N

N
N

HAL

open science

Topology-preserving thinning in 2-D pseudomanifolds

Nicolas Passat, Michel Couprie, Loic Mazo, Gilles Bertrand

» To cite this version:

Nicolas Passat, Michel Couprie, Loic Mazo, Gilles Bertrand. Topology-preserving thinning in 2-D
pseudomanifolds. Discrete Geometry for Computer Imagery (DGCI), 2009, Lyon, France. pp.217-

228, 10.1007/978-3-642-04397-0_ 19 . hal-00622408

HAL Id: hal-00622408
https://hal.science/hal-00622408
Submitted on 26 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00622408
https://hal.archives-ouvertes.fr

Topology-preserving thinning in 2-D pseudomanifolds

Nicolas Passé& Michel Coupri¢’, Loic Mazd&*?, Gilles Bertran®®

(a) Université de Strasbourg, LSIIT, UMR CNRS 7005, Stoasb, France
(b) Université Paris-Est, Laboratoire d’'Informatiquespard-Monge,
Equipe A3SI, ESIEE Paris, France
e-mail: {passat,loic.maz@unistra.fr{coupriem,bertrand @esieq.fr

Abstract. Preserving topological properties of objects during timgnproce-
dures is an important issue in the field of image analysisércase of 2-D digital
images (e.images defined of?) such procedures are usually based on the no-
tion of simple point. By opposition to the case of spaces giér dimensions.g.
Z", n > 3), it was proved in the 80's that the exclusive use of simpliets inz?
was indeed dficient to develop thinning procedures providing an outpat th
minimal with respect to the topological characteristicthaf object. Based on the
recently introduced notion ahinimal simple sefgeneralising the notion of sim-
ple point), we establish new properties related to topolpgserving thinning in
2-D spaces which extend, in particular, this classicalltésumore general spaces
(the 2-D pseudomanifolds) and objects (the 2-D cubical dexes).

Key words: Topology preservation, simple points, simpts saibical complexes,
collapse, confluence, pseudomanifolds.

1 Introduction

Topological properties are fundamental in many applicetiof image analysis, in par-
ticular in cases where the retrieval gadthe preservation of topology of real complex
structures is required. In this context, numerous metheds heen developed to pro-
cess discrete 2-D and 3-D binary images, essentially tmpargkeletonisation, homo-
topic thinning, or segmentation.

Such methods are generally based on the notiosirople point[8]. Intuitively, a
point (or pixel) of a discrete object is said to be simple if it can be removed frofm
without altering its topology.

Let us consider an objed, i.e. a set of points irZ", and a subseY of X called
constraint set. A very common topology-preserving thigngtheme [4] consists of
repeating the following steps until stability:

- choose (according to some given priority function) a peiirt X \ Y that is simple
for X;
- removex from X.

The result of such a procedure, called homotopic skeletok ofnstrained by, is a
subse® of X, which () is topologically equivalent tX, (ii) includesY and {ii) has no
simple point outside of. We show an illustration in Fig. 1, notice in particular thfae
constraint set is useful to preserve some geometrical cterstics of the object.
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Fig. 1. (a) An objectX (in white) and a subset of X (two pixels marked by black dots). (b) A
homotopic skeleton oK (empty constraint set). (c) A homotopic skeletornXofonstrained byr.

The following question is fundamental with regard to the dabur of sequential
thinning procedures:

(1) IsZ always a minimal result, in the sense that it does not sfriottlude a subset
Z’ having the same propertie3,((ii) and {ii)?

If we consider the 3-D case, the answer to this question is-apexample, ifX is a
cuboid andy = 0, then, depending on the order of the point removals, thetrésaf the
above procedure might not be composed of a single point. Aggmbout recently [11],
there exist various kinds of configurations in which a 3-Ddlogy-preserving thinning
algorithm can be “blocked” before reaching a minimal result

In the discrete plang&?, question (1) was answered positively by Ronse in the 80’s,
after a partial answer was given in the early 70’s by Rosenfel 1970, in the same
article where he introduced the notion of simple point [Fdsenfeld proved that any
finite subset o that is connected and has no holes, could be reduced to @ gioigit
by iterative removal of simple points, in any order. In 19B6nse introduced the notion
of strong deletability irz? [14]. It is, to the best of our knowledge, the first attempt to
generalise the notion of simple points to a more generabnaif simple sets.

According to Def. 2.5 of [14], and skipping formal detailssabsetS of X c 72
is strongly deletable from X (i) each connected component¥fncludes exactly one
connected component &\ S, and (i) each connected componentXf S includes
exactly one connected componendgfwhereX denotes the complementary Xf

In the same article, Ronse proposed several results ratagtcbngly deletable sets,
which can be summarised as follows.

Theorem 1 (From [14], Lem. 3.1, 3.2, Prop. 3.3} et X C Z? Let S C X.If S is
strongly deletable from X, then:

(i) there exists x S such that x is a simple point for X;
(i) for all x € S such that x is a simple point for X,\§x} is strongly deletable for
X\ {x}.

Consequently, i ¢ X ¢ Z? andY is topologically equivalent t&X (more precisely, if
X\Y is strongly deletable fronX), thenY may be obtained fronX by iterative removal
of simple points, in any arbitrary order.
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To summarise, question (1) received a positive answgt and a negative one If®
(and also for higher dimensions). Still, there are spacesiiich this question remained
open until now: the case of two-dimensional structures-dimensional spaces,> 3.
Such structures are often used in practieg.to represent thin objects or (parts of)
boundary of objects in 3-D image analysis and in finite elemsrdelling.

The main outcome of this article is a theorem (Th. 26) thaesta property analo-
gous to Th. 1, holding in a large family of 2-D digital spaceamely the pseudomani-
folds.

This study is developed in the framework of cubical compsepd, in which we
can retrieve and generalise the concepts of digital topolodZ". The definition of
simple sets that we use here is based on the operation opsella topology-preserving
transformation known in algebraic topology.

The proof of Th. 26 is based on a property of collapse, that aleacconfluence
property (Th. 21), which is introduced and proved in thiscéet

Th. 26 is also closely related to the notion of minimal simpét [11,13], as we
derive it using the following property: X is a strict subset of a pseudomanifold, then
any minimal simple subset &f is a simple point (Prop. 25).

Thanks to a correspondence between the notion of minimalisiset used here and
the one of simple point [7], we retrieve as particular cagd$o26 the results of Rosen-
feld and Ronse discussed before. However, the techniqua®of used in this article
are essentially diierent from the ones used by these authors, and the gentoalisé
their results is not trivial.

This article is self-contained, however some of the proafsot be included due to
space limitation (they can however be found in the followiegearch report [12]).

2 Background notions

In this section, we provide basic definitions and propentetated to the notions of
cubical complexes, collapse and simple sets (the last tves enabling to modify a
complex without altering its topology), see also [9, 13].

2.1 Cubical complexes

If T is a subset o5, we write T C S. LetZ be the set of integers. L&t ¢ € Z, we
denote byk, ¢]thesetlie Z |k <i < ¢}.

We consider the families of se®, F}, such thaffj = {{a} | a € Z} andF; =
{{a,a+ 1} | a € Z}. A subsetf of Z" (n > 2) that is the Cartesian productiwfelements
of F} andn — m elements off is called afaceor anm-faceof Z", mis thedimension
of f, we write dim(f) = m(see Fig. 2(a,b)).

Letn > 2, we denote b¥" the set composed of all faces#f.

An m-faceof Z" is called apointif m = 0, a(unit) edgef m = 1, a(unit) squareif
m=2.

Let f be a face irf". We setf = {g e F" | g C f}. Anyg € f is aface of f(or of f).

If Xis a set of faces df", we write X~ = | J;cx f, and we say thaX"~ is theclosure
of X.



A setX of faces off" is acell or anm-cellif there exists am-facef € X, such that
X = f. Theboundary of a celff is the setf* = f \ {f} (see Fig. 2).

A finite setX of faces off" is acomplex (inf") if for any f € X, we havef ¢ X.

Let S, X be two sets of faces @. If X is a complex anX C S, we write X < S.
Furthermore, ifS is also a complex, then we say thats asubcomplex of S

Let X € F". Afacef € X is afacet of Xif there is nog € X such thatf € §*, in
other words, iff is maximal for inclusion. A facet oK that is anm-face is also called
anm-facet of XWe denote byX* the set composed of all facets ¥f(see Fig. 3).

If Xis a complex, observe that in generdt, is not a complex, and thak¢)™ = X.
More generally, for any subs¥tof F", (Y*)~ = Y~.

Let X € F", X # 0. Thedimension of Xs the number dinX) = maxdim(f) |
f € X}, and we set dinf() = —1. We say thaK is pureif for each f € X*, we have
dim(f) = dim(X). Letmbe an integer. We say th&tis anm-complex ifX is a complex
and dimK) = m. If X is anm-complex withm < 1, then we also say that is a graph
(see [5]).

LetY < X < F". If Y* C X*, we say thal is aprincipal subcomplex of Xnd we
write Y C X (see Fig. 4).

Let X € F". A sequencer = (fi)i‘;o (¢ = 0) of faces inX is apath in X (from § to
f,) if for eachi € [0, ¢ — 1], eitherf; is a face offi,; or fi;; is a face offi; the integer
¢ is thelength ofr. The pathr is said to beclosedwheneverfy = f;, it is atrivial path
whenever = 0.

Let X € F". A path inX made of 0- and 1-faces is called gpath A 1-path from a
O-facex to a O-facey (with possiblyx = y), is said to beelementaryf its 1-faces are all
distinct. A non-trivial elementary closed path is callecyale

Let X € F". We say thak is connectedf, for any pair of faces {, g) in X, there is
a path inX from f to g. It is easily shown that, iK is a complex, thetX is connected
if and only if there exists an elementary path fronto y in X wheneverx andy are
O-faces inX.

Let X € F", and letY be a non-empty subset of, we say thatly is aconnected
component of Xf Y is connected and ¥ is maximal for these two propertiesd,, if
we haveZ = Y wheneverY € Z ¢ X andZ is connected). We will sometimes write
componenas a shortcut for connected component. The number of conmp®oéX is
denoted byC(X)|. Notice thaiC(0)| = 0.

2.2 Collapse and simple sets

Let X be a complex irF" and letf € X. If there exists a facg € f* such thatf is the
only face ofX that strictly includeg, theng is said to bdree for X and the pair {, g)
is said to be dree pair for X Notice that, if (f, g) is a free pair forX, then we have
necessarilyf € X* and dimg@) = dim(f) — 1.

Let X be a complex, and leff(g) be a free pair foiX. Letm = dim(f). The complex
X\ {f, g} is anelementary collapse of X%r anelementary m-collapse of. X

Let X, Y be two complexes. We say thétcollapses onto Yand we writeX \ Y, if
Y = X or if there exists &ollapse sequence from X tq iYe., a sequence of complexes
(XD, (€ = 1) such thalXo = X, X, = Y, andX; is an elementary collapse &f_1, for
eachi € [1, ] (see Fig. 5). Letl = ((fi,gi))i‘;1 be the sequence of pairs of facesXof
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Fig. 2. (a) Four points ofZ?: x = (0,1); y = (1, 1); z = (0,0); t = (1,0). (b) A representation of

the set of facesfo, fi, fo} in F2, Whgrefo = {7} (O-face),f; = {x,y} (1-face), andjz ={xy.zt}
(2-face). (c) A 1-celk” (d) A 2-celld. (e) The boundarg*of €. (f) The boundaryd* of d.
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Fig. 3. (a) A setX of 0-, 1- and 2-faces ii#®, which is not a complex. (b) The s¥t, composed
of the facets ofX. (¢) The setX™, i.e. the closure ofX, which is a complex. (d) A subcomplex

Fig. 4.(a) A complexX. (b) A subsetY of X, which is a principal subcomplex & (i.e., Y C X).
(c) A subsefz of X, which is a subcomplex of but not a principal subcomplex of.
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Fig. 5. (a) A complexX. (d) A subcomplexY of X. (a,b,c,d) A collapse sequence frofio Y.
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Fig. 6. (a) Bd(X), whereX is the complex of Fig. 5(a). (Bd,;(X).
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Fig. 7. (a) A complexX. (b) A subcomplexY of X that is simple forX. (c) The detachment of
from X. (d) The attachment of to X. (e) A subcompleX of X that isnot simple forX.



such thatXj = Xi_1 \ {fi, g}, for anyi € [1, £]. We also call the sequendea collapse
sequence (from X to YIf X collapses onty andY is a complex made of a single point,
we say thak is collapsible

LetY, X C F". We say thaK is an extension of Y1] if Y € X and each connected
component oX includes exactly one connected componenit of

Proposition 2 (proved in [12]) Let Y < X < F". If X N\, Y, then X is an extension of
Y. In consequence, collapse preserves the number of cetheminponents.

Let X < F", the complex that is the closure of the set of all free facesXois
called theboundary of X and is denoted bBd(X). We denote byBd; (X) the complex
that is the closure of the set of all free 1-faces ¥o(see Fig. 6). Of course, we have
Bdi(X) < BA(X).

Proposition 3 (proved in [12]) Let Y < X < F", leta be a set of facets of X that are
notinY,i.e,a € X*\Y.IfBda™) C Y, then X does not collapse onto Y.

Proposition 4 (proved in [12]) Let Z < X < F" be two complexes such thatx Z.
Let J=((fi,g))"_, be a collapse sequence from X to Z. Suppose that there exist$ Y
suchthat Z< Y and for any ke [1, £], either{f;,gi} € Y or{fi,gi} € X\ Y. Then, X\, Y
and Y\ Z.

LetJ = ((fi,gi)>f:l be a collapse sequence. This collapse sequence is said to be
decreasingf for anyi € [1, ¢ — 1], we have dim{j) > dim(fi,1).

Proposition 5 ([16]) Let Y < X < F". If X collapses onto Y, then there exists a de-
creasing collapse sequence from X to Y.

Let X, Y be two complexes. L&t be suchthaX N Y <Z <Y, and letf,ge Z\ X.
The pair (f, g) is a free pair forX U Z if and only if (f, g) is a free pair foiZ. Thus, by
induction, we have the following property.

Proposition 6 ([2]) Let XY < F". The complex XJ Y collapses onto X if and only if
the complex Y collapses ontaXY .

The operation of detachment allows us to remove a subconifexa complex
while guaranteeing that the result is still a complex (seg F).

Definition 7 ([2]) Let Y X < F". Weset X0 Y = (X*\Y*)". Theset XS Y is a
complex that is called théetachment oY from X.

Intuitively a cell fora subcompleX of a complexX is simple if its removal from
X “does not modify the topology oX”. Let us now recall a definition of simplicity [2]
based on the collapse operation, which can be seen as atdisotmterpart of the one
given by Kong [7].

Definition 8 ([2]) Let Y < X < F". We say that Y isimple for X if X collapses
onto XO'Y.



If fisa simple cell, we will also say thdtis simple.

The notion of attachment, as introduced by Kong [6, 7], ldadslocal characteri-
sation of simple sets (Prop. 9).

LetY < X < F". Theattachmenbf Y for X is the complex defined b&tt(Y, X) =
YN (XOY)(see Fig. 7). Remark that any fadebdf X such thaitt(f, X) # f* includes
a free face foiX.

Proposition 9 ([2]) Let Y < X < F". The complex Y is simple for X if and only if Y
collapses onto A, X).

Remark 10 If Y = 0, or if Y < X contains no facet of X, then Y is obviously a simple
set for X, as we have X Y = X. More generally, it can be proved [13] that the de-
tachment of a subcomplex Y from X is equal to the detachmére afaximal principal
subcomplex Z of X included in Y. Without loss of generahigystudy of the simple sets
Y of a complex X can then be restricted to those verifyimgX and Y+ 0. From now
on, we will always implicitly consider that a simple set fies these hypotheses.

3 Confluence properties in cubical complexes

Consider three complexés B, C. If Acollapses ont€ andA collapses ont®, then we
know thatA, B andC “have the same topology”. If furthermore we have< B < A, it

is tempting to conjecture th&collapses ont€. We call this a confluence property. For
example, this property implies that any complexffnobtained by a collapse sequence
from a full rectangle indeed collapses onto a point.

Quite surprisingly, such a property does not holdFth (and more generally in
F",n > 3). A classical counter-example to this assertion is Bilgase ([3], see also
[11]). A realisation of Bing's house as a 2-complex can baigd by collapse from a
full cuboid, and has no free face: it is thus a counter-exarfgalthe above conjecture,
with A: a cuboid B: Bing’s house, an€: a point inB.

As we will show in this article, in the two-dimensional diste planeé®? and more
generally in the class of discrete spaces called pseuddoids)ia confluence property
indeed holds (Th. 21).

In this section, we establish confluence properties thagssentially 1-dimensional,
a step for proving the more general confluence propertiegofié 5.

A treeis a graph that is collapsible. It may be easily proved thatalgis a tree if
and only if itis connected and does not contain any cycle [Sge

Let X < F" be a complex. The set of aliffaces ofX, with i € [0, n], is denoted by
Fi(X). We denote byF;(X)| the number of-faces ofX, i € [0, n]. TheEuler character-
istic of X, written y(X), is defined by(X) = 2L,(~1)|Fi(X)I. The Euler characteristic
is a well-known topological invariant; in particular, it cdoe easily seen that collapse
preservesiit.

Let X, Y < F". A fundamental and well-known property of the Euler chagastic,
deriving from the so-called inclusion-exclusion prin@jh set theory, is the following:
X(XUY) = x(X) + x(Y) —x(XNY).

The following property generalises a classical charasdion of trees: a grapk is
atree if and only ifX is connected ang(X) = 1.



Proposition 11 (proved in [12]) Let X Y be such that ¥ X < F", anddim(X\Y) < 1.
Then, X collapses onto Y if and only if X is an extension of Yydxi= y(X).

From Props. 2, 11, and the fact that collapse preserves tlee Eharacteristic, we
derive straightforwardly the following two propositions.

Proposition 12 Let A B, C be such that X B < A < F" and such thatim(B\ C) < 1.
If A collapses onto C and A collapses onto B, then B collape&s®©.

Proposition 13 Let A B, C be such that & B < A < F" and such thatim(A\ B) < 1.
If A collapses onto C and B collapses onto C, then A collapaé&s B.

4 Pseudomanifolds

Intuitively, a (2-D) manifold [10] is a 2-D (finite or infinij)espace which is locally “like”
the 2-D Euclidean space (spheres and tori are, for instamarifolds).

The notion of (2-D) pseudomanifold is less restrictive sificauthorises several
pieces of surface to be adjacentin a singular point (as twe€sharing the same apex,
for instance). Note that any manifold is a pseudomanifald the converse is not true.
Some examples of pseudomanifolds are provided in Fig. 8.

In the framework of cubical complexes, a 2-D pseudomaniftald be defined as
follows. We denote by the set composed of ati-faces ofZ", with m € [0, 2]. We
say thatr is a 2path (in X)if 7 is a path inX composed of 1- and 2-faces.

Definition 14 Let M C ) be such thatim(M) = 2. We say that M is #2-D) pseudo-
manifoldif the following four conditions hold:

(i) forany f e M, we havef ¢ M;

(i) M is pure;
(iii) for any pair of 2-faces(f,g) in M, there is a2-path in M from f to g;
(iv) anyl-face of M is included in exactly twxfaces of M.

Notice that, in particular]Fg = F? (namely the discrete plane) is a pseudomanifold.
Notice also that, ifM is a finite pseudomanifold, theM is a pure 2-complex that
cannot be collapsed, sind& has no free face by definition.

In the sequel, we focus on complexes that are strict subsatpgeudomanifold.

Proposition 15 (proved in [12]) Let M C FJ be a pseudomanifold, and let X M.
Then, BgBd(X)) = Bd(Bd(X)) = 0.

Proposition 16 (proved in [12]) Let M C FJ be a pseudomanifold, let B M such
thatdim(B) = 2 and B# M, let f be a2-face of B, and let g be 2-face in M\ B. If «
is a2-path from f to g in M, themr necessarily contains &face of B¢B).

Prop. 17 follows easily from Prop. 16.

Proposition 17 Let M C FJ be a pseudomanifold, let B M. If dim(B) = 2 and
B # M, then there exists at least one péft, g) that is free for B, withkdim(f) = 2.
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Fig. 8. 2-D pseudomanifolds. (a) A topological sphere. (b) A topatal torus. (c) A pinched
torus. (a) and (b) are (pseudo)manifolds, (c) is a pseuddabarbut not a manifold.

5 Confluence properties in pseudomanifolds

Our goal in this section is to establish confluence propgrsamilar to Props. 12 and
13, in the case wher&, B andC are complexes that are subsets of a pseudomanifold.

It is tempting to try to generalise Prop. 11 to this case, famflience properties
would immediately follow from such a result. But in fact, thackward implication of
Prop. 11 does not hold in the general case (that is, whendiri{ is not constrained),
even if X andY are complexes that are subsets of a pseudomanifold.

A counter-example is given bi: a pinched torus (see Fig. 8(c)h < M: a
topological disk é.g, a square and all the faces included in K),= M © A, and
Y = Bd(X) = XnA (atopological circle). It is easily checked thgtM) = y(XUA) = 1,
x(A) = 1 andy(Y) = 0, and sincer(X U A) = x(X) + x(A) — x(X N A) we deduce
x(X) = 0 = x(Y). We have alstr < X and|C(Y)| = [C(X)| = 1, thusX is an extension
of Y. However, by constructiorX has no free face outsidé thusX does not collapse
ontoY.

A similar counter-example could be built from a sph&le which is a manifold,
and a ringA (a closed ribbon that is a pure 2-complex). In this cdde made of two
topological discs anX N Ais made of two topological circles. We havéM) = y(X) =
2 andy(A) = (XN A) = 0.

Nevertheless, we have the following property.

Proposition 18 (proved in [12]) Let M C FJ be a pseudomanifold, and let X M,
X # M. The complex X is collapsible if and onl\d@f(X)| = y(X) = 1.

Proposition 19 (Downstream confluence)l.et M C F] be a pseudomanifold, and let
C < B=< A< M.If Acollapses onto C and A collapses onto B, then B collajsto
C.

Proof If |[F2(B)| = |F2(C)| then by Prop. 12B ~\, C. Suppose thafF,(B)| > |F2(C)|.
Suppose that the proposition holds for afyinstead ofB, with |[F2(C)| < |F2(B)| <
|F2(B)|. Let q be a 2-face oB not in C. SinceA Y\, C and by Prop. 5, there exists
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a sequence of 2-collapse operations starting floand that removeq. Let S be the
set of faces removed by this sequence, clearly there ex®tpahn in S, from a 1-
face p that belongs td@d;(A), to g. Let h be the 2-face just following in z. If h € B
then necessarilp € Bdi(B); and ifh ¢ B, we deduce from Prop. 16 thatcontains
at least one 1-face d3d;(B). Since by constructio€ contains no element of, we
haveBdi(B)* ¢ C, thusB has a free pairf(, g) that is not inC, with dim(f) = 2. Let
B’ = B\ {f, g}. ObviouslyA \, B/, thus by the recurrence hypothe&is™, C, hence
B\, C.O

Proposition 20 (Upstream confluence)Let M C ] be a pseudomanifold, and let£
B < A< M. If A collapses onto C and B collapses onto C, then A collapsto B.

Proof If |F2(A)| = 0 then by Prop. 13A N\, B. Suppose thdF,(A)| > 0 and that the
proposition holds for any instead ofA, with |F2(A')| < |[F2(A)|. Consider the set

of 1-faces that are free fok and not inC, i.e., @« = F1(Bd(A) \ C). If @ = 0, then the
hypothesiA \, C implies thatiF2(A)| = [F2(C)| = |F2(B)|, and the result follows from
Prop. 13. We now suppose that: 0. By Prop. 15, no face iBd(A) is free forBd(A),
hence no face i~ is free fora™ U C. Thus, all the faces inx cannot be facets d8,
for otherwise by Prop. 38 could not collapse ont@. From this, we deduce that there
exists a 1-facg in « such that eitheg € Bd(B) org ¢ B. Let f be the 2-face oA that
includesg.

Case 1g € Bd(B). Thus, {f, g) is a free pair for bottA andB. Let A’ = A\ {f, g} and

B’ = B\ {f,g}. We haveC < B' < A', A N\, C (by Prop. 19) and® \, C (also by
Prop. 19), thus by the recurrence hypothdsis\, B’. It can be seen that any sequence
of collapse operations frorA’ to B’ is also a sequence of collapse operations flom
to B.

Case 2g ¢ B. Thus, (f, g) is a free pair forA that is not inB, let A’ = A\ {f, g}. We
haveC < B < A, A’ \, C (by Prop. 19) and® *\ C, thus by the recurrence hypothesis
A"\, BhenceA \, B.O

The following theorem summarises Props. 19 and 20.

Theorem 21 (Confluences)Let M C ] be a pseudomanifold, and let€B < A< M
be such that A collapses onto C. Then, A collapses onto B ifoahdif B collapses
onto C.

6 Minimal simple sets in pseudomanifolds

Informally, a minimal simple set [11, 13] is a simple set whines not strictly include
any other simple set. In this section, we first establish tp@valence between the
notions of simple cell and minimal simple set in pseudon@d# (Prop. 25). Then we
demonstrate that, in such spaces, any simple set can bel&tfighed, while preserving
topology, by iterative detachment of simple cells, in anggible order (Th. 26).

Definition 22 ([13]) Let X < F"and SC X. The subcomplex S isainimal simple set
(for X) if S is a simple set for X and S is minimal with respect to thatieh C (i.e.
Z =S whenever Z S and Z is a simple set for X).
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Proposition 23 ([12]) Let M ¢ F] be a pseudomanifold, and letiSX < M such that
S is a minimal simple set for X. Then, S is connected.

This property of minimal simple sets indeed holds in moresgahconditions, see [13].

Proposition 24 (proved in [12]) Let M C FJ be a pseudomanifold, let X M be a
connected 2-complex, let S X be a simple subcomplex of X, and let f be a facet of
S such that Afff, X) is not empty and not connected. Then®X is an extension of
Att(f, X).

Proposition 25 Let M C F] be a pseudomanifold, and letiSX < M such that S is a
minimal simple set for X. Then, S is necessarillyeell or a2-cell.

Proof Suppose tha$ is not reduced to one cell. Then, each faceSahust be non-
simple forX. No facetf of S is such tha#tt( f, X) = 0. If S contains a 1-facet, then let
f be such a facet. I$ is a pure 2-complex, then at least one 2-fac8 ofiust include a
free face forX, otherwiseX could not collapse ont® © S, let us assume thdtis such
a 2-face. LefA = Att(f, X). In both cases (dinf() = 1 or dim(f) = 2), we know thatA
is disconnected. From now, we suppose that djna{ 2 (the case where difif = 1 is
similar and simpler).

From Prop. 23S is connected and from Props. 9 andh2(S, X) is connected. Without
loss of generality, we assume théats connected (otherwise we replaxéy the com-
ponent ofX that includesS). By Prop. 24, each component¥fo f includes exactly
one component oA. Let X; be the component ok © f that includesAtt(S, X) (and
thus alsoX © S), and letA; be the component gt that is inX;. Letg andh be the two
1-faces off* \ Athat include each a O-face 8§. Obviously (f, g) is a free pair forX,
let X’ = X\ {f, g}. Remark thah is a facet ofX". We haveX N\, X’ andX \, XO S, by
Prop. 19 we deduck¥’ \, XO S.

LetJ = ((fi, gi)>f:1 be a collapse sequence frothto X © S. Lett € [1, £] be such that
fi = h. It can be seen thak ¢ X; (otherwise the result of the collapse operation would
be disconnected, for by construction any pattXinfrom X © S to the remaining face
in h would containh), and of coursd; ¢ X;. Furthermore, any other pair dfis either
in X1 orin X\ Xy, since the only facet ok’ \ X; that includes a face of; is f;. Thus
by Prop. 4 X"\, X1, henceX \, Xy, i.e, X ®© X; is a simple set foX. Remark that by
construction, we hav¥ © X; C S. Thus, the minimality o5 implies thatS = X © X,
henceAtt(S, X) = A;.

Itis plain thatf N\, Ay, thus by Prop. 6 we havé U f \, X;; and sinceX \, Xy, by
Prop. 20 we deduce that \, X, U f, i.e, X © (Xy U f) is a simple set foiX. This
contradicts the minimality 08, sinceX® (X U f) C S. O

From Props. 25 and 19, we derive straightforwardly our magotem.

Theorem 26 Let M C F} be a pseudomanifold, and letS X < M such that S is a
simple set for X. Then:

(i) thereis afacet of X in S which is simple for X; and .
(ii) forany cellf in S which is simple for X, ® f is a simple set for X f.
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7 Conclusion

In this article we have established, in the case of digitl @seudomanifolds, a conflu-
ence property of the collapse operation (Th. 21). From #ssilt, we have proved that
in pseudomanifolds, any minimal simple set is a simple ¢&lbp. 25). This led us to
the property stating that any simple set can be removed bgtiite removal of simple
cells in any order (Th. 26).

It is indeed possible to retrieve Ronse’s theorem (Th. Inftbe results presented
above, based on the equivalence betwgeequipped with a (84)-adjacency frame-
work and the set of pure 2-complexeg#[7]. To this aim, it is necessary to prove that
any subcomple® C X (whereX is a pure 2-complex ii?) that is strongly deletable
for X, is also simple foiX in the sense of Def. 8 (the converse also holds). The Jordan’s
theorem is needed for this proof, which is not in the scopéefdresent article.
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