

Definition 2. A set of points X of T
n is m-connected if, for all a, b ∈ X, there

exists a sequence (x1, ...,xk) of elements of X such that x1 = a, xk = b and
for all i ∈ [1; k − 1], xi and xi+1 are m-adjacent.

2.3 Loops in Toric Spaces

Classically, in Z
n, an m-loop is defined as a sequence of m-adjacent points such

that the first point and the last point of the sequence are equal [5]. However,
this definition does not suit discrete toric spaces: in small discrete toric spaces,
two different loops can be written as the same sequence of points, as shown in
the following example.

Example 3. Let us consider the bidimensional toric space T
2 = Z3×Z2, and the

2-adjacency relation on T
2. Let us also consider x1 = (1, 0) and x2 = (1, 1) in

T
2.

There are two ways of interpreting the sequence of points L = (x1,x2,x1) as
a loop of T

2 : either L is the loop passing by x1 and x2 and doing a ‘u-turn’ to
come back to x1, or L is the loop passing by x1 and x2, and ‘wrapping around’
the toric space in order to reach x1 without making any ‘u-turn’, as shown on
Fig. 3.

Fig. 3. Loops in toric spaces - In the toric space Z3 × Z2 (see a), the sequence of
points (x1, x2, x1) can be interpreted in two different ways: b) and c).



Thus, when considering discrete toric spaces, loops cannot be considered as
sequences of points as it can lead to such ambiguities. This is why we propose
the following definition.

Definition 4. Given p ∈ T
n, an m-loop (of base point p) is a pair L = (p, V ),

where V = (v1, ...,vk) is a sequence of m-steps such that (p⊕v1 ⊕ ...⊕vk) = p.
The number k is the length of L.
We call i-th point of L, with 1 ≤ i ≤ k + 1, the point (p ⊕ v1 ⊕ ... ⊕ vi−1).
The loop (p, ()) is called the trivial loop of base point p.

Remark 5. In the previous definition, the (k + 1)-th point of L is p, and has
been defined in order to make some propositions and proofs more simple.

The ambiguity pinpointed in Ex. 3 is removed with this definition of loops:
let v be the vector (0, 1), the loop passing by x1 and x2 and making a u-turn is
(x1, (v,−v)) (see Fig. 3-b), while the loop wrapping around the toric space is
(x1, (v,v)) (see Fig. 3-c).

3 Loop Homotopy in Toric Spaces

3.1 Homotopic Loops

In this section, we define an equivalence relation between loops, corresponding
to an homotopy, inside a discrete toric space. An equivalence relation between
loops inside Z

2 and Z
3 has been defined in [5], however, it cannot be adapted

to discrete toric spaces (see Sec. 7). Observe that the following definition does
not constrain the loops to lie in a subset of the space, on the contrary of the
definition given in [5].

Definition 6. Let K = (p, U) and L = (p, V ) be two m-loops of base point
p ∈ T

n, with U = (u1, ...,uk) and V = (v1, ...,vl). The two m-loops K and L
are directly homotopic if one of the three following conditions is satisfied:

1. There exists j ∈ [1; l] such that vj = 0 and U = (v1, ...,vj−1,vj+1, ...,vl).
2. There exists j ∈ [1; k] such that uj = 0 and V = (u1, ...,uj−1,uj+1, ...,uk).
3. There exists j ∈ [1; k − 1] such that

– V = (u1, ...,uj−1,vj ,vj+1,uj+2, ...,uk), and
– uj + uj+1 = vj + vj+1, and
– (uj − vj) is an n-step.

Remark 7. In the case 1 (resp. 2 and 3), we have k = l−1 (resp. (l = k−1) and
(l = k)).

Remark 8. It may be observed that in the above definition, the parameter m
allows to define an m-loop, but is not taken into account in order to decide if
two m-loops are directly homotopic.



Definition 9. Two m-loops K and L of base point p ∈ T
n are homotopic if

there exists a sequence of m-loops (C1, ..., Ck) such that C1 = K, Ck = L and for
all j ∈ [1; k − 1], Cj and Cj+1 are directly homotopic.

Example 10. In the toric space Z4 × Z2, let us consider the point p = (0, 0),
the 1-steps v1 = (1, 0) and v2 = (0, 1), and the 1-loops La, Lb, Lc and Ld (see
Fig. 4). The loops La and Lb are homotopic, the loops Lb and Lc are directly
homotopic, and the loops Lc and Ld are also directly homotopic.

On the other hand, it may be seen that the 1-loops depicted on Fig. 3-b and
on Fig. 3-c are not homotopic.

Fig. 4. Homotopic Loops - The 1-loops La,Lb,Lc and Ld are homotopic.

We propose an adaptation of the definition of loop homotopy to Z
2 and Z

3

in the Annex, and we show that the resulting definition is equivalent to the loop
equivalence defined in [5].

3.2 Fundamental Group

Initially defined in the continuous space by Henri Poincaré in 1895 [8], the funda-
mental group is an essential concept of topology, based on the homotopy relation,
which has been transposed in different discrete frameworks (see e.g. [5], [9], [10]).

Given two m-loops K = (p, (u1, ...,uk)) and L = (p, (v1, ...,vl)) of same base
point p ∈ T

n, the product of K and L is the m-loop K.L = (p, (u1, ...,uk,v1,
...,vl)). The identity element of this product operation is the trivial loop (p, ()),
and for each m-loop K = (p, (u1, ...,uk)), we define the inverse of K as the
m-loop K−1 = (p, (−uk, ...,−u1)).

Remark 11. The symbol
∏

will be used for the iteration of the product operation
on loops.



Given a positive integer w, and an m-loop K of base point p, we set Kw =
w

∏

i=1

K and K−w =

w
∏

i=1

K−1. We also define K0 = (p, ()).

The homotopy of m-loops is a reflexive, symmetric and transitive relation: it
is therefore an equivalence relation and the equivalence class, called homotopy
class, of an m-loop L is denoted by [L]. The product operation can be extended
to the homotopy classes of m-loops of same base point: the product of [K] and
[L] is [K].[L] = [K.L]. It may be easily seen that this binary operation is well
defined since, if K′ ∈ [K] and L′ ∈ [L], then (K′.L′) ∈ [K.L].

We now define the fundamental group of T
n.

Definition 12. Given an m-adjacency relation on T
n and a point p ∈ T

n,
the m-fundamental group of T

n with base point p is the group formed by the
homotopy classes of all m-loops of base point p ∈ T

n under the product operation.

The identity element of this group is the homotopy class of the trivial loop,
and for each m-loop K of base point p, the inverse of [K] is [K−1], since [K.K−1] =
[(p, ())].

The choice of the base point leads to different fundamental groups which are
all isomorphic to each other. Thus, in the following, we sometimes talk about
the m-fundamental group of T

n, without specifying the base point.

4 Wrapping Vector and Homotopy Classes in T
n

Deciding if two loops L1 and L2 belong to the same homotopy class can be
difficult, as it involves building a sequence of directly homotopic loops in order
to ‘link’ L1 and L2. However, this problem may be solved using the wrapping
vector, a characteristic which can be easily computed on each loop.

4.1 Wrapping Vector of a Loop

The wrapping vector of a loop is the sum of all the elements of the m-step
sequence associated to the loop.

Definition 13. Let L = (p, V ) be an m-loop, with V = (v1, ...,vk). The wrap-

ping vector of L is
k

∑

i=1

vi.

Remark 14. In Def. 13, the symbol
∑

stands for the iteration of the classical
addition operation on Z

n, not of the operation ⊕ defined in Sec. 2.1.

Example 15. In T
2 = Z4×Z4, depicted on Fig. 5, the loop K = (p, (v3,v2,v3,v1,

v3)) (see Fig. 5-a) has a wrapping vector equal to (4, 4), while the loop L =
(p, (v3,v1,v1,−v2,−v1,−v3,−v3,−v1,−v1,v2,v1,v1,v2)) has a wrapping
vector equal to (0, 0) (see Fig. 5-b).



Fig. 5. Wrapping vector - In T
2 = Z4 × Z4, the 2-loop in a) has a wrapping vector

equal to (4, 4), and the 2-loop in b) has a wrapping vector equal to (0, 0).

We now define the notion of ‘basic loops’, which will be used for the proof
of Prop. 18 and for building, in Def. 22, a canonical loop of a given wrapping
vector.

Definition 16. Let T
n be an n-dimensional toric space of size vector d =

(d1, ..., dn). We denote, for each i ∈ [1;n], by bi the 1-step whose i-th coor-
dinate is equal to 1, and by Bi the 1-step sequence composed of exactly di 1-steps
bi.

Given p ∈ T
n, for all i ∈ [1;n], we define the i-th basic loop of base point p

as the 1-loop (p, Bi).

Remark 17. For all i ∈ [1;n], the wrapping vector of the i-th basic loop of base
point p is equal to (di.bi).

The next property establishes that the wrapping vector of any m-loop can
only take specific values in Z

n.

Proposition 18. Let T
n be an n-dimensional toric space of size vector d =

(d1, ..., dn). A vector w = (w1, ..., wn) of Z
n is the wrapping vector of an m-loop

of T
n if and only if, for all i ∈ [1;n], wi is a multiple of di.

Proof. First, let L = (p, V ) be an m-loop of wrapping vector w = (w1, ..., wn),
with p = (p1, ..., pn). As L is a loop, for all i ∈ [1;n], pi ⊕di

wi = pi. Hence, for
all i ∈ [1;n], wi ≡ 0(mod di), proving that wi is a multiple of di for all i ∈ [1;n].

Let w = (w1, ..., wn) be a vector of Z
n such that for all i ∈ [1;n], wi is a

multiple of di. For all i ∈ [1;n], we set w∗
i = (wi/di): we have w∗

i ∈ Z. Therefore,



given p ∈ T
n, if we denote by (p, Bi) the i-th basic loop of base point p, we see

that (

n
∏

i=1

(p, Bi)
w∗

i ) is an m-loop whose wrapping vector is equal to w. �

Thanks to Prop. 18, we can now define the normalized wrapping vector of an
m-loop.

Definition 19. Given T
n of size vector d = (d1, ..., dn), let L be an m-loop

of wrapping vector w = (w1, ..., wn). The normalized wrapping vector of L is
w∗ = (w1

d1

, ..., wn

dn

).

Example 20. The wrapping vector and the normalized wrapping vector give in-
formation on how a loop ‘wraps around’ each dimension of a toric space before
‘coming back to its starting point’. For example, let T

3 = Z2×Z5×Z7 (hence, the
size vector of T

3 is (2, 5, 7)). A loop with wrapping vector (4,5,0) has a normal-
ized wrapping vector equal to (2,1,0): it wraps two times in the first dimension,
one time in the second, and does not wrap in the third dimension.

On Fig. 5, the reduced wrapping vector of loop K (see Ex. 15), depicted on
Fig. 5-a, is equal to (1, 1), while the reduced wrapping vector of L (see Ex. 15),
depicted on Fig. 5-b, is equal to (0, 0).

It may easily be seen that, in T
n, for each i ∈ [1;n], the normalized wrapping

vector of the i-th basic loop of any base point is equal to bi (see Def. 16).

4.2 Equivalence Between Homotopy Classes and Wrapping Vector

It can be seen that two directly homotopic m-loops have the same wrapping
vector, as their associated m-step sequences have the same sum. Therefore, we
have the following property.

Proposition 21. Two homotopic m-loops of T
n have the same wrapping vector.

The following definition and the two next lemmas are necessary in order to
understand Prop. 26 and its demonstration, leading to the main theorem of this
article.

Definition 22. Let p be an element of T
n, and w∗ = (w∗

1 , ..., w∗
n) ∈ Z

n.
The canonical loop of base point p and normalized wrapping vector w∗ is

the 1-loop
n

∏

i=1

(p, Bi)
w∗

i , where (p, Bi) is the i-th basic loop of base point p.

Example 23. Consider T
4 = Z3 × Z2 × Z1 × Z2, w∗ = (1, 0, 1,−2) and p =

(0, 0, 0, 0). The canonical loop of base point p and normalized wrapping vector
w∗ is the 1-loop (p, V ) with:

V=

















1
0
0
0









,









1
0
0
0









,









1
0
0
0









,









0
0
1
0









,









0
0
0
−1









,









0
0
0
−1









,









0
0
0
−1









,









0
0
0
−1



















Lemma 24. Any m-loop L = (p, V ) is homotopic to a 1-loop.

Proof. Let us write V = (v1, ...,vk) and let j ∈ [1;n] be such that vj is not
a 1-step. The m-loop L is directly homotopic to L1 = (p, V1), with V1 =
(v1, ...,vj−1,vj ,0,vj+1, ...,vk). As vj is not a 1-step, there exists an (m-1)-
step v′

j and a 1-step vj1 such that vj = (vj1 + v′

j). The m-loop L1 is directly
homotopic to L2 = (p, V2), with V2 = (v1, ...,vj−1,vj1,v′

j ,vj+1, ...,vk). By
iteration, it can be shown that L is homotopic to a 1-loop. �

Lemma 25. Let LA = (p, VA) and LB = (p, VB) be two m-loops such that VA =
(v1, ...,vj−1,vj1,vj2,vj+1, ...,vk) and VB = (v1, ...,vj−1,vj2,vj1,vj+1, ..., vk),
where vj1 and vj2 are 1-steps. Then, LA and LB are homotopic.

Proof. As vj1 and vj2 are 1-steps, they have at most one non-null coordinate. If
(vj1−vj2) is an n-step, the two loops are directly homotopic. If (vj1−vj2) is not
an n-step, then necessarily vj1 = (−vj2). Therefore, LA is directly homotopic
to LC = (p, VC), with VC = (v1, ...,vj−1,0,0, vj+1, ...,vk). Furthermore, LC is
also directly homotopic to LB . �

Proposition 26. Any m-loop of base point p ∈ T
n and of normalized wrap-

ping vector w∗ ∈ Z
n is homotopic to the canonical loop of base point p and of

normalized wrapping vector w∗.

Proof. Let a and b be two non-null 1-steps, and let i and j be the respective
indexes of the non-null coordinate of a and b. We say that a is index-smaller
than b if i < j.

Let L = (p, V ) be an m-loop of normalized wrapping vector w∗ ∈ Z
n.

– 1 - The m-loop L is homotopic to a 1-loop L1 = (p, V1) (see Lem. 24).
– 2 - By Def. 6 and 9, the 1-loop L1 is homotopic to a 1-loop L2 = (p, V2),

where V2 contains no null vector.
– 3 - Let L3 = (p, V3) be such that V3 is obtained by iteratively permuting all

pairs of consecutive 1-steps (vj ,vj+1) in V2 such that vj+1 is index-smaller
than vj . Thanks to Lem. 25, L3 is homotopic to L2.

– 4 - Consider L4 = (p, V4), where V4 is obtained by iteratively replacing all
pairs of consecutive 1-steps (vj ,vj+1) in V3 such that vj+1 = (−vj) by
two null vectors, and then removing these two null vectors. The loop L4 is
homotopic to L3.

The 1-loop L4 is homotopic to L, it has therefore the same normalized wrapping
vector w∗ = (w∗

1 , ..., w∗
n) (see Prop. 21). By construction, each pair of consecutive

1-steps (vj ,vj+1) of V4 is such that vj and vj+1 are non-null and either vj =
vj+1 or vj is index-smaller than vj+1.

Let d = (d1, ..., dn) be the size vector of T
n. As the normalized wrapping

vector of L4 is equal to w∗, we deduce that the (d1.|w∗
1 |) first elements of V4 are

equal to (
w∗

1

|w∗

1
| .b1) (see Def. 16). Moreover, the (d2.|w

∗
2 |) next elements are equal

to (
w∗

2

|w∗

2
| .b2), etc. Therefore, we have L4 = (

n
∏

i=1

(p, Bi)
w∗

i ). �



The previous lemma shows that the canonical loop of base point p and of
normalized wrapping vector w∗ can be seen as a canonical form for all loops of
base point p and normalized wrapping vector w∗.

From this, we deduce that two m-loops of same base point p and same nor-
malized wrapping vector w∗ are homotopic, as they both belong to the homotopy
class of the canonical loop of base point p and of normalized wrapping vector
w∗.

Fig. 6. In T
2 = Z4 × Z4, the 2-loop in a) has a normalized wrapping vector equal to

(1,−1). The 2-loop in a) and the 1-loops in b), c) and d) are homotopic. The 1-loop
in d) is the canonical loop of base point p and normalized wrapping vector (1,−1). On
c) and d), the numbers represent the positions of the 1-steps in the 1-step sequence
associated to the loops.

Example 27. The following example illustrates the proof of Prop. 26 and uses
the same notations. In T

2 = Z
4 × Z

4, let L be the 2-loop of base point p and
of normalized wrapping vector (1,−1), represented on Fig. 6-a: the 1-loop L1 is
represented on Fig. 6-b, the 1-loop L3 is represented on Fig. 6-c, and the 1-loop
L4, which is the canonical loop of base point p and of normalized wrapping
vector (1,−1), is represented on Fig. 6-d.

The loops L,L1,L3 and L4 are homotopic.



We can now state the main theorem of this article, which is a direct conse-
quence of Prop. 21 and Prop. 26:

Theorem 28. Two m-loops of T
n of same base point are homotopic if and only

if their wrapping vectors are equal.

Remark 29. According to Th. 28, the homotopy class of the trivial loop (p, ())
is the set of all m-loops of base point p which have a null wrapping vector.

The loop depicted on Fig. 5-b belongs to the homotopy class of the trivial
loop.

4.3 Wrapping Vector and Fundamental Group

Given a point p ∈ T
n, we introduce Ω = {w∗ ∈ Z

n/ there exists an m-loop in
T

n of base point p and of normalized wrapping vector w∗}. From Prop. 18, it is
plain that Ω = Z

n. Therefore, (Ω,+) is precisely (Zn,+)
Theorem 28 states that there exists a bijection between the set of the homo-

topy classes of all m-loops of base point p and Ω. The product (see Sec. 3.2) of
two m-loops K and L of same base point p and of respective wrapping vectors
wk and wl is the loop (K.L) of base point p. The wrapping vector of (K.L) is
(wk + wl), therefore we can state that there exists an isomorphism between the
fundamental group of T

n and (Ω,+).
Consequently, we retrieve in our discrete framework a well-known property

of the fundamental group of toric spaces [2].

Proposition 30. The fundamental group of T
n is isomorphic to (Zn,+).

5 Toric Loops in Subsets of T
n

The toric loops, introduced in Sec. 1, can now be formally defined using previous
notions.

Definition 31. In T
n, we say that an m-loop is a toric m-loop if it does not

belong to the homotopy class of a trivial loop.
A connected subset of T

n is wrapped in T
n if it contains a toric m-loop.

Remark 32. The notion of grain introduced informally in Sec. 1 may now be
defined: a connected component of T

n is as a grain if it is not wrapped in T
n.

5.1 Algorithm for Detecting Wrapped Subsets of T
n

In order to know whether a given subset of T
n is wrapped or not, it is not

necessary to build all the m-loops which can be found in the subset: the Wrapped
Subset Descriptor (WSD) algorithm (see Alg. 1) allows to answer this question
in linear time, as stated by the following proposition.



Algorithm 1: WSD(n,m,Tn,d,X)

Data: An n-dimensional toric space T
n of dimension vector d and a non-empty

m-connected subset X of T
n.

Result: A set B of elements of Zn

Let p ∈ X; Coord(p) = 0n; S = {p }; B = ∅;1

forall x ∈ X do HasCoord(x) = false;2

HasCoord(p) = true;3

while there exists x ∈ S do4

S = S \ {x};5

forall n-dimensional m-steps v do6

y=x ⊕d v;7

if y ∈ X and HasCoord(y) = true then8

if Coord(y) 6= Coord(x) + v then9

B = B ∪ ((Coord(x) + v - Coord(y))/ d);10

else if y ∈ X and HasCoord(y) = false then11

Coord(y) = Coord(x) + v;12

S = S ∪ {y};13

HasCoord(y) = true;14

return B15

Proposition 33. Let T
n be an n-dimensional toric space of size vector d. A

non-empty m-connected subset X of T
n is wrapped in T

n if and only if WSD(n,m,
T

n,d,X) is non-empty.

Remark 34. In Alg. 1, the division operation performed on line 10 is a ‘coordinate
by coordinate’ division between elements of Z

n.

Before proving Prop. 33, let us study an example of the execution of Alg. 1
on an object.

Example 35. Let us consider a subset X of points of Z4 × Z4 (see Fig. 7-a) and
the 2-adjacency relation. In Fig. 7-a, one element of X is chosen as p and is
given the coordinates of the origin (see l. 1 of Alg. 1); then we set x = p. In
Fig. 7-b, every neighbour y of x (l. 6,7) which is in X (l. 11) is given coordinates
depending on its position relative to x (l. 12) and is added to the set S (l. 13).

Then, in Fig. 7-c, one element of S is chosen as x (l. 4). Every neighbour y

of x is scanned (l. 6,7). If y is in X and has already been given some coordinates
(l. 8), it is compared with x: as the coordinates of x and y are compatible in
Z

2 (the test achieved l. 9 returns false), the set B remains empty. Else, if y is in
X and has not previously been given coordinates (l. 11) (see Fig. 7-d), then it
is given coordinates depending on its position relative to x (l. 12) and added to
the set S.

Finally, in Fig. 7-e, another element of S is chosen as x. The algorithm tests
one of the neighbours y of x (the left neighbour) which is in X and has already



Fig. 7. Example of execution of WSD - see Ex. 35 for a complete description.

some coordinates (l. 8). As the coordinates of y and x are incompatible in Z
2

(the points (−1, 1) and (2, 1) are not neighbours in Z
2), the algorithm adds (x,y)

to B (l. 10): according to Prop. 33, the subset X is wrapped in T
n.

To summarize, Alg. 1 ‘tries to embed’ the subset X of T
n in Z

n: if some
incompatible coordinates are detected by the test achieved on l. 9 of Alg. 1, then
the object has a feature (a toric loop) which is incompatible with Z

n. A toric
2-loop lying in X is depicted in Fig. 7-f.

Proof. (of Prop. 33) For all y ∈ X such that y 6= p, there exists a point x such
that the test performed on l. 11 of Alg. 1 is true: we call x the label predecessor
of y.

– At the end of the execution of Alg. 1, if the set B is empty, then the test
performed l. 9 was never true. Let L = (p, V ) be an m-loop contained in X,
with V = (v1, ...,vk), and let us denote by xi the i-th point of L. As the
test performed l. 9 was always false, we have the following:

{

for all i ∈ [1; k − 1],vi = Coord(xi+1) − Coord(xi)
vk = Coord(x1) − Coord(xk)

The wrapping vector of L is

w =

k−1
∑

i=1

(Coord(xi+1) − Coord(xi)) + Coord(x1) − Coord(xk) = 0



Thus, if the algorithm returns false, each m-loop of X has a null wrapping
vector and, according to Th. 28, belongs to the homotopy class of a trivial
loop: there is no toric m-loop in X which is therefore not wrapped in T

n.

– If B is not empty, then, there exists (x,y) ∈ B and an m-step a, such that
x ⊕ a = y and Coord(y) − Coord(x) 6= a.
It is therefore possible to find two sequences γx and γy of m-adjacent points
in X, with γx = (p = x1,x2, ...,xq = x) and γy = (y = yt, ...,y2,y1 = p),
such that, for all i ∈ [1; q − 1],xi is the label predecessor of xi+1, and for
all i ∈ [1; t − 1],yi is the label predecessor of yi+1. Therefore, we can set















. for all i ∈ [1; q − 1],ui = Coord(xi+1) − Coord(xi)
is an m-step such that xi ⊕ ui = xi+1

. for all i ∈ [1; t − 1],vi = Coord(yi) − Coord(yi+1)
is an m-step such that yi+1 ⊕ vi = yi

Let Nx,y,a = (p, V ) be the m-loop such that V = (u1, ...,uq−1,a,vt−1, ...,
v1). The m-loop Nx,y,a is lying in X and its wrapping vector w is equal to:

w =

q−1
∑

i=1

ui + a +

t−1
∑

i=1

vi = a − (Coord(y) − Coord(x)) 6= 0

Thus, when the algorithm returns true, it is possible to find, inside X, an
m-loop with a non-null wrapping vector: by Th. 28, there is a toric m-loop
in X which is therefore wrapped in T

n. �

The algorithm proposed in [4] returns a boolean telling whether the subset
X is a wrapped subset of T

n or not. To obtain this algorithm from the code
given in Alg. 1, it is sufficient to replace l. 10 by ‘return true’ and to replace
l. 15 by ‘return false’. We chose to give, in this article, a version of the algorithm
returning a set, as it allows to get more information on the toric loops lying
inside a wrapped subset X, as shown in Sec. 5.2.

5.2 Computing a Basis For Toric Loops in a Subset of T
n

In this section, we show that Alg. 1 allows to build a basis for all normalized
wrapping vector of all toric m-loops contained in a subset of T

n.
Given T

n of size vector d and an m-connected subset X of T
n, we consider

having run WSD(n,m, Tn,d,X), and we will use Coord, the function built on
l. 12 of Alg. 1.

Given an m-step v and two points x,y ∈ X such that x ⊕ v = y, the points
x and y are conflictive through v if Coord(x)+v 6= Coord(y). Observe that, for
all conflictive pairs of points x, y through v contained in the subset X of T

n, the
vector (Coord(x) + v −Coord(y)) is added to the set B built on l. 10 of Alg. 1.

The next lemma establishes that, in order to calculate the wrapping vector
of an m-loop (and therefore, its homotopy class, as stated by Th. 28), only the
conflictive pairs of points in the loop need to be considered:



Lemma 36. Given p ∈ X and an m-loop K = (p, V ) in X, with V = (v1, ...,
vk), we denote, for all i ∈ [1; k + 1], by xi the i-th point of K, and we set
C = {i ∈ [1; k] | xi and xi+1 are conflictive through vi}. Let w be the wrapping
vector of K. We have:

w =
∑

j∈C

(Coord(xj) + vj − Coord(xj+1))

Proof. The wrapping vector w of K is by definition:

w =

k
∑

j=1

vj =
∑

j /∈C

vj +
∑

j∈C

vj =
∑

j /∈C

(Coord(xj+1) − Coord(xj)) +
∑

j∈C

vj

=

k
∑

j=1

(Coord(xj+1) − Coord(xj)) −
∑

j∈C

(Coord(xj+1) − Coord(xj)) +
∑

j∈C

vj

As
k

∑

j=1

(Coord(xj+1) − Coord(xj))) = Coord(xk+1) − Coord(x1) = 0, we get

the lemma proved. �

We now focus on the set B, result of WSD(n,m, Tn,d,X). For all x,y ∈ X
which are conflictive through an m-step v, the vector (v+Coord(x)−Coord(y))
is in B. Therefore, by Lem. 36, we obtain the following proposition.

Proposition 37. Let the set B = (w1, ...,wk) be the result of WSD(n,m, T
n,d,

X). A vector w∗ ∈ Z
n is the normalized wrapping vector of an m-loop of X if

and only if there exists k non-negative integers α1, ..., αk such that

w∗ =
k

∑

i=1

αi.wi (1)

Remark 38. If x and y are conflictive through v, then y and x are conflictive
through (−v): therefore, if u belongs to B, then −u also belongs to B. This is
why it is possible, in Prop. 37, to restrain the choice of the coefficients α1, ..., αk

to the set of non-negative integers.

Proof. If L is an m-loop in X of normalized wrapping vector w∗, then, by Lem. 36
and by construction of B, we deduce that w∗ satisfies Equ. 1.

Now, let w∗ be a vector which satisfies Equ. 1. For each b ∈ B, there exists
x and y in X and an m-step a such that x and y are conflictive through a and

such that b = Coord(x)+a−Coord(y)
d

. Consider the m-loop Nx,y,a (see the second
part of proof of Prop. 33), lying inside X, and whose wrapping vector is equal
to (Coord(x) + a − Coord(y)): the normalized wrapping vector of Nx,y,a is b.

Therefore, for each b ∈ B, there exists an m-loop Lb inside X, whose nor-

malized wrapping vector is equal to b. Let L∗ =

k
∏

i=1

(Lwi
)αi . By construction,

L∗ is contained in X, and its wrapping vector is equal to w∗. �



Thus, algorithm 1 builds a (non-minimal) basis allowing to compute the
normalized wrapping vector of any m-loop of X: the normalized wrapping vector
of any m-loop lying inside X is the linear combination of elements of B with
non-negative coefficients. The set B, result of Alg. 1, allows to get information
on how X wraps inside the toric space.

6 Conclusion

In this article, we give a formal definition of loops and homotopy inside discrete
toric spaces in order to define various notions such as the fundamental group
and the wrapping vector. Moreover, we show that wrapping vectors completely
characterize toric loops (see Th. 28) and lead to build a linear time algorithm
for the detection of such loops in a subset X of T

n. In addition, this algorithm
allows to build, for each subset X of T

n, a basis of vectors which characterizes
all toric loops contained in X and describes how X wraps around T

n.

In Sec. 1, we have seen that detecting toric loops is important in order to
filter grains from a material’s sample and perform a fluid flow simulation on the
sample. The WSD algorithm proposed in this article, detects which subsets of a
sample, embedded inside a toric space, will create grains and should be removed.
Future works will include analysis of the relationship between other topological
characteristics of materials and their physical properties: for example, studying
the skeleton of the pore space of a material could help to find new methods for
performing fluid flow analysis.
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7 Annex: More About Loop Homotopy

An homotopy relation between loops in Z
2 and Z

3, called loop equivalence, was
defined in [5]. This article [5] has become a reference in digital topology, and the
reader may wonder why a new definition of homotopy relation between loops in
toric spaces is given in this work.

In this section, we first recall (using the notations previously introduced) the
definition of loop equivalence given in [5], and we show that, when adapted to
toric spaces, this definition gives unwanted results, therefore explaining why a
new definition of homotopy was necessary for toric spaces. Then, we show that
when adapted to Z

2 and Z
3, our definition of loop homotopy is equivalent to the

loop equivalence defined in [5].

For more fluent reading, we will call loop homotopy the equivalence relation
between loops defined in Def. 9, and loop equivalence the equivalence relation
between loops defined in [5].

7.1 Loop Equivalence [5]

In [5], the loops must lie in a subset X of Z
2 or Z

3; X is the set of black points
of the space. A black m-loop of base point p ∈ X is an m-loop L = (p, U) (see
Def. 4), with U = (u1, ...,uk), such that, for all j ∈ [1; k], the j-th point of L is
in X.

Definition 39. Let K = (p, U) and L = (p, V ) be two black m-loops, with
(n,m) ∈ {(2, 1); (2, 2); (3, 1); (3, 3)}. Let k and l be respectively the length of K
and L. We say that K and L are directly equivalent if one of these two conditions
is matched:

– Considering Ũ and Ṽ , the sequences obtained from U and V respectively by
removing all null steps, we have Ũ = Ṽ .

– We have k = l and, if we denote, for all j ∈ [2; k], xj as the j-th point of K
and yj as the j-th point of L, and if we define

DK = {x ∈ T
n| there exists j ∈ [2; k] such that x = xj and xj 6= yj}

and DL = {y ∈ T
n| there exists j ∈ [2; k] such that y = yj and xj 6= yj},

then, (DK ∪ DL) is included in a unit lattice square or a unit lattice cube
of the space which, if m = 1 and n = 3, does not contain two diametrically
opposite white points.

Definition 40. Two black loops K and L are equivalent if there exists a sequence
(K = C1, ..., Ci = L) of black loops such that, for all j ∈ [1; i− 1], Ci and Ci+1 are
directly equivalent.



7.2 Loop Equivalence in Toric Spaces Gives Unwanted Results

In this article, the loops we consider are contained inside a toric space whose
points are all black. Therefore, in order to adapt Def. 39 to our discrete toric
framework, it is necessary to replace all occurrences of ‘Zn’ by ‘Tn’ and ‘unit
lattice’ by ‘toric unit lattice’. Moreover, all conditions depending on the colours
of the points of the space can be removed (this means that, in the end of Def. 39,
the condition stating that the toric unit lattice cube, for m = 1, must not contain
two diametrically opposite white points, can be ignored).

The following example pinpoints that Def. 39, adapted to our discrete toric
framework, can produce unwanted results.

Example 41. Given a bidimensional toric space (T2,⊕), with T
2 = Z3 × Z3,

let us consider the element p = (0; 1), the 2-steps v1 = (1; 0), v2 = (0; 1),
v3 = (−1;−1) and the 2-loops K = (p, (v1,v1,v1)) and L = (p, (v1,v2,v3)). It
can be seen on Fig. 8 that K and L do not belong to the same homotopy class
in T

2 (K wraps around the toric space, but L does not), however, based on Def.
39 adapted to toric spaces in an obvious way, they are equivalent.

This example proves that Def. 39 gives unwanted results: in some toric spaces,
like the one pinpointed in Ex. 41, the fundamental group obtained from Def. 39
is trivial, resulting in the fact that the space is simply connected. In order to
avoid such results, we introduced a new definition of loop homotopy for toric
spaces in this article (see Def. 6,9).

7.3 Comparing Black Loop Homotopy and Black Loop Equivalence
in Z

2 and Z
3

We will now work in the ‘classical’ discrete frameworks Z
3 or Z

2, and we will
study the black loops homotopy. From this point, the points of the space are
either black or white, and the loops are constrained to lie in the subset of the
space which contains the black points [5].

It is possible to adapt all definitions given previously in this article to the
classical space Z

n, by replacing the operation ‘⊕’ by the usual operation ‘+’. This
way, we can define black m-loops direct homotopy in Z

n: two black m-loops of
same base point p ∈ Z

n are directly homotopic if they are directly homotopic in
the sense of definition 6 adapted to Z

n.
We can now define black m-loops homotopy in Z

n: two black m-loops K
and L of same base point p ∈ Z

n are homotopic if there exists a sequence
(K = C1, ..., Ci = L) of black m-loops such that, for all j ∈ [1; i − 1], Ci and Ci+1

are directly homotopic.
The next proposition establishes that, in Z

n, black m-loop homotopy and
black m-loop equivalence defined in [5] (see Def. 39), with (n,m) ∈ {(2, 1); (2, 2);
(3, 1); (3, 3)}, are equivalent.

Proposition 42. Two black m-loops K = (p, U) and L = (p, V ) in Z
n ((n,m) ∈

{(2, 1); (2, 2); (3, 1); (3, 3)}) are equivalent if and only if they are homotopic.



Fig. 8. Equivalent loops - In a and c: in T
2 = Z3 × Z3, the loops in a) and c) are

equivalent (see Def. 39) but not homotopic (see Def. 6). In b and d: the two loops do
not belong to the same homotopy class in T

2, as one wraps around the toric space, and
not the other.

Proof. In the following proof, we set U = (u1, ...,uk), V = (v1, ...,vl), and we
use the same notations than in Def. 39.

If k 6= l and K and L are directly equivalent (Ũ = Ṽ ), then it can be easily
seen that K and L are homotopic. Reciprocally, if k 6= l and K and L are directly
homotopic, then they are directly equivalent.

Therefore, let us consider the case where k = l. In the following, for all
j ∈ [1; k +1], we denote by xj (resp. yj) the j-th point of K (resp. L). It may be
easily seen that, as we are working in Z

n, for all j ∈ [1; k], uj = xj+1 − xj and
vj = yj+1 − yj .

– In the case where K and L are directly homotopic (see Def. 6, case 3), then
there exists j ∈ [1; k−1] such that V = (u1, ...,uj−1,vj ,vj+1,uj+2, ...,uk),
with (uj − vj) being an m-step and (uj + uj+1 = vj + vj+1). Therefore, we
have DK ∪ DL = {xj+1,yj+1}.
• If (n,m) ∈ {(2, 1), (2, 2), (3, 3)}, then, as (xj+1−yj+1) = (uj −vj), the

points xj+1 and yj+1 lie in a same unit lattice square or cube, proving
that K and L are directly equivalent.

• If (n,m) ∈ {(3, 1)}, then uj and vj are both 1-steps. Therefore, (uj−vj)
is a 2-step, proving that xj+1 and yj+1 lie in a same unit lattice square.



Therefore, K and L are directly equivalent.

– Reciprocally, suppose that K and L are directly equivalent.
• In the case where (n,m) ∈ {(2, 2), (3, 3)}, we set, for all h ∈ [1; k],

Rh = (v1, ...,vh−1,xh+1 − yh,uh+1, ...,uk) and Ch = (p,Rh).
First, we prove that for all h ∈ [1; k], Ch is an m-loop of base point
p, by proving that (xh+1 − yh) is an m-step. As K and L are directly
equivalent, we either have xh = yh or xh+1 = yh+1 (the result is then
directly obtained), or we have xh,yh,xh+1 and yh+1 lying in a same
unit lattice cube or square: (xh+1 − yh) is therefore an n-step, and also
an m-step since n = m.
We are going to prove that for all h ∈ [1; k− 1], Ch and Ch+1 are directly
homotopic by proving that they match the case 3 of Def. 6:
∗ xh+1 − yh + uh+1 = xh+2 − yh = vh + xh+2 − yh+1,

∗ xh+1−yh−vh = xh+1−yh+1 is an n-step, as either xh+1 = yh+1

or xh+1 and yh+1 belong to a same unit lattice cube or square, and
also an m-step since n = m.

Finally, by pointing out that C1 is equal to K and that Ck is equal to L,
we conclude that K and L are homotopic.

• In the case where m = 1 and n = 3, let us assume that the set DK (resp.
DL) contains only consecutive points of the loop K (resp. L): if it was
not the case, the following reasoning could still be performed on each
consecutive elements of DK and DL in order to obtain the same result.
There exists i ∈ [2; k] and j ∈ [i; k] such that (DK∪DL) = {xi, ...,xj ,yi,
...,yj} is included in a unit lattice square or a unit lattice cube which does
not contain two diametrically opposite white points. Therefore, we have
V = (u1, ...,ui−2,vi−1, ...,vj ,uj+1, ...,uk). It is possible to simplify
the problem in two ways:

∗ As m = 1, yi −xi−1 and xi −xi−1 are 1-steps. Therefore, xi−1,xi

and yi are in a same unit lattice square and, as xi 6= yi, we find that
xi−1 lie in the same unit lattice cube or square than the elements of
(DK ∪DL). The same way, we prove that xj+1 lie in the same unit
lattice cube or square than the elements of (DK ∪ DL).
It may easily be seen that K is homotopic to the black 1-loop K′ =
(p, (u1, ...,uj ,−vj , ...,−vi−1,vi−1, ...,vj ,uj+1, ...,uk)).
Hence, proving that K′ and L are homotopic can be achieved by
proving that the black 1-loop (xi−1, (ui−1, ...,uj ,−vj , ...,−vi−1)),
whose points are contained inside the same unit lattice cube or square
than (DK ∪ DL), is homotopic to the trivial loop (xi−1, ()).

∗ Let C = (p, (w1, ...,wi, ...,wj , ...,wk)) be a self-intersecting black 1-
loop such that p+w1 + ...+wi = p+w1 + ...+wj . The problem of
showing that C is homotopic to (p, ()) can be decomposed into two
smaller problems: proving that C′ = (p+w1+...+wi, (wi+1, ...,wj))
is homotopic to (p + w1 + ... + wi, ()), and then proving that C′′ =
(p, (w1, ...,wi,wj+1, ...,wk)) is homotopic to (p, ()). Therefore, in



order to prove that a black 1-loop is homotopic to a trivial loop,
we can consider only, without loss of generality, non self-intersecting
black 1-loops.

Therefore, in order to prove that the two black 1-loops K and L are
homotopic, it is sufficient to prove that any non self-intersecting black
1-loop, contained in a unit lattice cube which does not contain two dia-
metrically opposite white points, is homotopic to a trivial loop.
A program building all possible configurations of black points inside a
unit lattice cube which does not contain two diametrically opposite white
points (52 configuration according to our program), and building for
each of these configurations all the non self-intersecting black 1-loops,
was written. A greedy algorithm is used to build, for each loop, a se-
quence of directly homotopic black 1-loop inside the unit lattice cube, in
order to prove that every non self-intersecting black 1-loop in the cube
is homotopic to a trivial loop: at each step, the newly built black 1-loop
contains less points than the previous black 1-loop in the sequence, until
a single point is reached.
As the programs successfully proves that each such non self-intersecting
black 1-loop is equivalent to a trivial loop, and as the case (n,m) = (2, 1)
is included in the case (n,m) = (3, 1), it can be concluded that K and L
are homotopic. �


