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Watershed cuts: minimum spanning forests and the
drop of water principle

Jean Cousty?, Gilles Bertrand, Laurent Najmah and Michel Couprié

Abstract— We study the watersheds in edge-weighted graphs. image) while preserving some topological properties, rigntiee
We define the watershed cuts following the intuitive idea of tbps  number of connected components of each lower cross-settion

of water flowing on a topographic surface. We first establish s case, the watershed divide is the set of points whicmate
the consistency of these watersheds: they can be equivalgnt in any regional minimum of the transformed map

defined by their “catchment basins” (through a steepest desmt In thi . tinate th tersheds i diff ¢
property) or by the “dividing lines” separating these catchment n tis F)aper, We_ Investigate the watersheds in a a eren
basins (through the drop of water principle). Then we prove, framework: we consider a graph whose edges are weighted by

through an equivalence theorem, their optimality in terms ¢ a cost function (see [19]-[26] for examples of image analysi
minimum spanning forests. Afterward, we introduce a linear operators in this framework). We propose a new definition of
time algorithm to compute them. To the best of our knowledge, atershed, calledvatershed-cytand obtain a set of remarkable

similar properties are not verified in other frameworks and properties. Unlike previous approaches in discrete fraoniesy

the proposed algorithm is the most efficient existing algothm, ) " e
both in theory and practice. Finally, the defined concepts a& _the _V\_/ate“rsheds cuts are Qefl_nec,li thanks to the formalizafieie
intuitive “drop of water principle”.

illustrated in image segmentation leading to the conclusio that i e ’ .
the proposed approach improves, on the tested images, the ajity Our first c_ontrlbunon establishes the conS|sten<_:y of vsdmed
of watershed-based segmentations. cuts. In particular, we prove that they can be equivalengfined

Index Terms— Watershed, minimum spanning forest, mini- by their “catchment basins” (through a steepest descepepty)

mum spanning tree, graph, mathematical morphology, image ©F by the “dividing lines” separating these catchment basin
segmentation (through the drop of water principle). As far as we know, in

discrete frameworks, our definition is the first one thatsfiais
such a property.
INTRODUCTION Our second contribution establishes the optimality of
OR topographic purposes, the watershed has been extetershed-cuts. In [19], F. Meyer shows the link between-min
sively studied during the 19th century by Maxwell [1] andmum spanning forests (MSF) and flooding from marker algo-
Jordan [2] among others. One hundred years later, the aatbrstithms. In this paper, we extend the problem of minimum spzmnn
transform was introduced by Digabel and Lantuéjoul [3]ifoage forests and show that there is indeed an equivalence betilieen
segmentation and is now used as a fundamental step in maytershed-cuts and the separations induced by minimunnian
powerful segmentation procedures. forest relative to the minima.

Let us consider a grayscale image as a topographic surfeee: t Our third contribution consists of a linear-time algorithio
gray level of a pixel becomes the elevation of a point, therlsas compute the watershed-cuts of an edge-weighted graph. The
and valleys of the topographic surface correspond to dalisar Proposed algorithm does not require any sorting step, ner th
whereas the mountains and crest lines correspond to the ligse of any sophisticated data structure such as a hierarchic
areas. Intuitively, the watershed divide is a set of pointictv dueue or a representation to maintain unions of disjoirst Sétus,
satisfy the “drop of water principle”: a separating set ofng® Whatever the range of the edge weights, it runs in linear tirtle
from which a drop of water can flow down towards at least tweespect to the size.¢., the number of edges) of the input graph.
regional minima. Furthermore, this algorithm does not need to compute thé&main

In order to compute the watershed of a digital image, sevetfll @ preliminary step. To the best of our knowledge, this is th
approaches [4]-[14] have been proposed. Many of them censidi'st watershed algorithm satisfying such properties.

a grayscale digital image as a vertex-weighted graph. Ortheof Then, we illustrate that, for some situations, the proposed
most popular consists of simulating a flooding of the topphia watershed localizes with better accuracy the contours Ectd
surface from its regional minima [5], [6], [15]. The dividemade N digital images. To this end, we provide, on some examples,
of “dams” built at those points where water coming from didet the results of morphological segmentation schemes based on
minima would meet. Another approach, called topologicalewa Watersheds in vertex-weighted graphs and the results df the
shed [10], [16], [17], allows the authors to rigorously defie adaptation in edge-weighted graphs.

notion of a watershed in a discrete space and to prove importa This articlé is self-contained and, in order to ease the reading,
properties not guaranteed by most watershed algorithrris 18 Proofs of the properties are deferred to the Appendix.

consists of lowering the values of a map.dq, the grayscale | BASIC NOTIONS AND NOTATIONS

1 Universite Paris-Est, LABINFO-IGM, UMR CNRS 8049, A2SBEEE, This paper is settled in the framework of edge-weightedgsap
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to handle such kind of graphs. For applications to image segmentation, we will assume that
the altitude ofu, an edge between two pixelsandy, represents
A. Graphs the dissimilarity between: andy (e.g, F'(u) equals the absolute
’ difference of intensity between andy; see Sec. V-A for a more
We define agraph as a pairX = (V(X), E(X)) whereV(X) complete discussion on different ways to set the mdpr image
is a finite set and?(X) is composed of unordered pairs6fX), segmentation). Thus, we suppose that the salient contoers a

i.e, E(X) is a subset of {z,y} C V(X) | = # y}. Each element |ocated on the highest edges Gf
of V(X) is called avertex or a point (ofX), and each element

of F(X) is called anedge (ofX). If V(X) # (), we say thatX Il. WATERSHED-CUTS
is non-empty

Let X be a graph. Ifu = {z,y} is an edge ofX, we say that
andy are adjacent (forX). Let = = (xzq,...,z,) be an ordered
sequence of vertices of, = is a path fromzg to z, in X (or

The intuitive idea underlying the notion of a watershed come
from the field of topography: a drop of water falling on a
topographic surface follows a descending path and eveytual
; . ) . . . reaches a minimum. The watershed may be thought of as the
in V(X)) if forany i € [1, 4, z; is adjacent ta; ;. In this case, separating lines of the domain of attraction of drops of wate
we say thgt vo and z, are I|nkgd forX.If £ =0, then = IS a Despite its simplicity, none of the classical definitionsdiscrete
rivial path_m X. We say that X is connectedf any two vertices frameworks handle exactly this intuitive idea. In this pape
of X" are linked for.X. contrarily to previous works, we follow explicitly the dropf

Let X andY be tWO. graphs. If/(Y) € V(X) and E_(Y) S water principle to define the notion of a watershed in an edge-
E(X), we say that Y is a subgraph ofX and we writeY” C weighted graph

X. We say that” is a connected component of, or simply a
component ofX, if Y is a connected subgraph of which is )
maximal for this propertyj.e., for any connected graph, Y C A. Extensions and graph cuts
Z C X impliesZ =Y. We present the notions of extension and graph cut which play
Important remark. Throughout this papers denotes a con- an important role for defining a watershed in an edge-wetjhte
nected graph. In order to simplify the notations, this grapti  graph.
be denoted byr = (V, E) instead ofG = (V(G), E(G)). We will Intuitively, the regions of a watershed (also called catehtn
also assume thak = 0. basins) are associated with the regional minima of the maph E
Typically, in applications to image segmentatidn,is the set catchment basin contains a unique regional minimum, and con
of picture elements (pixels) antl is any of the usual adjacencyVversely, each regional minimum is included in a unique cateift
relations,e.g, the 4- or 8-adjacency in 2D [29]. basin: the regions of the watershed “extend” the minimal18j,[
Let X C G. An edge{z,y} of G is adjacent toX if {z,y}n G- Bertrand formalizes the notion of extension.
V(X) # 0 and if {z,y} does not belong tdZ(X); in this case  Definition 1 (Extension, from Def. 12 in [16])}et X and Y’
and if y does not belong t&"(X), we say that{z,y} is outgoing b€ two non-empty subgraphs 6f We say that” is anextension
from X and thaty is adjacent toX. If = is a path fromz to y Of X (in G) if X C 'Y and if any component df’ contains exactly

andy is a vertex ofX, thenr is apath fromz to X (in G). one component of. _ o
If Sis a subset ofz, we denote byS the complementary set The graphs (drawn in bold) in Fig. 1b, c and d are three
of Sin E,ie, S=E\S. extensions of the one depicted in Fig. la.

Let S C E, the graph induced by is the graph whose edge set . , ,
is S and whose vertex set is made of all points which belong tg \ ‘& &
an edge ins,i.e, ({z € V| Ju € S,z € u}, S). In the following, ’ ! ’ ! ’
when no confusion may occur, the graph inducedsbys also : i ) ‘ i )

denoted bys. VA 7041

(a) (0) (c) @

B. Edge-weighted graphs Fig. 1. A graphG. The set of vertices and edges represented in bold)sa

subgraphX of G; (b), an extension ofX; (c): an extensiort” of X which

We denote bw: thF..' set of all maps fronk' to Z and we say is maximal; and(d): a spanning forest relative t& . In (¢) and (d) the set
that any map inF weightsthe edges of. of dashed edges is a cut fof.

Let F € F. If u is an edge of7, F(u) is thealtitude or weight

of u. Let X C G andk € Z. The subgraphX of G is aminimum

of F (at altitude k) if:

The notion of extension is very general. Many segmentation
algorithms iteratively extend some seed components in phgra

. X_iS conne_cted; and they produce an extension of the seeds. Most of them tereninat

« ks the altitude of any edge of; and _ once they have reached an extension which covers all thieart

« the altitude of any edge adjacent 9 is strictly greater of the graph. The resulting separation is called a graph cut.
than. Definition 2 (Graph cut, see also [28])tet X C G and S C

We denote byM (F) the graph whose vertex set and edge séi. We say thatS is a(graph) cut forX if S is an extension of{
are, respectively, the union of the vertex sets and edgeo$els and if S is minimal for this propertyj.e, if 7 C S andT is an
minima of F'. extension ofX, then we havel’ = S.

Important remark. In the sequel of this papef’ denotes an  The setS made of the dashed edges in Fig. 1c is a cutXor
element ofF and therefore the paifG, F) is called anedge- (Fig. 1a). It can be verified that (in bold Fig. 1c) is an extension
weighted graph. of X and thatS is minimal for this property.
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If X is a subgraph off and S a cut for X, it may be easily seen
that'S is a maximal extension ak.

The notion of graph cut has been studied for many years and
is often defined by means of partitions. In this case, aSsetF
is said to be a graph cut if there exists a partitionVofsuch
that S is the set of all edges off whose extremities are in
two distinct sets of the partition. If each set of the pavtitiis
connected and contains the vertex set of a unique component
of a subgraph ofG, then S is a cut for this subgraph. It may
be easily seen that this definition is equivalent to Def. 2e On
of the most fundamental results in combinatorial optinmarat
involves graph cuts. It states that, given two isolatedicest of
an edge-weighted graph (called source and sink), finding afcu
minimal cost that separates these vertices is equivalefimiding
a maximum flow (see, for instance, [28], chapter 6.2). Thaigt e
polynomial-time algorithms to find the so-called min-cu®s the
other hand, finding a cut of minimal cost among all the cutsafor
subgraph which has more than two components is NP-hard [38ly 2 A graphG and a map?. (a), The minima ofF” are depicted in bold:
In the forthcoming sections, we introduce the watershed-ofl (b), the setS of dashed edges is a watershed fofand the graph induced
an edge-weighted graph and show that these watershedsapte gby S is depicted in bold;(c), same agb) but the values of the map'®
cuts which also satisty an optmality property. A major acage <1 a=SCCRIed [0 e verices 1 and (0 e subgrat o bk s an MSF
is that they can be computed in linear time.

In image segmentation, a classical application of grapls cut
[24] consists of finding a cut of minimum weight (a min-cutj
set of terminal points in a graph where each vertex is a piikaho the previous properties hold true for any edgesinThus, S is a
image and each terminal point is included in an object ofrese  Watershed off". The next statement follows from the definition
The links between these approaches and the one developteid in@f @ watershed.
paper are investigated in [31]. Property 4: Let S C E. If S is a watershed of", then S is a
cut for M (F).
L Notice that a watershed df is defined thanks to conditions
B. Watershed-cuts by the drop of water principle that depend of the altitude of the edges whereas the defirifio

We now introduce the watershed-cuts of an edge-weightgd, ¢ js solely based on the structure of the graph. Conséguen
graph. To this end, we formalize the drop of water prinCiplena converse of Prop. 4 is, in general, not true.

Intuitively, the catchment basins constitute an extensbrihe As an illustration of the previous property, it may be vedfie

minima and they are separated by “lines” from which a drop Qfat the watershed of the map depicted in Fig. 2b, is a cut for
water can flow down towards distinct minima. the minima of F.
Letm = (o, ..., z¢) be apath inG. The pathr is descending 4 finjsh this section, we would like to notice that, given an
(for F),'f’ for any e _[1’ ¢—1], F({Iif%’xi}) > F({zi, 2it1}). edge-weighted graph, a watershed-cut is not necessaitdyely
For instance in Fig. 2a the path, f,b,a) and (n,0) aré yefineq There may indeed exist several distinct cutsMai)
descending whereas the pdit 7, n, o, p) is not since the altitude which satisfy the drop of water principle.
of {f,j} is strictly less than the one dfj, n}.
Definition 3 (drop of water principle, watershed cut): )
Let S C E. We say thatS satisfies the drop of water C. Catchment basins by a steepest descent property

principle (for F) if S is an extension of M(F) and if A popular alternative to Def. 3 consists of defining a watedsh

for any v = {zg,y0} € S, there existmy = (xo,...,zn) exclusively by its catchment basins and the paths of stéepes
and > = (yo,...,ym) Which are two descending paths B descent (see.qg, [7], [8], [32], [33]). In a vertex-weighted graph,
such that: such definitions raise several problems. The catchment ludsi

- zpn, andyy,, are vertices of two distinct minima df'; and a minimum M can be defined as the points from whigh can

- F(u) > F({zg,z1}) (resp. F(u) > F({yo,y1})), wheneverr; be reached by a path of steepest descent. In this case, Isevera
(resp.m2) is not trivial. catchment basins may overlap each other. To avoid this gmbl

If S satisfies the drop of water principle, we say tifatis a some authors define the catchment basinoés the set of points
watershed-cut, or simply a watershed, /of from which M is the only minimum that can be reached by a path

We illustrate the previous definition on the functibhdepicted of steepest descent. In this case, some thick sets of poiays m
in Fig. 2. The functionr' contains three minima (in bold Fig. 2a).not belong to any catchment basin (such situations areréitesl
We denote bysS the set of dashed edges depicted in Fig. 2b. i [33]).
may be seen tha (in bold Fig. 2b) is an extension dff (F). Let The following theorem establishes the consistency of
us consider the edge= {j,n} € S. There existsr; = (j, f,b,a) watershed-cuts in edge weighted graphs: they can be eenilal
(resp.m2 = (n,0)) a descending path i§ from j (resp.n) to defined by a steepest descent property on the catchmentsbasin
the minimum at altitude 1 (resp. 3); the altitude {of f/} (resp. (regions) or by the drop of water principle on the cut (boyder
{n, 0}), the first edge ofr; (resp.r2) is equal to 6 (resp. 5) which which separate them. As far as we know, there is no definition
is a value lower than 7 the altitude of It can be verified that of watershed in vertex-weighted graphs that verifies a aimil



SUBMITTED TO IEEE PAMI, 2007, REVISED 2008 4

does not hold in other frameworks can be found in [34]. Thg
following Th. 6 thus emphasizes that the framework consider
in this paper is adapted for the definition and study of discre
watersheds. &

Before stating Th. 6, we start with some definitions relative o
to the notion of a path of steepest descent. Then, we dereve th

definitions of catchment basins and basin-cuts.

Important remark. From now on, we will denote by®
the map fromV to Z such that for anyz € Vv, F°(z) is the
minimal altitude of an edge which contains i.e, F®(z) =
min{F(u) | u € E,z € u}; FO(x) is thealtitude of .

The mapF© associated to the map of Fig. 2a is shown
in Fig. 2c.

Let 7 = (x¢,...,z,) be a path inG. The pathr is a path
of steepest descent far if, for any i € [1,¢], F({z;—1,2;}) =
Fe (Iifl).

For instance, in Fig. 2a{j,i,e) and (n,o0) are paths of
steepest descent for the depicted m&p On the contrary,
(4, f,b,a) and {(n,m) are not paths of steepest descent far
Indeed,F©(5) < F({j, f}) and F®(n) < F({n,m}).

Definition 5 (basin-cut):Let S C E be a cut forM (F'). We
say thatS is abasin-cut ofF if, from each point of” to M (F),

Fig. 3. A graphG and a mapF'. The bold edges and vertices repre-
sent: (a), X a subgraph of5; (b) and (c), two MSFs relative toX; their
induced cuts are represented by dashed edges.

Definition 7 (relative forest):.Let X andY be two non-empty
subgraphs of7. We say thatv” is aforest relative toX if:
i) Y is an extension ofX; and
i) for any extensionZ C Y of X, we haveZ = Y when-
everV(Z2) =V(Y).
We say thaty” is aspanning forest relative t& (for G) if Y is
a forest relative taX and if V(Y) = V.
Informally speaking, condition ii) imposes that Yifis a forest,
then we cannot remove any edge framwithout affecting its
vertex set.

there exists, in the graph induced Bya path of steepest descent FOr example, the subgraph depicted in bold in Fig. 1d is a

for F.
If C is a basin-cut of”, any component of is called acatchment
basin (of F, for C).

In other words, a cut” for M (F) is a basin-cut ofF", if from

spanning forest relative to the subgraph in Fig. 1a.

Thanks to relative forests, the usual notion of a tree and of a
forest can be defined as follows.

Let X C G. We say thatX is atree (resp. aspanning treg

each point ofG: to M(F), there exists, irG, a path of steepest if X is a forest (resp. spanning forest) relative to the subgraph

descent forF” which does not have any edge in the ¢ytor said

differently all the edges of this path are in a unique compbne

({=},0), = being any vertex ofX. We say thatX is a forest
(resp. aspanning foresgtif X is a forest (resp. a spanning forest)

of 5. For instance, it can be verified in Fig. 2b that the set §flative t0(5,0), S being a subset of’(X).

dashed edges is a basin-cut of the depicted map. The foljowin

theorem asserts that any basin-cutfofs a watershed-cut of’
and that conversely, any watershed-cutrofs a basin-cut off'.

Theorem 6 (consistency)let S C E. The setS is a basin-cut
of F if and only if S is a watershed-cut of".

As an illustration of Th. 6, it can be verified that the set o
dashed edges in Fig. 2b is both a watershed-cut and a basin

of the depicted map.

I11. M INIMUM SPANNING FORESTS AND WATERSHED

OPTIMALITY

In this section, we establish the optimality of watershed

Let X be a subgraph of7, the weight of X (for F), de-
noted by F(X), is the sum of its edge weightd'(X) =
2uen(x) Fu).

Definition 8 (relative minimum spanning forest)et X andY’
be two subgraphs of. We say thatY is a minimum spanning
prest (MSF) relative toX (for F, in G) if Y is a spanning forest
_rgllfltive toX and if the weight ofY is less than or equal to the
weight of any other spanning forest relative Xa In this case,
we also say that” is arelative MSFE

Let us consider the graplé depicted in Fig. 3 and the
subgraphX depicted in bold in Fig. 3a. The graphs and Z
(bold edges and vertices) in Figs. 3b and c are two MSFsvelati
o x.

To this end, we introduce the notion of minimum spanning

forests relative to subgraphs «f. We will see that each of A. Relative MSFs and watersheds

these forests induces a unique graph cut. The main result ofe now have the mathematical tools to present the main
this section (Th. 10) states that a graph cut is induced byresult of this section (Th. 10) which establishes the opiiyal
minimum spanning forest relative to the minima of a map iéf watersheds. It shows the equivalence between the cutshwhi
and only if it is a watershed of this map. In Sec. IlI-B, wesatisfy the drop of water principle and those induced by ti&F&
show that the problem of finding a relative minimum spanninglative to the minima of a map.

forest is equivalent to the classical problem of finding aimium
spanning tree [35]-[37]. In fact, this provides a mean tdveer

We start by the following lemma which gives, thanks to Th. 6,
a first intuition of Th. 10.

from any minimum spanning tree algorithm, an algorithm for Lemma 9:Let X be a spanning forest relative fa (F). The

relative minimum spanning forests, and thus also, for vehieadls.
Intuitively, a forest relative to a subgrapti is an extensiory’

graph X is an MSF relative taV/(F) if and only if, for anyz
in V, there exists a path iX from = to M (F') which is a path

of X such that any cyclei.e., a simple path whose first and lastof steepest descent fd.

point are adjacent) iy is a cycle inX. Formally, the notion of
cycle is not necessary to define a forest.

Let X be a subgraph ofi and letY be a spanning forest
relative toX. There exists a unique cdtfor Y. It is composed by
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all edges ofG whose extremities are in two distinct components
of Y. SinceY is an extension ok, it can be seen that this unique2
cut S is also a cut forX (see, for instance, Fig. 1d). We say tha
this unique cut is theut induced byy'. Furthermore, ifY is an
MSF relative toX, we say thatS is an MSF-cut for X. .

For instance, in Fig. 3b,c, the set of dashed edges are M&F-c
for the subgraph shown in bold in Fig. 3a. e

Theorem 10 (optimality)Let S C E. The setS is an MSF-cut ()
for M(F) if and only if S is a watershed cut of". Fig. 4. A graphG and a mapF assigned to the edges 6f. The bold

As far as we know, this is the first result which establishei@Phs superimposed are the minimafof (b), the values of the mag®
! are associated to the vertices @f (c): a flow mappingy of F is depicted;

watershed 0ptimam¥ in graphs. As an illustration, thevipes he index of the top-left (resp top-right and bottom-lefnima is 1 (resp. 2
theorem can be verified on Fig. 2b,d where the set of dashexbedand 3); the set of dashed edges is the flow-cuf'aiissociated withp.

is both a watershed-cut of the depicted map and an MSF-cut for
its minima.

solving this problem is reached by the quasi-linear alpaorit

B. Relative MSFs and minimum spanning trees of Chazelle [40]. In this section, we introduce a lineardim
The minimum spanning tree problem is one of the mog\{atfersheq algor?thm. Contrarily to many watershed algorg
typical and well-known problems of combinatorial optintiza available in the_ literature (see [5]',[6]' [11], [1_2]' [171B5]), the
&(oposed algorithm does not require any sorting step, routie

(see [35]-[38]). It has been applied for many years in ima A ) i
analysis [39]. We show that the minimum spanning tree pmbleof a sophisticated data structure such as a hierarchicaleqae

is equivalent to the problem of finding an MSF relative to Y representation t_o maintain u_nions qf d_isjoint_sets. _V\ﬂmtehe
subgraph ofG. range of the con5|dered map, it runs in Imear time vy|th respe
Let X C G. The graph X is a minimum spanning tree (fdr, the size of the input graph. Furthermore, this algorithmsdioat

in &) if X is an MSE relative to the subara 2 bein need to compute the minima of the map in a preliminary step. To
any 2/ertex of X gragz}. 0), = g the best of our knowledge, this is the first watershed aligarit

Notice that the notion of a minimum spanning tree presentg\ﬂtlh shuclf1_ propertu?s.h . h h ical tools whith
above corresponds exactly to the usual one. n the first part of the section, the mathematical tools w

In order to recover the link between flooding algorithms anltflsed to prove the correctness of the proposed algorithmnare |

minimum spanning trees, in [19], F. Meyer proposed a constrt}mduc?d' In pz.irticular,. \WE propose a new notioq of strearieiwh
tion to show the equivalence between finding an MSF rooted iy cru.C|aI to this paradigm. Then, .the algorithm is preseyend
a set of vertices and finding a minimum spanning tree. Her%?th |Fs.(.:orrectness and complexity are analyzed:

we extend this construction for proving the equivalencevbet . Definition 11 (s_tream):Let Lc V. We say _thatL_ IS as_tream
finding a minimum spanning tree and an MSF relative to '& for any two pointsz andy of L, there exists, irL, either a
subgraph ofG. Let us consider, in a first time, a graph C G path fromz 10 y or from y to «, of steepest descent faf.

such thatE(X) = 0, i.e,, a graph composed of isolated verticesl.‘et L be a stream and let € L. We say thatz is a top (resp.

From G and X, we can construct a new graghf — (V/, ) bottom) of L if the altitude ofz is greater than (resp. less than)

which contains an additional vertex(i.e., z ¢ V) linked by an or equal to the faltltyde of any € L. .
edge to each vertex of . In other words)” — VU{z} and E/ — Remark that if is a stream and: is a bottom (resp. a top)

EUE., whereE. — {{z,z} | « € V(X)}. Let us consider the pf L, then, from anyy € L to z (resp. fromz to anyy € L), there

map F' from E’ to Z such that, for any. € E, F'(u) = F(u) and Ii a path mL,hof stet_epest descent fd;. Notlceftlr\]at, wua‘iever
for any u € Es, F'(u) = knn — 1, knn being the minimum value the streami,, there exists a top (resp. bottom) bf Nevertheless,

of F. LetY be any subgraph af’ and letY”’ be the graph whose this top (resp. bottom) is not necessarily unique.

vertex and edge sets are respectivilyr’) U {z} and E(Y)U E In order to illustrate the previous definitions, let us assuhat
It may be seen that” is a minimum spanning tree far’ in GZ} G and F are the graph and the function depicted in Fig. 4a. The

if and only if v is an MSF relative tax for  in G. setsL = {a,b,e,i} and{j,m,n} are two examples of streams.

!/ .. . .
The construction presented above can be easily generabzeé) n the 2gr!tr2/ry,btf1:/ SGE, N Ejlk:j ’ kf} 'f' not atztream ts:‘l;?eTtr? ere
any subgraphX of G. To this end, in a preliminary step, eac S No path in%, betweer and ', of steepest descent 1e1. The

component ofX must be contracted into a single vertex and, ﬁets{“’b} and {i} are respectively the set of bottoms and tops

two vertices of the contracted graphs must be linked by pielti 0
edges, only the one with minimal value is kept.

A direct consequence of the construction presented above’
that any minimum spanning tree algorithm can be used to ctﬁnpa
a relative MSF. Many efficient algorithms (see [37]) existtle
literature for solving the minimum spanning tree problem.

The algorithm which will be proposed in this section is based
psthe iterative extraction of streams. In order to buildhsac
rocedure, we study stream concatenation.

Let L; and L, be two disjoint streams.€., L1 N Ly = 0) and
let L = L1 U Lo. We say that Ly is under Ly, written L1 < Lo,
if there exist a tope of L1, a bottomy of Lo, and there is, frony
to z, a path inL of steepest descent fét. Note that, ifL; < Lo,
then L is also a stream.

As seen in the previous section, MSFs relative to subgrapiMe say that a strearth is aninf-stream, written<-stream,if there
of G, and by the way watershed-cuts, can be computed Byno stream undef.
any minimum spanning tree algorithm. The best complexity fo In Fig. 4a the strearda, b, e,i} is under the streanfj, m,n}

IV. STREAMS AND LINEAR-TIME WATERSHED ALGORITHM



SUBMITTED TO IEEE PAMI, 2007, REVISED 2008

and thus{a,b,e,i,j,m,n} is also a stream. Furthermore, therés an illustration of this theorem, it may be verified that tlosv-

is no stream undefa, b, e,i} and{a,b, e, 1, j,m,n}. Thus, these
are two<-streams.

The streams extracted by our algorithm are-alstreams. As
said in the introduction, this algorithm does not requirenimia
precomputation. In fact, there is a deep link betweestreams
and minima as assessed by the following property which viclo
directly from the definitions of a minimum and of at-stream.

Property 12: Let L be a stream. The three following statements

are equivalent:

(1) L is an<-stream;

(2) L contains the vertex set of a minimum &t and

(3) for anyy € V' \ L adjacent to a bottome of L, F({z,y}) >
F®(x).

In Fig. 4a, the two<-streams{a, b, e, i} and{a,b, e, i,j,m,n}
contain the sefa, b} which is the vertex set of a minimum @f.
Remark that any strearh which contains an<-stream is itself
an <-stream. We also notice that if is an <-stream, then the

set of all bottoms of_ constitutes the vertex set of a minimum of

F. Furthermore, a subsét of V' is the vertex set of a minimum
of F if and only if it is an <-stream minimal for the inclusion
relationship,i.e., no proper subset af is an <-stream.

In order to partition the vertex set @, from the <-streams

of F, the vertices of the graph can be arranged in the followin

manner.

Let £ be a set ofn <-streams. We say that is a flow family
if:

i) W{L|LeL}=V;and

i) for any two distinctL; and Lo in £, if L1 N Ly # 0, then
there exists a unique minimum df whose vertex set is
included inL; N Lo.

For instance, in Fig. 4,
sets{a,b,¢, f,j}, {a,b,e,i,m,n}, {c,d,g,h} and {k,l,o0,p} is
a flow family.

Let £ be a flow family, letz € V and letL,,... L, be the
elements ofZ which containz. Since the elements of are <-
streams, by Prop. 12, any; (with < € [1,/]) contains the vertex
set of exactly one minimumi/; of F. By definition of a flow
family, we deduce that, for anyandj in [1,¢], M; = M;. Thus,
thanks to£, we can associate to each vertexof G a unique
minimum of F.

Definition 13 (flow-cut):Let £ be a flow family. Let us denote
by M;y,..., M, the minima of F. Let ) be the map fromV/
to [1,n] which associates to each vertexof V, the index (or
label) i such that); is the unique minimum of” included in an
<-stream of£ which containsz; we say that) a flow mapping
of F.

If 4 is a flow mapping ofF", we say that the sef = {{z,y} €
E | ¥(x) # ¥(y)} is aflow-cut of F.

Fig. 4c shows the flow mapping associated to the flow family
presented above. The dashed edges represent the flow-coedthd

by this flow mapping.

the family composed of the

cut depicted in Fig. 4c is a watershed-cut and that the waeers
cut of Fig. 2b is flow-cut.

We now present Algo. 1 which computes a flow mapping,
hence, by Th. 14, a watershed. Algo. 1 makes use of the fumctio
Stream introduced hereafter.

Algorithm 1: Watershed
Data: (V, E, F'): an edge-weighted graph;
Result ¢: a flow mapping ofF.
1 foreach z € V do ¢(z) — NO_LABFEL,
2 nb_labs < 0; I/ the number of minima already found
3 foreach z € V such thaty(z) = NO_.LABEL do
[L,lab] < StreaniV, E, F, ¢, ) ;
if lab= —1 then /* L is an <-stream */
nb_labs + + ;
foreach y € L do ¢(y) < nb_labs;
else
| foreachy € L do v (y) < lab;

© 00 N O U A

d:unction Stream( V, E, F, v, x)

~  Data: (V,E, F): an edge-weighted graphy;: a labeling

of V; x:apointinV.

Result [L,lab] where L is a stream such that is a top
of L, andlab is either the label of an
<-stream undetr, or —1.

L {z};

L' «— {z} ; Il the set of non-explored bottoms of L

while there existg; € L' do

L U\ {y};

breadth_first «— TRUFE ;

while (breadth_first) and (there existy,z} € £

such thatz ¢ L and F({y, z}) = F°(y)) do

if 1 (z) # NO_LABEL then

[* there is an <-stream under L already

labelled */

return [L, ¢ (2)] ;

else if F9(z) < F(y) then

11 L — LU{z}; I* zis now the only bottom

of L*/

12 L' — {z} ; I* hence, switch to depth-first

exploration */

13 breadth_first — FALSE ,

else

L— LU{z};I* FO(z) = F°(y), thus z is

also a bottom of L */

L' « L' U{z} ; I* continue breadth-first

exploration */

o U1 A W N P

16

17 return[L, —1] ;

The next proposed algorithm produces a flow mapping, henee
a flow-cut. The following theorem, which is a straightfordar
consequence of the definitions of flow families and basis-cut The algorithm iteratively assigns a label to each point @ th
and of the consistency theorem, states the equivalencesbrtwgraph. To this end, from each non-labeled pointa streamL
flow-cuts and watersheds. It constitutes the main tool tabdish composed of non-labeled points and whose top is computed
the correctness of Algo. 1. (line 4). If L is an<-stream (line 5), a new label is assigned to
Theorem 14:Let S C E. The setS is a watershed of" if and the points ofL. Otherwise (line 8), there exists at-streamL;
only if S is a flow-cut of F'. underZ and which is already labeled. In this case, the points of
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receive the label of.; (line 9). The function Stream, called atequivalent [41]: they both run in linear-time only if the g
line 4, allows us to compute the streain Roughly speaking, it of the weights is sufficiently small. On the other hand, the
performs an intermixed sequence of depth-first and brefadth- best complexity for the disjoint set problem is quasi-lingt2].
exploration of the paths of steepest descent. The mainiamtar Therefore, we emphasize that, to the best of our knowledwge, t
of the function Stream are)), the setL is, at each iteration, a proposed algorithm (together with the algorithm introdlida
stream; andii), the setL’ is made of all non-already explored[43]) is the first watershed algorithm that runs in lineandi
bottoms of L. The function halts at line 17 when all bottoms ofwhatever the range of the weight map.
L have been explored or, at line 9, if a poinalready labeled is  In practice, Algorithm 1 is as fast as a minima computation
found. In the former case, by Prop. 12, the returnedIsét an algorithm. Each catchment basin is associated to a minimum o
=<-stream. In the latter case, the labbél of z is also returned and the original map. For practical applications, one does hoays
there exists a bottorp of L such that(y, z) is a path of steepest need a basin for each minimum of the image. The following
descent. Thus, there is ar-stream Ly, under L, included in section illustrates how to apply the watershed cuts to image
the set of all vertices labeleldb. By the preceding remarks, thesegmentation.
output of Algo. 1 is a flow mapping of".

Let us now analyze the complexity of Algo. 1. In order to V. ILLUSTRATIONS IN IMAGE SEGMENTATION
prove its linearity (with respect t9F|), we are going to show In order to illustrate the notions introduced in this paper,
that the bottleneck of Algo. 1, which consists of the test¢him we present two segmentation schemes based on watersheds and
While loop (line 3) of function Stream, is executed at mogtE|) relative MSFs. After having described (Sec. V-A) how to set
times. Firstly, it is easily seen that, at a each step of Streeay up the edge-weighted graph, in Sec. V-B, we derive, from the
point y which belongs toL is such thaty(y) = NO_.LABEL. classical framework of mathematical morphology, a segat&mt
Furthermore, it may be also noticed (lines 1, 2 and 10, 11 dnd kcheme that permits to automatically segment an image into a
15) that any point inZ’ also belongs td.. In Stream the points predefined number of regions. It consists of the three fatigw
are never removed frorh. Thus, since to be inserted I a point  steps: (i), computation of a function that assigns a weight to
z must not be an element df (testz ¢ L line 3 of Stream), we the edges of the 4-adjacency graph associated to the inége;
deduce that any point is inserted at most once iiY. Therefore, filtering of this weight function in order to reduce the numbe
the While loop (line 3 of Stream) is executed at most once faf minima; and(iii) computation of a watershed of the filtered
each pointy in L’ (sincey is removed fromL’ just before the weight function. The second illustration (Sec. V-C) presesome
execution of the loop). In this loop a set of tests is perfairfee  results of relative MSF, used as a semi-automatic segniemtat
each neighbor of. Since the points of, receive a label (line 7 or tool.
9in Algo. 1) just after the termination of Stream and sinae&n
only considers non-labeled points, we deduce that the irest® A. Graph setup

While loop (line 3 of Stream) are executed at most once foheac gyan if watersheds are sometimes applied on region adjgcenc
point of the graph. Thus, an edge being composed of exacty t\@{raphs [19], we focus, in this paper, on watershed methosiscba
points, these tests are executed at raostE| times. Furthermore, pixel adjacency graphs.d. graphs whose vertices are the
in order to perform the canonical operations of Algo. 1 instant image pixels). Therefore, we assume that theVsé the domain
time and thus to achieve a linear complexity, the gréighz) can 4 5 2_dimensional image, more precisely, of a rectangulbset
be stored as an array of lists which maps to each point the ljgt,2 A grayscale imagé is a map from the set of pixelg to
of all its adjacent vertices (or equivalently the list of aiges 5 gpset of the positive integers. For any V, the valuel(z)
which cgntain this point). Notice_ that, for app_licationsitnage is the intensity at pixels. In order to define a graph over the
processing, and when usual adjacency relations are usest thye; of pixels, we consider the 4-adjacency relation [29]ngefi
structures do not need to pe explicit. From the precedingarkes by:Vz,y € V, {z,y} € Eiff |z1 —y1|+]|z2—y2| = 1, Wherez =
we can deduce the following property. (z1,22) andy = (y1,y2). Note that, instead of the 4-adjacency,
Property 15: Algorithm 1 outputs a map) which is a flow any other adjacency relation could be used since our work is
mapping of#". Furthermore, Algorithm 1 runs in linear-time withgettled in general graphs. Then, before extracting a weadrsut
respect to £|. from this graph, a map’, which weights the edges of = (V, E),
Remark that, in function Stream, the use of breadth-first itemust be defined. Depending on the application, there argaleve
ations is required to ensure that the produced Ise$ always possibilities to set up the map.
an <-stream. Otherwise, if only depth-first iterations weredjse Let us first consider the “classical” watershed problem, iehe
Stream could be stuck on plateaus ( connected subgraphs 6f we want to segment dark regions that are separated by hrighte
with constant altitude) since some bottomsZofvould never be zones (see, for instance, Fig. 5a). In this case, the watershts
explored. can be used, as well as any watershed algorithm settled texver
Let us note that the two sets and L’ can be efficiently weighted graphs. To this end, the valuefofcan be defined for
managed by stack, which is a simple and efficient data streictueach edge: € F, linking two pixelsz andy, by the minimum (or
As far as we know, the watershed algorithms available in tmeaximum) value of the intensities at pointandy: F({z,y}) =
literature €.9, [5], [6], [11], [12], [17], [25]) all require either a min{I(x), I(y)}. Fig. 5illustrates this procedure and also presents
sorting step, a hierarchical queue or a data structure toteiai the result of a watershed algorithm applied in the verteighted
a collection of disjoint sets under the operation of uniom Ograph associated to the image. It can be observed (see inlpart
the one hand, the global complexities of a sorting step and Big. 5e and f) that, for this “classical” problem, similar uéis are
a (monotone) hierarchical queuée( a structure from which obtained in both frameworks of edge-weighted graphs angxer
the elements can be removed in the order of their altitude) aweighted graphs.
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_,.—,’::“%.‘, usual choice is to place the divide in the “middle” of the pkai.

'ﬁ‘g:gvy,k‘i:: F" This choice is not always the best one [8], for example it is no
ﬁ?-i—ﬁ,v"?}l?ﬂ' adapted for hierarchical schemes [51]. Observe that Algoril

does not include a control of the location of watersheds on
?_5'1 S plateaus. Such a control can be obtained through a (lifeai-t
%-’;;“ i preprocessing [33]; however, note that it is not always eded
Lot L For example, in the sequel, we present the result of theittigor
directly on the data, without any preprocessing dedicated t
plateaus. In [43], [52], we propose some other algorithna th
introduce more flexibility in treatment of plateaus.

B. Segmentation inté regions

In this section, we illustrate the use of watershed-cuts to
segment an image into its homogeneous zones. To this end,

{0
[ ] <
SV
“‘A— we consider the cameraman image presented Fig. 6a and adapt
(f) a classical scheme of morphological segmentation. Indeed,

. S _ o . _ watershed of the map’ defined above, would contain too many
Fig. 5. (a): Original image (microscopic view of a cross-section ofaniim  ~at~hment basins. Over-segmentation is a well known featur

oxyde ceramics)(b): a watershed (white pixel) dfz) considered as a vertex-
weighted graphi(c): a watershed-cut of the map derived from (a) as of all grayscale watersheds due to the huge number of local

described in Sec. V-A(d), a filtration of the original imag€a) where the minima. In order to suppress many of the non-significant méni

new image is obtained by eliminating the minima whose dyearfd4], [45] g classical approach consists of computing morphologicsing

is below 25;(e, f): same agb, c) starting from(d). of the function [53], [54]. In particular, attribute filtef55] (area,
dynamic, volume) have shown to be successful tools. For this

_ _ ) ~illustration, we adapt a classical attribute filter to theecaedge-
Another common issue is to segment a grayscale image into\jjgighted graphs.

“homogeneous” zones. To solve this problem in the conveatio  The intuitive idea of this filter is to progressively “fill inthe
framework of watersheds, an imagé which has low values in minima of the mapk” that are not “important enough”. To make
homogeneous zones and high values at the interfaces betwggs an idea practicable, it is necessary to quantify thativel
the homogeneous zones must be considered. Then, a Waterf?ﬁ%rtance of a minimum. To this end, let us define trea

is extracted from this imagé leading to a segmentation into thepf 5 subgraph ofG' (e.g, a minimum of F) as the number of
homogeneous parts fat In general,l’ is chosen as the gradientjts vertices. In order to “fill in” a less significant minimum/
magnitude of the original imagé. Computing such a gradientof  (according to its area), we consider the transformation tha
magnitude image is not straightforward and several solstéxist cgnsists of increasing by one the altitude of any edgevbf
(e.g, the Sobel filter [46], the Deriche’s optimal edge detectoX common issue in image analysis is to segment an image
[47] and the morphological gradient [48]). In the framewak jnto 1 regions (wherek is a predefined number). To reach this
edge-weighted graphs, a straightforward gradient funatian be goal thanks to watershed-cuts, we need a weight functiorctwhi
used in order to weight the edges Gf In the following, we contains exactly minima. The mapF is thus filtered by iterating
consider the mag”, from £ to Z, defined for any{z,y} € £ the above transformation untif containsk minima (see [56] for

by F({z,y}) = [I(z) — I(y)|- For instance, in Fig. 6b, we showgp efficient implementation).

an image representation of the mapderived from the image In Figs. 7a,b, we present the results which have been obtaine
of Fig. 6a. In the two next sections, we show that this gradiegn the cameraman image. Herk,is set to 22. In order to
function on the edges leads to satisfactory segmentatisuitse eygjuate this result, we also use a similar approach settled
However, more elaborated formulations (taking into actotor i, the framework of vertex-weighted graph. More preciséty,
instance, a regularization term) could also be used to défiée consists of{:), computation of a gradient magnitude image: either
cost functionf” (see [49] or an adaptation of [47]). Furthermoreyhe Deriche’s optimal edge detector [47] in Figs. 7c,d or the
there also exist, in the literature.g, [22]), some formulations morphological gradient (see, for instance, chapter 3.I0[48])

to defineF from multi-channel images, such as color images. i, Figs. 7e,f;(ii), area filtering k = 22) of the gradient; followed

by (iii), computation of a watershed by flooding (without dividing
line, see [6] or [26]) of the filtered function. Observe, irrjpaular,

the quality of the delineation of the man’s face(#) compared

to (d) and (f).

C. Image segmentation from markers

Another classical procedure in mathematical morphology- co
Fig. 6. (a), The cameraman grayscale image &b)l an image representation gjsts in selecting (either manually or with an automated@ss)
of the edge-weighted graph derived frdim) as described in Sec. V-A. some markers corresponding to objects that have to be séghen
These markers are indeed some vertices of the underlyimghgra
The position of the contours produced by watersheds on thet M be this set of vertices. From the s#&f the subgraph
plateaus is the subject of many discussions [8], [33], [#0). M whose vertex set i9/ and whose edge set is made of the
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transform permits to introduce flexible sequential aldons €.9,

for centering the watershed-cuts on plateaus or for weeeksh
cuts from markers) and opens the way towards efficient garall
watershed strategies. On the other hand, thanks to thisraexs-t
form, we are able to study the similarities and differencetsveen
watershed-cuts and other popular segmentation paradigchsss

the Image-Foresting-Transform [25], the fuzzy-connedtadge
segmentation method [21] or the topological watershed. [A6]
important result of this study is that any watershed-cut is a
topological-cut(i.e., a separation obtained by a topological wa-
tershed defined in an edge-weighted graph). Thus, the \hatdrs
cuts inherit the properties proved for topological watedsh

In particular, they “preserve the connection value”, whisha
fundamental property for many hierarchical methods based o
Fig. 7. Results obtained by applying a grayscale watershed Gitered Watersheds [51], [58], [59].

map [see text](a, b) A watershed-cut ¥ = 22) superimposed in white to
the original imagel; (¢, d) a watershed by flooding of the filtered & 22)
Deriche optimal edge detector; afid f) a watershed by flooding of a filtered

(k = 22) morphological gradient. In each image, the image resmiuts
doubled in order to superimpose the resulting contours.
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Fig. 8.
watersheds are superimposed in black to the original imageRelative MSF;(d): watershed by flooding of the Deriche optimal edge dete¢tor;watershed
by flooding of a morphological gradient of the image.
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APPENDIXI
PrROOFs

This appendix section provides the proofs of the propertleﬁ%v

given in this article.

A. Proof of Sec. Il

11

of all points of G that can be reached fromby a path of steepest
descent inS. By hypothesis, none of the points i is a vertex
of M(F). We denote byI" the set of all edges with minimal
altitude among the edgefy, 2} such thaty € P, z € V \ P.
Let v {y,2} € T such thaty € P. Since none of the

appmhesvernces of P is a vertex ofM(F), from Lem. 16, we can deduce

"hat F9(y) = F({y,z}). Thus, there is, fromz to z, a path
in G, of steepest descent fdr. Sincez is not in P, there is
no such path inS. Thus,v € S and T C S. Again, let us
considerv = {y,z} € T. Let« (yo=1y,...,y¢) be any
descending path ir§ from y to M(F). If such a path does
not exist, thenS is not a watershed: the proof is done. Suppose
now that such a path exists. There exists= [1,¢] such that
yp—1 € P andy, € V' \ P. Since any edge i’ is in S and
since {ys_1,yx} isin'S, F({yr_1,yx}) > F(v). Thus, asr is
descendingF' ({yo,y1}) > F(v). Thus, the edge, which belongs
to S, does not satisfy the condition for the edges in a watersied:
is not a watershed. [ |

B. Proofs of Sec. Il

Before proving the properties of Sec. lll, let us state the
following propositions whose proofs are elementary.

Thanks to the construction presented in Sec. IlI-B, we can
derive, from classical properties of trees, the followimgperties.

Let X C G,u € E(X). We write X\ for (V(X), E(X)\{u}).
Letv € E\ E(X). We write XUv for the graph(V (X )Uv, E(X)U
{v}).

Lemma 17:Let X be a subgraph aff and letY be a spanning
forest relative toX. If for any v € E(Y) \ E(X) andv € E'\
Y) such that(Y \ «) Uv is a spanning forest relative 1§, we
eF(u) < F(v), thenY is an MSF relative toX.

Lemma 18:Let X be a subgraph off andY be a spanning
forest relative toX. If v = {z,y} € E(Y) \ E(X), then there
exists a unique component 6f \ « which does not contain a

The following lemma is a direct consequence of the definitiocomponent ofX. Furthermore, either or y is a vertex of this

of a minimum.
Lemma 16:Let P C V, P # (. If there is no vertex of\/ (F')
in P, then there exists an edge= {z,y} of G such thatz €

P,y e V\ P, and F(u) is less than or equal to the altitude ofis an M-path (for F) if

any vertex inP.

component.

Let 7 = (xzp,...,z,) be a path inG. We say thatr is a simple
pathif for any two distinct; andj in [0, £], z; # x;. We say thatr
m is asimple pathif z, is a vertex of
M(F) and if none ofzg,...,z,_1 is a vertex ofM (F). Remark

Proof: [of Th. 6] To prove the theorem, we first show thathat anM-path does not contain any edgeMdf F'). Furthermore,
if S is a basin-cut ofF', then S is necessarily a watershed-cutit may be seen that it is a forest relativeM (F'), there exists a

of F. Afterward, we prove that ifS is not a basin-cut off’,
then S is not a watershed-cut df. This will complete the proof.
(z) Suppose thatS is a basin-cut ofF. Let u = {zo,y0} be
any edge inS. There existsm; = (zg,...,xy) (resp.my =
(vo,-..,ym)) a path of steepest descent fromy (resp. yo)
to M(F). By definition of a cut,zy and yo are in two dis-
tinct connected components . Thus, sinceS is an ex-
tension of M(F), z, and z, are necessarily in two dis-
tinct minima of F. Wheneverw; (resp. m2) is not trivial,
by definition of a path of steepest descemt({zg,z1}) =
FO(x0) (resp. F({yo.y1}) = F©(y0)). Hence, F({zo,x1}) <
F({zo.y0}) (resp.F({yo,31}) < F({:co,yo}» Hence, since by
definition S is an extension of\/(F), S is a watershed-cut of.
(ii) Suppose now tha$ is not a basin-cut of". If 'S is not an
extension of M (F'), S is not a watershed of’. Suppose now
that'S is an extension o/ (F). Thus, there exists a pointc V'
such that there is no path of steepest descens iftom x to
M (F) (otherwiseS would be a basin-cut af). Let P be the set

unique M-path from each vertex of.

Proof: [of Lem. 9] (¢) Suppose that there existg, a vertex
of X such that there is no path fromy to M(F), of steepest
descent forF. We are going to prove thak is not an MSF
relative to M (F). Let 7 = (zq,...,z,) be the uniqueM-path
from z( in X. Leti € [0,¢ — 1] be such thatzg,...,z;) is a
path of steepest descent fér and such thatzg,...,z;11) is
not. We haveF® (z;) < F({z;,zi11}). Let Z = X \ {zs, z;41}.
Since{x;,z;+1} is not an edge of\/(F), from Lem. 18, there
exists a unique connected componentZgfdenoted by, which
does not contain a minimum df'. Furthermore, the vertex set
of C' does not contain any vertex @t (F). Sincer is an M-
path , hence a simple patty; 1, ...,z,) is a path inZ andz,
is a vertex of M (F). Thus,z; is a vertex ofC. From Lem. 16,
we deduce that there exists= {y,z} € E such thaty is a
vertex of C whereas: is not andF'(v) < F(z;). Thus,F(v) <
F({z;,z;+1}). By definition, we haveV(Z) = V(X) = V.
Hence, it may be seen that U v is a spanning forest relative
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to M(F) whose weight is strictly less than the weight &f.
Thus, X is not an MSF relative ta// (F).
(i) Suppose thatX is not an MSF relative taV/(F). We are
going to prove that there exisise V such that there is no path
of steepest descent iK' from z to M (F'). By the converse of
Lem. 17, there exists € E(X)\ E(M(F)) andv € E\ E(X)
such that(X \ ) U v is a spanning forest relative to/(f") research with the Informatics Department, ESIEE
and F(v) < F(u). Let X’ = X \ u. By Lem. 18, there exists | Paris, and with the Institut Gaspard Monge,
a unique connected component®f, denoted byC, which does _ ~Universite Paris-Est Marne-la-Vallée. His current
not contain any minimum of”. Since X’ U v is an extension research interests include medical image analysis andetésmathematics.
of M(F), there exists a unique vertexin v which is a vertex
of C. Asz € v, FO(z) < F(v). Thus, F(v) < F(u) implies
F®(z) < F°(u). Let = be the uniqueM-path in X from z
to M(F). Since C' does not contain any minimum af, we
deduce thatr passes through but F°(z) < F°(u). Hence,r
is not a path of steepest descent for [ ]
The following lemmas will be used in the proof of Th. 10.
Lemma 19:Let S C E be a watershed of andY C S be
a forest relative toM (F). If V(Y) # V, then there exists an
edge{z,y} in S outgoing fromY" such that eithetz,y) or (y, x)
is a path of steepest descent f6r FurthermoreY U {z,y} is a
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Proof: Since V(Y) # V, there existszg € V \ V(Y). digital topology.
SinceS is a watershed, by Th. 6, there exists, fregto M (F),
a pathm = (zg,...,x¢) in S of steepest descent fof.
Since M(F) C Y, there existsi € [0,¢ — 1] such thatz; ¢
V(Y) andz;y1 € V(Y). Thus,{z;,z;1} is outgoing fromY".
Furthermore, by the very definition of a path of steepestefgsc
for F', (x;,z;41) is a path of steepest descent for
Sincez; ¢ V(Y), any cycle inY U {z;,z;41} is also a cycle
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from X; such that(z;,y;) is a path of steepest descent iy

- X}, is such that there is no edde;., v, } of S outgoing fromx,
such that(z;,y;) is a path of steepest descent for

By induction on Lem. 19,X, is a forest relative toM (F).
Furthermore, by the converse of Lem. 19,X,,) = V. Thus, X},
is a spanning forest relative tof (). From Lem. 20, it can be
deduced by induction that for any € V there exists, frome
to M(F), a path inX, of steepest descent far. Hence, by
Lem. 9, X, is an MSF relative taV/(F). Furthermore, sinc&
is a cut andX;, C S, it may be seen tha$ is the cut induced = J&
by X | ] 3
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