
HAL Id: hal-00622410
https://hal.science/hal-00622410v1

Submitted on 13 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Watershed Cuts: Minimum Spanning Forests and the
Drop of Water Principle

Jean Cousty, Gilles Bertrand, Laurent Najman, Michel Couprie

To cite this version:
Jean Cousty, Gilles Bertrand, Laurent Najman, Michel Couprie. Watershed Cuts: Minimum Spanning
Forests and the Drop of Water Principle. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2009, 31 (8), pp.1362-1374. �hal-00622410�

https://hal.science/hal-00622410v1
https://hal.archives-ouvertes.fr


SUBMITTED TO IEEE PAMI, 2007, REVISED 2008 1

Watershed cuts: minimum spanning forests and the
drop of water principle

Jean Cousty1,2, Gilles Bertrand1, Laurent Najman1 and Michel Couprie1

Abstract— We study the watersheds in edge-weighted graphs.
We define the watershed cuts following the intuitive idea of drops
of water flowing on a topographic surface. We first establish
the consistency of these watersheds: they can be equivalently
defined by their “catchment basins” (through a steepest descent
property) or by the “dividing lines” separating these catchment
basins (through the drop of water principle). Then we prove,
through an equivalence theorem, their optimality in terms of
minimum spanning forests. Afterward, we introduce a linear-
time algorithm to compute them. To the best of our knowledge,
similar properties are not verified in other frameworks and
the proposed algorithm is the most efficient existing algorithm,
both in theory and practice. Finally, the defined concepts are
illustrated in image segmentation leading to the conclusion that
the proposed approach improves, on the tested images, the quality
of watershed-based segmentations.

Index Terms— Watershed, minimum spanning forest, mini-
mum spanning tree, graph, mathematical morphology, image
segmentation

INTRODUCTION

FOR topographic purposes, the watershed has been exten-
sively studied during the 19th century by Maxwell [1] and

Jordan [2] among others. One hundred years later, the watershed
transform was introduced by Digabel and Lantuéjoul [3] forimage
segmentation and is now used as a fundamental step in many
powerful segmentation procedures.

Let us consider a grayscale image as a topographic surface: the
gray level of a pixel becomes the elevation of a point, the basins
and valleys of the topographic surface correspond to dark areas,
whereas the mountains and crest lines correspond to the light
areas. Intuitively, the watershed divide is a set of points which
satisfy the “drop of water principle”: a separating set of points
from which a drop of water can flow down towards at least two
regional minima.

In order to compute the watershed of a digital image, several
approaches [4]–[14] have been proposed. Many of them consider
a grayscale digital image as a vertex-weighted graph. One ofthe
most popular consists of simulating a flooding of the topographic
surface from its regional minima [5], [6], [15]. The divide is made
of “dams” built at those points where water coming from different
minima would meet. Another approach, called topological water-
shed [10], [16], [17], allows the authors to rigorously define the
notion of a watershed in a discrete space and to prove important
properties not guaranteed by most watershed algorithms [18]. It
consists of lowering the values of a map (e.g., the grayscale
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image) while preserving some topological properties, namely, the
number of connected components of each lower cross-section. In
this case, the watershed divide is the set of points which arenot
in any regional minimum of the transformed map.

In this paper, we investigate the watersheds in a different
framework: we consider a graph whose edges are weighted by
a cost function (see [19]–[26] for examples of image analysis
operators in this framework). We propose a new definition of
watershed, calledwatershed-cut, and obtain a set of remarkable
properties. Unlike previous approaches in discrete frameworks,
the watersheds-cuts are defined thanks to the formalizationof the
intuitive “drop of water principle”.

Our first contribution establishes the consistency of watershed-
cuts. In particular, we prove that they can be equivalently defined
by their “catchment basins” (through a steepest descent property)
or by the “dividing lines” separating these catchment basins
(through the drop of water principle). As far as we know, in
discrete frameworks, our definition is the first one that satisfies
such a property.

Our second contribution establishes the optimality of
watershed-cuts. In [19], F. Meyer shows the link between min-
imum spanning forests (MSF) and flooding from marker algo-
rithms. In this paper, we extend the problem of minimum spanning
forests and show that there is indeed an equivalence betweenthe
watershed-cuts and the separations induced by minimum spanning
forest relative to the minima.

Our third contribution consists of a linear-time algorithmto
compute the watershed-cuts of an edge-weighted graph. The
proposed algorithm does not require any sorting step, nor the
use of any sophisticated data structure such as a hierarchical
queue or a representation to maintain unions of disjoint sets. Thus,
whatever the range of the edge weights, it runs in linear timewith
respect to the size (i.e., the number of edges) of the input graph.
Furthermore, this algorithm does not need to compute the minima
in a preliminary step. To the best of our knowledge, this is the
first watershed algorithm satisfying such properties.

Then, we illustrate that, for some situations, the proposed
watershed localizes with better accuracy the contours of objects
in digital images. To this end, we provide, on some examples,
the results of morphological segmentation schemes based on
watersheds in vertex-weighted graphs and the results of their
adaptation in edge-weighted graphs.

This article1 is self-contained and, in order to ease the reading,
proofs of the properties are deferred to the Appendix.

I. BASIC NOTIONS AND NOTATIONS

This paper is settled in the framework of edge-weighted graphs.
Following the notations of [28], we present some basic definitions

1This article extends and completes a previous paper published in a
conference [27].
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to handle such kind of graphs.

A. Graphs

We define agraph as a pairX = (V (X), E(X)) whereV (X)

is a finite set andE(X) is composed of unordered pairs ofV (X),
i.e., E(X) is a subset of{{x, y} ⊆ V (X) | x 6= y}. Each element
of V (X) is called avertex or a point (ofX), and each element
of E(X) is called anedge (ofX). If V (X) 6= ∅, we say thatX
is non-empty.
Let X be a graph. Ifu = {x, y} is an edge ofX, we say thatx
and y are adjacent (forX). Let π = 〈x0, . . . , xℓ〉 be an ordered
sequence of vertices ofX, π is a path fromx0 to xℓ in X (or
in V (X)) if for any i ∈ [1, ℓ], xi is adjacent toxi−1. In this case,
we say that x0 and xℓ are linked forX. If ℓ = 0, then π is a
trivial path in X. We say thatX is connectedif any two vertices
of X are linked forX.

Let X and Y be two graphs. IfV (Y ) ⊆ V (X) andE(Y ) ⊆
E(X), we say that Y is a subgraph ofX and we writeY ⊆
X. We say thatY is a connected component ofX, or simply a
component ofX, if Y is a connected subgraph ofX which is
maximal for this property,i.e., for any connected graphZ, Y ⊆
Z ⊆ X impliesZ = Y .

Important remark. Throughout this paperG denotes a con-
nected graph. In order to simplify the notations, this graphwill
be denoted byG = (V,E) instead ofG = (V (G), E(G)). We will
also assume thatE 6= ∅.

Typically, in applications to image segmentation,V is the set
of picture elements (pixels) andE is any of the usual adjacency
relations,e.g., the 4- or 8-adjacency in 2D [29].

Let X ⊆ G. An edge{x, y} of G is adjacent toX if {x, y} ∩
V (X) 6= ∅ and if {x, y} does not belong toE(X); in this case
and if y does not belong toV (X), we say that{x, y} is outgoing
from X and thaty is adjacent toX. If π is a path fromx to y
andy is a vertex ofX, thenπ is a path fromx to X (in G).

If S is a subset ofE, we denote byS the complementary set
of S in E, i.e., S = E \ S.
Let S ⊆ E, the graph induced byS is the graph whose edge set
is S and whose vertex set is made of all points which belong to
an edge inS, i.e., ({x ∈ V | ∃u ∈ S, x ∈ u}, S). In the following,
when no confusion may occur, the graph induced byS is also
denoted byS.

B. Edge-weighted graphs

We denote byF the set of all maps fromE to Z and we say
that any map inF weightsthe edges ofG.

Let F ∈ F . If u is an edge ofG, F (u) is thealtitude or weight
of u. LetX ⊆ G andk ∈ Z. The subgraphX of G is a minimum
of F (at altitudek) if:

• X is connected; and
• k is the altitude of any edge ofX; and
• the altitude of any edge adjacent toX is strictly greater

thank.

We denote byM(F ) the graph whose vertex set and edge set
are, respectively, the union of the vertex sets and edge setsof all
minima ofF .

Important remark. In the sequel of this paper,F denotes an
element ofF and therefore the pair(G,F ) is called anedge-
weighted graph.

For applications to image segmentation, we will assume that
the altitude ofu, an edge between two pixelsx andy, represents
the dissimilarity betweenx andy (e.g., F (u) equals the absolute
difference of intensity betweenx andy; see Sec. V-A for a more
complete discussion on different ways to set the mapF for image
segmentation). Thus, we suppose that the salient contours are
located on the highest edges ofG.

II. WATERSHED-CUTS

The intuitive idea underlying the notion of a watershed comes
from the field of topography: a drop of water falling on a
topographic surface follows a descending path and eventually
reaches a minimum. The watershed may be thought of as the
separating lines of the domain of attraction of drops of water.
Despite its simplicity, none of the classical definitions indiscrete
frameworks handle exactly this intuitive idea. In this paper,
contrarily to previous works, we follow explicitly the dropof
water principle to define the notion of a watershed in an edge-
weighted graph.

A. Extensions and graph cuts

We present the notions of extension and graph cut which play
an important role for defining a watershed in an edge-weighted
graph.
Intuitively, the regions of a watershed (also called catchment
basins) are associated with the regional minima of the map. Each
catchment basin contains a unique regional minimum, and con-
versely, each regional minimum is included in a unique catchment
basin: the regions of the watershed “extend” the minima. In [16],
G. Bertrand formalizes the notion of extension.

Definition 1 (Extension, from Def. 12 in [16]):Let X and Y
be two non-empty subgraphs ofG. We say thatY is anextension
ofX (in G) if X ⊆ Y and if any component ofY contains exactly
one component ofX.

The graphs (drawn in bold) in Fig. 1b, c and d are three
extensions of the one depicted in Fig. 1a.

(a) (b) (c) (d)

Fig. 1. A graphG. The set of vertices and edges represented in bold is:(a), a
subgraphX of G; (b), an extension ofX; (c): an extensionY of X which
is maximal; and(d): a spanning forest relative toX. In (c) and (d) the set
of dashed edges is a cut forX.

The notion of extension is very general. Many segmentation
algorithms iteratively extend some seed components in a graph:
they produce an extension of the seeds. Most of them terminate
once they have reached an extension which covers all the vertices
of the graph. The resulting separation is called a graph cut.

Definition 2 (Graph cut, see also [28]):Let X ⊆ G andS ⊆
E. We say thatS is a (graph) cut forX if S is an extension ofX
and if S is minimal for this property,i.e., if T ⊆ S andT is an
extension ofX, then we haveT = S.

The setS made of the dashed edges in Fig. 1c is a cut forX

(Fig. 1a). It can be verified thatS (in bold Fig. 1c) is an extension
of X and thatS is minimal for this property.
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If X is a subgraph ofG andS a cut forX, it may be easily seen
that S is a maximal extension ofX.

The notion of graph cut has been studied for many years and
is often defined by means of partitions. In this case, a setS ⊆ E

is said to be a graph cut if there exists a partition ofV such
that S is the set of all edges ofG whose extremities are in
two distinct sets of the partition. If each set of the partition is
connected and contains the vertex set of a unique component
of a subgraph ofG, then S is a cut for this subgraph. It may
be easily seen that this definition is equivalent to Def. 2. One
of the most fundamental results in combinatorial optimization
involves graph cuts. It states that, given two isolated vertices of
an edge-weighted graph (called source and sink), finding a cut of
minimal cost that separates these vertices is equivalent tofinding
a maximum flow (see, for instance, [28], chapter 6.2). There exist
polynomial-time algorithms to find the so-called min-cuts.On the
other hand, finding a cut of minimal cost among all the cuts fora
subgraph which has more than two components is NP-hard [30].
In the forthcoming sections, we introduce the watershed-cuts of
an edge-weighted graph and show that these watersheds are graph
cuts which also satisfy an optimality property. A major advantage
is that they can be computed in linear time.

In image segmentation, a classical application of graph cuts
[24] consists of finding a cut of minimum weight (a min-cut) for a
set of terminal points in a graph where each vertex is a pixel of an
image and each terminal point is included in an object of interest.
The links between these approaches and the one developed in this
paper are investigated in [31].

B. Watershed-cuts by the drop of water principle

We now introduce the watershed-cuts of an edge-weighted
graph. To this end, we formalize the drop of water principle.
Intuitively, the catchment basins constitute an extensionof the
minima and they are separated by “lines” from which a drop of
water can flow down towards distinct minima.

Let π = 〈x0, . . . , xℓ〉 be a path inG. The pathπ is descending
(for F ) if, for any i ∈ [1, ℓ− 1], F ({xi−1, xi}) ≥ F ({xi, xi+1}).

For instance in Fig. 2a the paths〈j, f, b, a〉 and 〈n, o〉 are
descending whereas the path〈f, j, n, o, p〉 is not since the altitude
of {f, j} is strictly less than the one of{j, n}.

Definition 3 (drop of water principle, watershed cut):
Let S ⊆ E. We say thatS satisfies the drop of water
principle (for F ) if S is an extension of M(F ) and if
for any u = {x0, y0} ∈ S, there existπ1 = 〈x0, . . . , xn〉

and π2 = 〈y0, . . . , ym〉 which are two descending paths inS
such that:
- xn andym are vertices of two distinct minima ofF ; and
- F (u) ≥ F ({x0, x1}) (resp. F (u) ≥ F ({y0, y1})), wheneverπ1

(resp.π2) is not trivial.
If S satisfies the drop of water principle, we say thatS is a
watershed-cut, or simply a watershed, ofF .

We illustrate the previous definition on the functionF depicted
in Fig. 2. The functionF contains three minima (in bold Fig. 2a).
We denote byS the set of dashed edges depicted in Fig. 2b. It
may be seen thatS (in bold Fig. 2b) is an extension ofM(F ). Let
us consider the edgeu = {j, n} ∈ S. There existsπ1 = 〈j, f, b, a〉

(resp.π2 = 〈n, o〉) a descending path inS from j (resp.n) to
the minimum at altitude 1 (resp. 3); the altitude of{j, f} (resp.
{n, o}), the first edge ofπ1 (resp.π2) is equal to 6 (resp. 5) which
is a value lower than 7 the altitude ofu. It can be verified that

2

5 5 4

6 7 5

8 7 3 3

2

6

6

7

5

6

5

3

3

1

2 6

5

a b c d

e f g h

i j k l

m n o p

2

5 5 4

6 7 5

8 7 3 3

2

6

6

7

5

6

5

3

3

1

2 6

5

a b c d

e f g h

i j k l

m n o p

(a) (b)

2

5 5 4

6 7 5

8 7 3 3

2

6

6

7

5

6

5

3

3

2 6

5

1

1 2 5 4

4521

2 5 3 3

3356

2

5 5 4

6 7 5

8 7 3 3

2

6

6

7

5

6

5

3

3

1

2 6

5

a b c d

e f g h

i j k l

m n o p

(c) (d)

Fig. 2. A graphG and a mapF . (a), The minima ofF are depicted in bold;
(b), the setS of dashed edges is a watershed ofF and the graph induced
by S is depicted in bold;(c), same as(b) but the values of the mapF⊖

are associated to the vertices ofG; and(d), the subgraph in bold is an MSF
relative toM(F ) and the induced MSF-cut is composed by the dashed edges.

the previous properties hold true for any edge inS. Thus,S is a
watershed ofF . The next statement follows from the definition
of a watershed.

Property 4: Let S ⊆ E. If S is a watershed ofF , thenS is a
cut for M(F ).

Notice that a watershed ofF is defined thanks to conditions
that depend of the altitude of the edges whereas the definition of
a cut is solely based on the structure of the graph. Consequently,
the converse of Prop. 4 is, in general, not true.

As an illustration of the previous property, it may be verified
that the watershed of the mapF , depicted in Fig. 2b, is a cut for
the minima ofF .

To finish this section, we would like to notice that, given an
edge-weighted graph, a watershed-cut is not necessarily uniquely
defined. There may indeed exist several distinct cuts forM(F )

which satisfy the drop of water principle.

C. Catchment basins by a steepest descent property

A popular alternative to Def. 3 consists of defining a watershed
exclusively by its catchment basins and the paths of steepest
descent (seee.g., [7], [8], [32], [33]). In a vertex-weighted graph,
such definitions raise several problems. The catchment basin of
a minimumM can be defined as the points from whichM can
be reached by a path of steepest descent. In this case, several
catchment basins may overlap each other. To avoid this problem,
some authors define the catchment basin ofM as the set of points
from whichM is the only minimum that can be reached by a path
of steepest descent. In this case, some thick sets of points may
not belong to any catchment basin (such situations are illustrated
in [33]).

The following theorem establishes the consistency of
watershed-cuts in edge weighted graphs: they can be equivalently
defined by a steepest descent property on the catchment basins
(regions) or by the drop of water principle on the cut (border)
which separate them. As far as we know, there is no definition
of watershed in vertex-weighted graphs that verifies a similar



SUBMITTED TO IEEE PAMI, 2007, REVISED 2008 4

property. Some counter examples which show that such a duality
does not hold in other frameworks can be found in [34]. The
following Th. 6 thus emphasizes that the framework considered
in this paper is adapted for the definition and study of discrete
watersheds.

Before stating Th. 6, we start with some definitions relative
to the notion of a path of steepest descent. Then, we derive the
definitions of catchment basins and basin-cuts.

Important remark. From now on, we will denote byF⊖

the map fromV to Z such that for anyx ∈ V , F⊖(x) is the
minimal altitude of an edge which containsx, i.e., F⊖(x) =

min{F (u) | u ∈ E, x ∈ u}; F⊖(x) is thealtitudeof x.
The mapF⊖ associated to the mapF of Fig. 2a is shown

in Fig. 2c.
Let π = 〈x0, . . . , xℓ〉 be a path inG. The pathπ is a path

of steepest descent forF if, for any i ∈ [1, ℓ], F ({xi−1, xi}) =

F⊖(xi−1).
For instance, in Fig. 2a,〈j, i, e〉 and 〈n, o〉 are paths of

steepest descent for the depicted mapF . On the contrary,
〈j, f, b, a〉 and 〈n,m〉 are not paths of steepest descent forF .
Indeed,F⊖(j) < F ({j, f}) andF⊖(n) < F ({n,m}).

Definition 5 (basin-cut):Let S ⊆ E be a cut forM(F ). We
say thatS is a basin-cut ofF if, from each point ofV to M(F ),
there exists, in the graph induced byS, a path of steepest descent
for F .
If C is a basin-cut ofF , any component ofC is called acatchment
basin (of F , for C).

In other words, a cutC for M(F ) is a basin-cut ofF , if from
each point ofG to M(F ), there exists, inG, a path of steepest
descent forF which does not have any edge in the cutC, or said
differently all the edges of this path are in a unique component
of S. For instance, it can be verified in Fig. 2b that the set of
dashed edges is a basin-cut of the depicted map. The following
theorem asserts that any basin-cut ofF is a watershed-cut ofF
and that conversely, any watershed-cut ofF is a basin-cut ofF .

Theorem 6 (consistency):Let S ⊆ E. The setS is a basin-cut
of F if and only if S is a watershed-cut ofF .

As an illustration of Th. 6, it can be verified that the set of
dashed edges in Fig. 2b is both a watershed-cut and a basin-cut
of the depicted map.

III. M INIMUM SPANNING FORESTS AND WATERSHED

OPTIMALITY

In this section, we establish the optimality of watersheds.
To this end, we introduce the notion of minimum spanning
forests relative to subgraphs ofG. We will see that each of
these forests induces a unique graph cut. The main result of
this section (Th. 10) states that a graph cut is induced by a
minimum spanning forest relative to the minima of a map if
and only if it is a watershed of this map. In Sec. III-B, we
show that the problem of finding a relative minimum spanning
forest is equivalent to the classical problem of finding a minimum
spanning tree [35]–[37]. In fact, this provides a mean to derive,
from any minimum spanning tree algorithm, an algorithm for
relative minimum spanning forests, and thus also, for watersheds.

Intuitively, a forest relative to a subgraphX is an extensionY
of X such that any cycle (i.e., a simple path whose first and last
point are adjacent) inY is a cycle inX. Formally, the notion of
cycle is not necessary to define a forest.
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Fig. 3. A graphG and a mapF . The bold edges and vertices repre-
sent: (a), X a subgraph ofG; (b) and (c), two MSFs relative toX; their
induced cuts are represented by dashed edges.

Definition 7 (relative forest):Let X andY be two non-empty
subgraphs ofG. We say thatY is a forest relative toX if:

i) Y is an extension ofX; and
ii) for any extensionZ ⊆ Y of X, we haveZ = Y when-

everV (Z) = V (Y ).
We say thatY is a spanning forest relative toX (for G) if Y is
a forest relative toX and if V (Y ) = V .

Informally speaking, condition ii) imposes that, ifY is a forest,
then we cannot remove any edge fromY without affecting its
vertex set.

For example, the subgraph depicted in bold in Fig. 1d is a
spanning forest relative to the subgraph in Fig. 1a.

Thanks to relative forests, the usual notion of a tree and of a
forest can be defined as follows.

Let X ⊆ G. We say thatX is a tree (resp. aspanning tree)
if X is a forest (resp. spanning forest) relative to the subgraph
({x}, ∅), x being any vertex ofX. We say thatX is a forest
(resp. aspanning forest) if X is a forest (resp. a spanning forest)
relative to(S, ∅), S being a subset ofV (X).

Let X be a subgraph ofG, the weight ofX (for F ), de-
noted by F (X), is the sum of its edge weights:F (X) =
P

u∈E(X) F (u).
Definition 8 (relative minimum spanning forest):LetX andY

be two subgraphs ofG. We say that Y is a minimum spanning
forest (MSF) relative toX (for F , in G) if Y is a spanning forest
relative toX and if the weight ofY is less than or equal to the
weight of any other spanning forest relative toX. In this case,
we also say thatY is a relative MSF.

Let us consider the graphG depicted in Fig. 3 and the
subgraphX depicted in bold in Fig. 3a. The graphsY and Z
(bold edges and vertices) in Figs. 3b and c are two MSFs relative
to X.

A. Relative MSFs and watersheds

We now have the mathematical tools to present the main
result of this section (Th. 10) which establishes the optimality
of watersheds. It shows the equivalence between the cuts which
satisfy the drop of water principle and those induced by the MSFs
relative to the minima of a map.

We start by the following lemma which gives, thanks to Th. 6,
a first intuition of Th. 10.

Lemma 9:Let X be a spanning forest relative toM(F ). The
graphX is an MSF relative toM(F ) if and only if, for anyx
in V , there exists a path inX from x to M(F ) which is a path
of steepest descent forF .

Let X be a subgraph ofG and let Y be a spanning forest
relative toX. There exists a unique cutS for Y . It is composed by
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all edges ofG whose extremities are in two distinct components
of Y . SinceY is an extension ofX, it can be seen that this unique
cut S is also a cut forX (see, for instance, Fig. 1d). We say that
this unique cut is thecut induced byY . Furthermore, ifY is an
MSF relative toX, we say thatS is anMSF-cut forX.

For instance, in Fig. 3b,c, the set of dashed edges are MSF-cuts
for the subgraph shown in bold in Fig. 3a.

Theorem 10 (optimality):Let S ⊆ E. The setS is an MSF-cut
for M(F ) if and only if S is a watershed cut ofF .

As far as we know, this is the first result which establishes
watershed optimality in graphs. As an illustration, the previous
theorem can be verified on Fig. 2b,d where the set of dashed edges
is both a watershed-cut of the depicted map and an MSF-cut for
its minima.

B. Relative MSFs and minimum spanning trees

The minimum spanning tree problem is one of the most
typical and well-known problems of combinatorial optimization
(see [35]–[38]). It has been applied for many years in image
analysis [39]. We show that the minimum spanning tree problem
is equivalent to the problem of finding an MSF relative to a
subgraph ofG.

Let X ⊆ G. The graphX is a minimum spanning tree (forF ,
in G) if X is an MSF relative to the subgraph({x}, ∅), x being
any vertex ofX.

Notice that the notion of a minimum spanning tree presented
above corresponds exactly to the usual one.

In order to recover the link between flooding algorithms and
minimum spanning trees, in [19], F. Meyer proposed a construc-
tion to show the equivalence between finding an MSF rooted in
a set of vertices and finding a minimum spanning tree. Here,
we extend this construction for proving the equivalence between
finding a minimum spanning tree and an MSF relative to a
subgraph ofG. Let us consider, in a first time, a graphX ⊆ G

such thatE(X) = ∅, i.e., a graph composed of isolated vertices.
From G andX, we can construct a new graphG′ = (V ′, E′)

which contains an additional vertexz (i.e., z /∈ V ) linked by an
edge to each vertex ofX. In other words,V ′ = V ∪{z} andE′ =

E ∪ Ez, whereEz = {{x, z} | x ∈ V (X)}. Let us consider the
mapF ′ from E′ to Z such that, for anyu ∈ E, F ′(u) = F (u) and
for any u ∈ Ez, F ′(u) = kmin − 1, kmin being the minimum value
of F . Let Y be any subgraph ofG and letY ′ be the graph whose
vertex and edge sets are respectivelyV (Y )∪{z} andE(Y )∪Ez.
It may be seen thatY ′ is a minimum spanning tree forF ′ in G′

if and only if Y is an MSF relative toX for F in G.
The construction presented above can be easily generalizedto

any subgraphX of G. To this end, in a preliminary step, each
component ofX must be contracted into a single vertex and, if
two vertices of the contracted graphs must be linked by multiple
edges, only the one with minimal value is kept.

A direct consequence of the construction presented above is
that any minimum spanning tree algorithm can be used to compute
a relative MSF. Many efficient algorithms (see [37]) exist inthe
literature for solving the minimum spanning tree problem.

IV. STREAMS AND LINEAR-TIME WATERSHED ALGORITHM

As seen in the previous section, MSFs relative to subgraphs
of G, and by the way watershed-cuts, can be computed by
any minimum spanning tree algorithm. The best complexity for
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Fig. 4. A graphG and a mapF assigned to the edges ofG. The bold
graphs superimposed are the minima ofF ; (b), the values of the mapF⊖

are associated to the vertices ofG; (c): a flow mappingψ of F is depicted;
the index of the top-left (resp top-right and bottom-left) minima is 1 (resp. 2
and 3); the set of dashed edges is the flow-cut ofF associated withψ.

solving this problem is reached by the quasi-linear algorithm
of Chazelle [40]. In this section, we introduce a linear-time
watershed algorithm. Contrarily to many watershed algorithms
available in the literature (see [5], [6], [11], [12], [17],[25]), the
proposed algorithm does not require any sorting step, nor the use
of a sophisticated data structure such as a hierarchical queue or
a representation to maintain unions of disjoint sets. Whatever the
range of the considered map, it runs in linear time with respect to
the size of the input graph. Furthermore, this algorithm does not
need to compute the minima of the map in a preliminary step. To
the best of our knowledge, this is the first watershed algorithm
with such properties.

In the first part of the section, the mathematical tools whichare
used to prove the correctness of the proposed algorithm are in-
troduced. In particular, we propose a new notion of stream which
is crucial to this paradigm. Then, the algorithm is presented, and
both its correctness and complexity are analyzed.

Definition 11 (stream):Let L ⊆ V . We say thatL is a stream
if, for any two pointsx and y of L, there exists, inL, either a
path fromx to y or from y to x, of steepest descent forF .
Let L be a stream and letx ∈ L. We say that x is a top (resp.
bottom) ofL if the altitude ofx is greater than (resp. less than)
or equal to the altitude of anyy ∈ L.

Remark that ifL is a stream andx is a bottom (resp. a top)
of L, then, from anyy ∈ L to x (resp. fromx to anyy ∈ L), there
is a path inL, of steepest descent forF . Notice that, whatever
the streamL, there exists a top (resp. bottom) ofL. Nevertheless,
this top (resp. bottom) is not necessarily unique.

In order to illustrate the previous definitions, let us assume that
G andF are the graph and the function depicted in Fig. 4a. The
setsL = {a, b, e, i} and {j,m, n} are two examples of streams.
On the contrary, the setL′ = {i, j, k} is not a stream since there
is no path inL′, betweeni andk, of steepest descent forF . The
sets{a, b} and {i} are respectively the set of bottoms and tops
of L.

The algorithm which will be proposed in this section is based
on the iterative extraction of streams. In order to build such a
procedure, we study stream concatenation.

Let L1 andL2 be two disjoint streams (i.e.,L1 ∩L2 = ∅) and
let L = L1 ∪ L2. We say thatL1 is underL2, writtenL1 ≺ L2,
if there exist a topx of L1, a bottomy of L2, and there is, fromy
to x, a path inL of steepest descent forF . Note that, ifL1 ≺ L2,
thenL is also a stream.
We say that a streamL is aninf-stream, written≺-stream,if there
is no stream underL.

In Fig. 4a the stream{a, b, e, i} is under the stream{j,m, n}
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and thus{a, b, e, i, j,m, n} is also a stream. Furthermore, there
is no stream under{a, b, e, i} and{a, b, e, i, j,m, n}. Thus, these
are two≺-streams.

The streams extracted by our algorithm are all≺-streams. As
said in the introduction, this algorithm does not require minima
precomputation. In fact, there is a deep link between≺-streams
and minima as assessed by the following property which follows
directly from the definitions of a minimum and of an≺-stream.

Property 12: LetL be a stream. The three following statements
are equivalent:
(1) L is an≺-stream;
(2) L contains the vertex set of a minimum ofF ; and
(3) for any y ∈ V \ L adjacent to a bottomx of L, F ({x, y}) >

F⊖(x).
In Fig. 4a, the two≺-streams{a, b, e, i} and{a, b, e, i, j,m,n}

contain the set{a, b} which is the vertex set of a minimum ofF .
Remark that any streamL which contains an≺-stream is itself
an ≺-stream. We also notice that ifL is an≺-stream, then the
set of all bottoms ofL constitutes the vertex set of a minimum of
F . Furthermore, a subsetL of V is the vertex set of a minimum
of F if and only if it is an≺-stream minimal for the inclusion
relationship,i.e., no proper subset ofL is an≺-stream.

In order to partition the vertex set ofG, from the≺-streams
of F , the vertices of the graph can be arranged in the following
manner.

Let L be a set ofn ≺-streams. We say thatL is a flow family
if:

i) ∪{L | L ∈ L} = V ; and
ii) for any two distinctL1 andL2 in L, if L1 ∩ L2 6= ∅, then

there exists a unique minimum ofF whose vertex set is
included inL1 ∩ L2.

For instance, in Fig. 4, the family composed of the
sets{a, b, e, f, j}, {a, b, e, i,m, n}, {c, d, g, h} and {k, l, o, p} is
a flow family.

Let L be a flow family, letx ∈ V and letL1, . . . Lℓ be the
elements ofL which containx. Since the elements ofL are≺-
streams, by Prop. 12, anyLi (with i ∈ [1, ℓ]) contains the vertex
set of exactly one minimumMi of F . By definition of a flow
family, we deduce that, for anyi andj in [1, ℓ], Mi = Mj . Thus,
thanks toL, we can associate to each vertexx of G a unique
minimum of F .

Definition 13 (flow-cut):Let L be a flow family. Let us denote
by M1, . . . ,Mn the minima ofF . Let ψ be the map fromV
to [1, n] which associates to each vertexx of V , the index (or
label) i such thatMi is the unique minimum ofF included in an
≺-stream ofL which containsx; we say thatψ a flow mapping
of F .
If ψ is a flow mapping ofF , we say that the setS = {{x, y} ∈

E | ψ(x) 6= ψ(y)} is a flow-cut ofF .
Fig. 4c shows the flow mapping associated to the flow family

presented above. The dashed edges represent the flow-cut induced
by this flow mapping.

The next proposed algorithm produces a flow mapping, hence
a flow-cut. The following theorem, which is a straightforward
consequence of the definitions of flow families and basin-cuts
and of the consistency theorem, states the equivalence between
flow-cuts and watersheds. It constitutes the main tool to establish
the correctness of Algo. 1.

Theorem 14:Let S ⊆ E. The setS is a watershed ofF if and
only if S is a flow-cut ofF .

As an illustration of this theorem, it may be verified that theflow-
cut depicted in Fig. 4c is a watershed-cut and that the watershed-
cut of Fig. 2b is flow-cut.

We now present Algo. 1 which computes a flow mapping,
hence, by Th. 14, a watershed. Algo. 1 makes use of the function
Stream introduced hereafter.

Algorithm 1 : Watershed

Data: (V,E, F ): an edge-weighted graph;
Result: ψ: a flow mapping ofF .
foreach x ∈ V do ψ(x)← NO LABEL;1

nb labs← 0; // the number of minima already found2

foreach x ∈ V such thatψ(x) = NO LABEL do3

[L, lab]← Stream(V,E, F, ψ, x) ;4

if lab = −1 then /* L is an ≺-stream */5

nb labs+ + ;6

foreach y ∈ L do ψ(y)← nb labs;7

else8

foreach y ∈ L do ψ(y)← lab;9

Function Stream( V , E, F , ψ, x)

Data: (V,E, F ): an edge-weighted graph;ψ: a labeling
of V ; x: a point inV .

Result: [L, lab] whereL is a stream such thatx is a top
of L, and lab is either the label of an
≺-stream underL, or −1.

L← {x} ;1

L′ ← {x} ; // the set of non-explored bottoms of L2

while there existsy ∈ L′ do3

L′ ← L′ \ {y};4

breadth first← TRUE ;5

while (breadth first) and (there exists{y, z} ∈ E6

such thatz /∈ L and F ({y, z}) = F⊖(y)) do
if ψ(z) 6= NO LABEL then7

/* there is an ≺-stream under L already8

labelled */
return [L, ψ(z)] ;9

else ifF⊖(z) < F⊖(y) then10

L← L ∪ {z} ; /* z is now the only bottom11

of L */
L′ ← {z} ; /* hence, switch to depth-first12

exploration */
breadth first← FALSE ;13

else14

L← L ∪ {z} ; /* F⊖(z) = F⊖(y), thus z is15

also a bottom of L */
L′ ← L′ ∪ {z} ; /* continue breadth-first16

exploration */

return [L,−1] ;17

The algorithm iteratively assigns a label to each point of the
graph. To this end, from each non-labeled pointx, a streamL
composed of non-labeled points and whose top isx is computed
(line 4). If L is an≺-stream (line 5), a new label is assigned to
the points ofL. Otherwise (line 8), there exists an≺-streamL1

underL and which is already labeled. In this case, the points ofL
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receive the label ofL1 (line 9). The function Stream, called at
line 4, allows us to compute the streamL. Roughly speaking, it
performs an intermixed sequence of depth-first and breadth-first
exploration of the paths of steepest descent. The main invariants
of the function Stream are:i), the setL is, at each iteration, a
stream; andii), the setL′ is made of all non-already explored
bottoms ofL. The function halts at line 17 when all bottoms of
L have been explored or, at line 9, if a pointz already labeled is
found. In the former case, by Prop. 12, the returned setL is an
≺-stream. In the latter case, the labellab of z is also returned and
there exists a bottomy of L such that〈y, z〉 is a path of steepest
descent. Thus, there is an≺-streamL1, underL, included in
the set of all vertices labeledlab. By the preceding remarks, the
output of Algo. 1 is a flow mapping ofF .

Let us now analyze the complexity of Algo. 1. In order to
prove its linearity (with respect to|E|), we are going to show
that the bottleneck of Algo. 1, which consists of the tests inthe
While loop (line 3) of function Stream, is executed at mostO(|E|)

times. Firstly, it is easily seen that, at a each step of Stream, any
point y which belongs toL is such thatψ(y) = NO LABEL.
Furthermore, it may be also noticed (lines 1, 2 and 10, 11 and 14,
15) that any point inL′ also belongs toL. In Stream the points
are never removed fromL. Thus, since to be inserted inL′ a point
z must not be an element ofL (testz /∈ L line 3 of Stream), we
deduce that any pointz is inserted at most once inL′. Therefore,
the While loop (line 3 of Stream) is executed at most once for
each pointy in L′ (sincey is removed fromL′ just before the
execution of the loop). In this loop a set of tests is performed for
each neighbor ofy. Since the points ofL receive a label (line 7 or
9 in Algo. 1) just after the termination of Stream and since Stream
only considers non-labeled points, we deduce that the testsin the
While loop (line 3 of Stream) are executed at most once for each
point of the graph. Thus, an edge being composed of exactly two
points, these tests are executed at most2×|E| times. Furthermore,
in order to perform the canonical operations of Algo. 1 in constant
time and thus to achieve a linear complexity, the graph(V,E) can
be stored as an array of lists which maps to each point the list
of all its adjacent vertices (or equivalently the list of alledges
which contain this point). Notice that, for applications toimage
processing, and when usual adjacency relations are used, these
structures do not need to be explicit. From the preceding remarks,
we can deduce the following property.

Property 15: Algorithm 1 outputs a mapψ which is a flow
mapping ofF . Furthermore, Algorithm 1 runs in linear-time with
respect to|E|.

Remark that, in function Stream, the use of breadth-first iter-
ations is required to ensure that the produced setL is always
an≺-stream. Otherwise, if only depth-first iterations were used,
Stream could be stuck on plateaus (i.e., connected subgraphs ofG
with constant altitude) since some bottoms ofL would never be
explored.

Let us note that the two setsL and L′ can be efficiently
managed by stack, which is a simple and efficient data structure.
As far as we know, the watershed algorithms available in the
literature (e.g., [5], [6], [11], [12], [17], [25]) all require either a
sorting step, a hierarchical queue or a data structure to maintain
a collection of disjoint sets under the operation of union. On
the one hand, the global complexities of a sorting step and of
a (monotone) hierarchical queue (i.e., a structure from which
the elements can be removed in the order of their altitude) are

equivalent [41]: they both run in linear-time only if the range
of the weights is sufficiently small. On the other hand, the
best complexity for the disjoint set problem is quasi-linear [42].
Therefore, we emphasize that, to the best of our knowledge, the
proposed algorithm (together with the algorithm introduced in
[43]) is the first watershed algorithm that runs in linear-time
whatever the range of the weight map.

In practice, Algorithm 1 is as fast as a minima computation
algorithm. Each catchment basin is associated to a minimum of
the original map. For practical applications, one does not always
need a basin for each minimum of the image. The following
section illustrates how to apply the watershed cuts to image
segmentation.

V. I LLUSTRATIONS IN IMAGE SEGMENTATION

In order to illustrate the notions introduced in this paper,
we present two segmentation schemes based on watersheds and
relative MSFs. After having described (Sec. V-A) how to set
up the edge-weighted graph, in Sec. V-B, we derive, from the
classical framework of mathematical morphology, a segmentation
scheme that permits to automatically segment an image into a
predefined number of regions. It consists of the three following
steps:(i), computation of a function that assigns a weight to
the edges of the 4-adjacency graph associated to the image;(ii),
filtering of this weight function in order to reduce the number
of minima; and(iii) computation of a watershed of the filtered
weight function. The second illustration (Sec. V-C) presents some
results of relative MSF, used as a semi-automatic segmentation
tool.

A. Graph setup

Even if watersheds are sometimes applied on region adjacency
graphs [19], we focus, in this paper, on watershed methods based
on pixel adjacency graphs (i.e., graphs whose vertices are the
image pixels). Therefore, we assume that the setV is the domain
of a 2-dimensional image, more precisely, of a rectangular subset
of Z

2. A grayscale imageI is a map from the set of pixelsV to
a subset of the positive integers. For anyx ∈ V , the valueI(x)
is the intensity at pixelx. In order to define a graph over the
set of pixels, we consider the 4-adjacency relation [29] defined
by: ∀x, y ∈ V , {x, y} ∈ E iff |x1−y1|+ |x2−y2| = 1, wherex =

(x1, x2) and y = (y1, y2). Note that, instead of the 4-adjacency,
any other adjacency relation could be used since our work is
settled in general graphs. Then, before extracting a watershed-cut
from this graph, a mapF , which weights the edges ofG = (V,E),
must be defined. Depending on the application, there are several
possibilities to set up the mapF .

Let us first consider the “classical” watershed problem, where
we want to segment dark regions that are separated by brighter
zones (see, for instance, Fig. 5a). In this case, the watershed-cuts
can be used, as well as any watershed algorithm settled in vertex-
weighted graphs. To this end, the value ofF can be defined for
each edgeu ∈ E, linking two pixelsx andy, by the minimum (or
maximum) value of the intensities at pointsx andy: F ({x, y}) =

min{I(x), I(y)}. Fig. 5 illustrates this procedure and also presents
the result of a watershed algorithm applied in the vertex-weighted
graph associated to the image. It can be observed (see in partiular
Fig. 5e and f) that, for this “classical” problem, similar results are
obtained in both frameworks of edge-weighted graphs and vertex-
weighted graphs.
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(a) (b) (c)

(d) (e) (f)

Fig. 5. (a): Original image (microscopic view of a cross-section of a uranium
oxyde ceramics);(b): a watershed (white pixel) of(a) considered as a vertex-
weighted graph;(c): a watershed-cut of the mapF derived from (a) as
described in Sec. V-A;(d), a filtration of the original image(a) where the
new image is obtained by eliminating the minima whose dynamics [44], [45]
is below 25;(e, f): same as(b, c) starting from(d).

Another common issue is to segment a grayscale image into its
“homogeneous” zones. To solve this problem in the conventional
framework of watersheds, an imageI ′ which has low values in
homogeneous zones and high values at the interfaces between
the homogeneous zones must be considered. Then, a watershed
is extracted from this imageI ′ leading to a segmentation into the
homogeneous parts forI. In general,I ′ is chosen as the gradient
magnitude of the original imageI. Computing such a gradient
magnitude image is not straightforward and several solutions exist
(e.g., the Sobel filter [46], the Deriche’s optimal edge detector
[47] and the morphological gradient [48]). In the frameworkof
edge-weighted graphs, a straightforward gradient function can be
used in order to weight the edges ofG. In the following, we
consider the mapF , from E to Z, defined for any{x, y} ∈ E

by F ({x, y}) = |I(x)− I(y)|. For instance, in Fig. 6b, we show
an image representation of the mapF derived from the imageI
of Fig. 6a. In the two next sections, we show that this gradient
function on the edges leads to satisfactory segmentation results.
However, more elaborated formulations (taking into account, for
instance, a regularization term) could also be used to definethe
cost functionF (see [49] or an adaptation of [47]). Furthermore,
there also exist, in the literature (e.g., [22]), some formulations
to defineF from multi-channel images, such as color images.

(a) (b)

Fig. 6. (a), The cameraman grayscale image and(b), an image representation
of the edge-weighted graph derived from(a) as described in Sec. V-A.

The position of the contours produced by watersheds on the
plateaus is the subject of many discussions [8], [33], [50].An

usual choice is to place the divide in the “middle” of the plateau.
This choice is not always the best one [8], for example it is not
adapted for hierarchical schemes [51]. Observe that Algorithm 1
does not include a control of the location of watersheds on
plateaus. Such a control can be obtained through a (linear-time)
preprocessing [33]; however, note that it is not always needed.
For example, in the sequel, we present the result of the algorithm
directly on the data, without any preprocessing dedicated to
plateaus. In [43], [52], we propose some other algorithms that
introduce more flexibility in treatment of plateaus.

B. Segmentation intok regions

In this section, we illustrate the use of watershed-cuts to
segment an image into its homogeneous zones. To this end,
we consider the cameraman image presented Fig. 6a and adapt
a classical scheme of morphological segmentation. Indeed,a
watershed of the mapF defined above, would contain too many
catchment basins. Over-segmentation is a well known feature
of all grayscale watersheds due to the huge number of local
minima. In order to suppress many of the non-significant minima,
a classical approach consists of computing morphological closing
of the function [53], [54]. In particular, attribute filters[55] (area,
dynamic, volume) have shown to be successful tools. For this
illustration, we adapt a classical attribute filter to the case of edge-
weighted graphs.

The intuitive idea of this filter is to progressively “fill in”the
minima of the mapF that are not “important enough”. To make
such an idea practicable, it is necessary to quantify the relative
importance of a minimum. To this end, let us define thearea
of a subgraph ofG (e.g., a minimum ofF ) as the number of
its vertices. In order to “fill in” a less significant minimumM
of F (according to its area), we consider the transformation that
consists of increasing by one the altitude of any edge ofM .
A common issue in image analysis is to segment an image
into k regions (wherek is a predefined number). To reach this
goal thanks to watershed-cuts, we need a weight function which
contains exactlyk minima. The mapF is thus filtered by iterating
the above transformation untilF containsk minima (see [56] for
an efficient implementation).

In Figs. 7a,b, we present the results which have been obtained
on the cameraman image. Here,k is set to 22. In order to
evaluate this result, we also use a similar approach settled
in the framework of vertex-weighted graph. More precisely,it
consists of:(i), computation of a gradient magnitude image: either
the Deriche’s optimal edge detector [47] in Figs. 7c,d or the
morphological gradient (see, for instance, chapter 3.10.1in [48])
in Figs. 7e,f;(ii), area filtering (k = 22) of the gradient; followed
by (iii), computation of a watershed by flooding (without dividing
line, see [6] or [26]) of the filtered function. Observe, in particular,
the quality of the delineation of the man’s face in(b) compared
to (d) and (f).

C. Image segmentation from markers

Another classical procedure in mathematical morphology con-
sists in selecting (either manually or with an automated process)
some markers corresponding to objects that have to be segmented.
These markers are indeed some vertices of the underlying graph.
Let M be this set of vertices. From the setM the subgraph
M+ whose vertex set isM and whose edge set is made of the
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(a) (c) (e)

(b) (d) (f)

Fig. 7. Results obtained by applying a grayscale watershed on a filtered
map [see text].(a, b) A watershed-cut (k = 22) superimposed in white to
the original imageI; (c, d) a watershed by flooding of the filtered (k = 22)
Deriche optimal edge detector; and(e, f) a watershed by flooding of a filtered
(k = 22) morphological gradient. In each image, the image resolution is
doubled in order to superimpose the resulting contours.

edges ofG which have their extremities inM , (i.e., M+ =

(M, {{x, y} ∈ E with x ∈ M, y ∈ M})) is extracted. Then,
an MSF relative toM+ is computed. Here, we use a Prim-like
minimum spanning tree algorithm [36]. We note that it is possible
to efficiently compute minimum spanning trees by an algorithm
which consists of a succession of watersheds [57]. Such an algo-
rithm could be also used to produce relative MSFs. Alternatively,
we also could have used a process suggested by [19], that consists
in computing a watershed-cut with Algorithm 1, followed by a
region-merging scheme on the neighborood graph of the basins;
such a process is very efficient and very fast, as it works on a
minimum spanning tree of the original cost function [50].

Such an interactive segmentation procedure is illustratedin
Figs. 8. For comparison purpose, we also compute the watershed
by flooding from markers [6] of the gradient magnitude (the
Deriche’s optimal edge detector [47] in Fig. 8d and morphological
gradient in Fig. 8e). We can observe the quality of the delineation
in 8c, compared to(d) and (e). See, in particular, the behavior
of our approach in low contrasted zones and in the thin parts of
the apple.

CONCLUSION

In this paper, we introduce the watershed-cuts, a notion of
watershed in edge-weighted graphs. We prove the consistency
and optimality of the watershed-cuts:

• they can be equivalently defined by a steepest descent
property on the catchment basins (regions) and by the drop
of water principle on the cut (border) which separates them;

• they are equivalent to the separations induced by minimum
spanning forests relative to the regional minima.

Then, we propose a linear-time algorithm to compute the
watershed-cuts. As far as we know, the proposed algorithm is
the most efficient existing watershed algorithm both in theory
and practice. Finally, we illustrate the use of watershed-cuts
for application to image segmentation and show that, in the
considered cases, they are able to improve the quality of the
delineation in watershed-based segmentation procedures.

In [43], [52], we introduce a new thinning transformation which
equivalently defines the watershed-cuts. On the one hand, this

transform permits to introduce flexible sequential algorithms (e.g.,
for centering the watershed-cuts on plateaus or for watershed-
cuts from markers) and opens the way towards efficient parallel
watershed strategies. On the other hand, thanks to this new trans-
form, we are able to study the similarities and differences between
watershed-cuts and other popular segmentation paradigms such as
the Image-Foresting-Transform [25], the fuzzy-connectedimage
segmentation method [21] or the topological watershed [16]. An
important result of this study is that any watershed-cut is a
topological-cut (i.e., a separation obtained by a topological wa-
tershed defined in an edge-weighted graph). Thus, the watershed-
cuts inherit the properties proved for topological watersheds.
In particular, they “preserve the connection value”, whichis a
fundamental property for many hierarchical methods based on
watersheds [51], [58], [59].
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APPENDIX I
PROOFS

This appendix section provides the proofs of the properties
given in this article.

A. Proof of Sec. II

The following lemma is a direct consequence of the definition
of a minimum.

Lemma 16:Let P ⊆ V, P 6= ∅. If there is no vertex ofM(F )

in P , then there exists an edgeu = {x, y} of G such thatx ∈
P , y ∈ V \ P , andF (u) is less than or equal to the altitude of
any vertex inP .

Proof: [of Th. 6] To prove the theorem, we first show that
if S is a basin-cut ofF , then S is necessarily a watershed-cut
of F . Afterward, we prove that ifS is not a basin-cut ofF ,
thenS is not a watershed-cut ofF . This will complete the proof.
(i) Suppose thatS is a basin-cut ofF . Let u = {x0, y0} be
any edge inS. There existsπ1 = 〈x0, . . . , xℓ〉 (resp. π2 =

〈y0, . . . , ym〉) a path of steepest descent fromx0 (resp. y0)
to M(F ). By definition of a cut,x0 and y0 are in two dis-
tinct connected components ofS. Thus, sinceS is an ex-
tension of M(F ), xℓ and xm are necessarily in two dis-
tinct minima of F . Whenever π1 (resp. π2) is not trivial,
by definition of a path of steepest descent,F ({x0, x1}) =

F⊖(x0) (resp.F ({y0, y1}) = F⊖(y0)). Hence,F ({x0, x1}) ≤

F ({x0, y0}) (resp.F ({y0, y1}) ≤ F ({x0, y0})). Hence, since by
definitionS is an extension ofM(F ), S is a watershed-cut ofF .
(ii) Suppose now thatS is not a basin-cut ofF . If S is not an
extension ofM(F ), S is not a watershed ofF . Suppose now
thatS is an extension ofM(F ). Thus, there exists a pointx ∈ V
such that there is no path of steepest descent inS from x to
M(F ) (otherwiseS would be a basin-cut ofS). Let P be the set

of all points ofG that can be reached fromx by a path of steepest
descent inS. By hypothesis, none of the points inP is a vertex
of M(F ). We denote byT the set of all edges with minimal
altitude among the edges{y, z} such thaty ∈ P , z ∈ V \ P .
Let v = {y, z} ∈ T such thaty ∈ P . Since none of the
vertices ofP is a vertex ofM(F ), from Lem. 16, we can deduce
that F⊖(y) = F ({y, z}). Thus, there is, fromx to z, a path
in G, of steepest descent forF . Since z is not in P , there is
no such path inS. Thus, v ∈ S and T ⊆ S. Again, let us
consider v = {y, z} ∈ T . Let π = 〈y0 = y, . . . , yℓ〉 be any
descending path inS from y to M(F ). If such a path does
not exist, thenS is not a watershed: the proof is done. Suppose
now that such a path exists. There existsk ∈ [1, ℓ] such that
yk−1 ∈ P and yk ∈ V \ P . Since any edge inT is in S and
since{yk−1, yk} is in S, F ({yk−1, yk}) > F (v). Thus, asπ is
descending,F ({y0, y1}) > F (v). Thus, the edgev, which belongs
to S, does not satisfy the condition for the edges in a watershed:S

is not a watershed.

B. Proofs of Sec. III

Before proving the properties of Sec. III, let us state the
following propositions whose proofs are elementary.

Thanks to the construction presented in Sec. III-B, we can
derive, from classical properties of trees, the following properties.

LetX ⊆ G, u ∈ E(X). We writeX\u for (V (X), E(X)\{u}).
Let v ∈ E\E(X). We writeX∪v for the graph(V (X)∪v,E(X)∪

{v}).
Lemma 17:LetX be a subgraph ofG and letY be a spanning

forest relative toX. If for any u ∈ E(Y ) \ E(X) and v ∈ E \
E(Y ) such that(Y \u)∪ v is a spanning forest relative toX, we
haveF (u) ≤ F (v), thenY is an MSF relative toX.

Lemma 18:Let X be a subgraph ofG and Y be a spanning
forest relative toX. If u = {x, y} ∈ E(Y ) \ E(X), then there
exists a unique component ofY \ u which does not contain a
component ofX. Furthermore, eitherx or y is a vertex of this
component.
Let π = 〈x0, . . . , xℓ〉 be a path inG. We say thatπ is a simple
path if for any two distincti andj in [0, ℓ], xi 6= xj . We say thatπ
is anM-path (for F ) if π is a simple path, if xℓ is a vertex of
M(F ) and if none ofx0, . . . , xℓ−1 is a vertex ofM(F ). Remark
that anM-path does not contain any edge ofM(F ). Furthermore,
it may be seen that ifY is a forest relativeM(F ), there exists a
uniqueM-path from each vertex ofY .

Proof: [of Lem. 9] (i) Suppose that there existsx0, a vertex
of X such that there is no path fromx0 to M(F ), of steepest
descent forF . We are going to prove thatX is not an MSF
relative toM(F ). Let π = 〈x0, . . . , xℓ〉 be the uniqueM-path
from x0 in X. Let i ∈ [0, ℓ − 1] be such that〈x0, . . . , xi〉 is a
path of steepest descent forF and such that〈x0, . . . , xi+1〉 is
not. We have:F⊖(xi) < F ({xi, xi+1}). Let Z = X \{xi, xi+1}.
Since{xi, xi+1} is not an edge ofM(F ), from Lem. 18, there
exists a unique connected component ofZ, denoted byC, which
does not contain a minimum ofF . Furthermore, the vertex set
of C does not contain any vertex ofM(F ). Sinceπ is anM-
path , hence a simple path,〈xi+1, . . . , xℓ〉 is a path inZ andxℓ

is a vertex ofM(F ). Thus,xi is a vertex ofC. From Lem. 16,
we deduce that there existsv = {y, z} ∈ E such thaty is a
vertex ofC whereasz is not andF (v) ≤ F⊖(xi). Thus,F (v) <

F ({xi, xi+1}). By definition, we haveV (Z) = V (X) = V .
Hence, it may be seen thatZ ∪ v is a spanning forest relative
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to M(F ) whose weight is strictly less than the weight ofX.
Thus,X is not an MSF relative toM(F ).
(ii) Suppose thatX is not an MSF relative toM(F ). We are
going to prove that there existsx ∈ V such that there is no path
of steepest descent inX from x to M(F ). By the converse of
Lem. 17, there existsu ∈ E(X) \ E(M(F )) and v ∈ E \ E(X)

such that(X \ u) ∪ v is a spanning forest relative toM(F )

and F (v) < F (u). Let X′ = X \ u. By Lem. 18, there exists
a unique connected component ofX′, denoted byC, which does
not contain any minimum ofF . SinceX′ ∪ v is an extension
of M(F ), there exists a unique vertexx in v which is a vertex
of C. As x ∈ v, F⊖(x) ≤ F (v). Thus,F (v) < F (u) implies
F⊖(x) < F⊖(u). Let π be the uniqueM-path inX from x

to M(F ). SinceC does not contain any minimum ofF , we
deduce thatπ passes throughu but F⊖(x) < F⊖(u). Hence,π
is not a path of steepest descent forF .

The following lemmas will be used in the proof of Th. 10.
Lemma 19:Let S ⊆ E be a watershed ofF and Y ⊆ S be

a forest relative toM(F ). If V (Y ) 6= V , then there exists an
edge{x, y} in S outgoing fromY such that either〈x, y〉 or 〈y, x〉
is a path of steepest descent forF . Furthermore,Y ∪ {x, y} is a
forest relative toM(F ).

Proof: Since V (Y ) 6= V , there existsx0 ∈ V \ V (Y ).
SinceS is a watershed, by Th. 6, there exists, fromx0 to M(F ),
a path π = 〈x0, . . . , xℓ〉 in S of steepest descent forF .
SinceM(F ) ⊆ Y , there existsi ∈ [0, ℓ − 1] such thatxi /∈

V (Y ) and xi+1 ∈ V (Y ). Thus,{xi, xi+1} is outgoing fromY .
Furthermore, by the very definition of a path of steepest descent
for F , 〈xi, xi+1〉 is a path of steepest descent forF .
Sincexi /∈ V (Y ), any cycle inY ∪ {xi, xi+1} is also a cycle
in Y . Thus, by the very definition of a forest, it may be seen that
Y ∪ {xi, xi+1} is a forest relative toY , hence a forest relative
to M(F ).

The following lemma follows straightforwardly from the defi-
nition of a path of steepest descent.

Lemma 20:If 〈x0, . . . , xℓ〉 and 〈xℓ, . . . , xm〉 are two paths of
steepest descent forF , thenπ = 〈x0, . . . , xm〉 is a path of steepest
descent forF .

Proof: [of Th. 10] (i) If S is a cut induced by an MSF
relative toM(F ), then, by Lem. 9, there exists a path of steepest
descent inS from each point inV to M(F ). Hence, by Th. 6,S
is a watershed ofF .
(ii) Suppose thatS is a watershed ofF . Let us consider a
sequence of graphsX0, . . . ,Xk such that:
- X0 = M(F );
- Xi+1 = Xi ∪ {xi, yi} where{xi, yi} is an edge ofS outgoing
from Xi such that〈xi, yi〉 is a path of steepest descent forF ;
- Xk is such that there is no edge{xk, yk} of S outgoing fromXk

such that〈xk, yk〉 is a path of steepest descent forF .
By induction on Lem. 19,Xk is a forest relative toM(F ).
Furthermore, by the converse of Lem. 19,V (Xk) = V . Thus,Xk

is a spanning forest relative toM(F ). From Lem. 20, it can be
deduced by induction that for anyx ∈ V there exists, fromx
to M(F ), a path inXk of steepest descent forF . Hence, by
Lem. 9,Xk is an MSF relative toM(F ). Furthermore, sinceS
is a cut andXk ⊆ S, it may be seen thatS is the cut induced
by Xk .
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