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Abstract. Preserving topological properties of objects during thinning proce-
dures is an important issue in the field of image analysis. In the case of 2-D digital
images (i.e. images defined onZ2) such procedures are usually based on the no-
tion of simple point. By opposition to the case of spaces of higher dimensions (i.e.
Zn, n ≥ 3), it was proved in the 80’s that the exclusive use of simple points inZ2

was indeed sufficient to develop thinning procedures providing an output that is
minimal with respect to the topological characteristics ofthe object. Based on the
recently introduced notion ofminimal simple set(generalising the notion of sim-
ple point), we establish new properties related to topology-preserving thinning in
2-D spaces which extend, in particular, this classical result to more general spaces
(the 2-D pseudomanifolds) and objects (the 2-D cubical complexes).

Key words: Topology preservation, simple points, simple sets, cubical complexes,
collapse, confluence, pseudomanifolds.

1 Introduction

Topological properties are fundamental in many applications of image analysis, in par-
ticular in cases where the retrieval and/or the preservation of topology of real complex
structures is required. In this context, numerous methods have been developed to pro-
cess discrete 2-D and 3-D binary images, essentially to perform skeletonisation, homo-
topic thinning, or segmentation.

Such methods are generally based on the notion ofsimple point[8]. Intuitively, a
point (or pixel) of a discrete objectX is said to be simple if it can be removed fromX
without altering its topology.

Let us consider an objectX, i.e. a set of points inZn, and a subsetY of X called
constraint set. A very common topology-preserving thinning scheme [4] consists of
repeating the following steps until stability:

- choose (according to some given priority function) a pointx in X \ Y that is simple
for X;

- removex from X.

The result of such a procedure, called homotopic skeleton ofX constrained byY, is a
subsetZ of X, which (i) is topologically equivalent toX, (ii ) includesY and (iii ) has no
simple point outside ofY. We show an illustration in Fig. 1, notice in particular thatthe
constraint set is useful to preserve some geometrical characteristics of the object.
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(a) (b) (c)

Fig. 1. (a) An objectX (in white) and a subsetY of X (two pixels marked by black dots). (b) A
homotopic skeleton ofX (empty constraint set). (c) A homotopic skeleton ofX constrained byY.

The following question is fundamental with regard to the behaviour of sequential
thinning procedures:

(1) Is Z always a minimal result, in the sense that it does not strictly include a subset
Z′ having the same properties (i), (ii ) and (iii )?

If we consider the 3-D case, the answer to this question is no.For example, ifX is a
cuboid andY = ∅, then, depending on the order of the point removals, the result Z of the
above procedure might not be composed of a single point. As pointed out recently [11],
there exist various kinds of configurations in which a 3-D topology-preserving thinning
algorithm can be “blocked” before reaching a minimal result.

In the discrete planeZ2, question (1) was answered positively by Ronse in the 80’s,
after a partial answer was given in the early 70’s by Rosenfeld. In 1970, in the same
article where he introduced the notion of simple point [15],Rosenfeld proved that any
finite subset ofZ2 that is connected and has no holes, could be reduced to a single point
by iterative removal of simple points, in any order. In 1986,Ronse introduced the notion
of strong deletability inZ2 [14]. It is, to the best of our knowledge, the first attempt to
generalise the notion of simple points to a more general notion of simple sets.

According to Def. 2.5 of [14], and skipping formal details, asubsetS of X ⊆ Z2

is strongly deletable from Xif ( i) each connected component ofX includes exactly one
connected component ofX \ S, and (ii ) each connected component ofX ∪ S includes
exactly one connected component ofX, whereX denotes the complementary ofX.

In the same article, Ronse proposed several results relatedto strongly deletable sets,
which can be summarised as follows.

Theorem 1 (From [14], Lem. 3.1, 3.2, Prop. 3.3)Let X ⊆ Z2. Let S ⊆ X. If S is
strongly deletable from X, then:

(i) there exists x∈ S such that x is a simple point for X;
(ii) for all x ∈ S such that x is a simple point for X, S\ {x} is strongly deletable for

X \ {x}.

Consequently, ifY ⊆ X ⊆ Z2 andY is topologically equivalent toX (more precisely, if
X\Y is strongly deletable fromX), thenY may be obtained fromX by iterative removal
of simple points, in any arbitrary order.
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To summarise, question (1) received a positive answer inZ2 and a negative one inZ3

(and also for higher dimensions). Still, there are spaces for which this question remained
open until now: the case of two-dimensional structures inn-dimensional spaces,n ≥ 3.
Such structures are often used in practice,e.g. to represent thin objects or (parts of)
boundary of objects in 3-D image analysis and in finite element modelling.

The main outcome of this article is a theorem (Th. 26) that states a property analo-
gous to Th. 1, holding in a large family of 2-D digital spaces,namely the pseudomani-
folds.

This study is developed in the framework of cubical complexes [9], in which we
can retrieve and generalise the concepts of digital topology in Zn. The definition of
simple sets that we use here is based on the operation of collapse, a topology-preserving
transformation known in algebraic topology.

The proof of Th. 26 is based on a property of collapse, that we call a confluence
property (Th. 21), which is introduced and proved in this article.

Th. 26 is also closely related to the notion of minimal simpleset [11, 13], as we
derive it using the following property: ifX is a strict subset of a pseudomanifold, then
any minimal simple subset ofX is a simple point (Prop. 25).

Thanks to a correspondence between the notion of minimal simple set used here and
the one of simple point [7], we retrieve as particular cases of Th. 26 the results of Rosen-
feld and Ronse discussed before. However, the techniques ofproof used in this article
are essentially different from the ones used by these authors, and the generalisation of
their results is not trivial.

This article is self-contained, however some of the proofs cannot be included due to
space limitation (they can however be found in the followingresearch report [12]).

2 Background notions

In this section, we provide basic definitions and propertiesrelated to the notions of
cubical complexes, collapse and simple sets (the last two ones enabling to modify a
complex without altering its topology), see also [9, 13].

2.1 Cubical complexes

If T is a subset ofS, we write T ⊆ S. Let Z be the set of integers. Letk, ℓ ∈ Z, we
denote by [k, ℓ] the set{i ∈ Z | k ≤ i ≤ ℓ}.

We consider the families of setsF1
0, F1

1, such thatF1
0 = {{a} | a ∈ Z} andF1

1 =

{{a, a+ 1} | a ∈ Z}. A subsetf of Zn (n ≥ 2) that is the Cartesian product ofmelements
of F1

1 andn−m elements ofF1
0 is called afaceor anm-faceof Zn, m is thedimension

of f , we write dim(f ) = m (see Fig. 2(a,b)).
Let n ≥ 2, we denote byFn the set composed of all faces ofZn.
An m-faceof Zn is called apoint if m= 0, a(unit) edgeif m= 1, a(unit) squareif

m= 2.
Let f be a face inFn. We setf̂ = {g ∈ Fn | g ⊆ f }. Any g ∈ f̂ is aface of f (or of f̂ ).
If X is a set of faces ofFn, we writeX− =

⋃
f∈X f̂ , and we say thatX− is theclosure

of X.
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A setX of faces ofFn is acell or anm-cellif there exists anm-face f ∈ X, such that
X = f̂ . Theboundary of a cellf̂ is the setf̂ ∗ = f̂ \ { f } (see Fig. 2).

A finite setX of faces ofFn is acomplex (inFn) if for any f ∈ X, we havef̂ ⊆ X.
Let S,X be two sets of faces ofFn. If X is a complex andX ⊆ S, we writeX � S.

Furthermore, ifS is also a complex, then we say thatX is asubcomplex of S.
Let X ⊆ Fn. A face f ∈ X is a facet of Xif there is nog ∈ X such thatf ∈ ĝ∗, in

other words, iff is maximal for inclusion. A facet ofX that is anm-face is also called
anm-facet of X. We denote byX+ the set composed of all facets ofX (see Fig. 3).

If X is a complex, observe that in general,X+ is not a complex, and that (X+)− = X.
More generally, for any subsetY of Fn, (Y+)− = Y−.

Let X ⊆ Fn, X , ∅. The dimension of Xis the number dim(X) = max{dim( f ) |
f ∈ X}, and we set dim(∅) = −1. We say thatX is pure if for each f ∈ X+, we have
dim( f ) = dim(X). Let mbe an integer. We say thatX is anm-complex ifX is a complex
and dim(X) = m. If X is anm-complex withm ≤ 1, then we also say thatX is a graph
(see [5]).

Let Y � X � Fn. If Y+ ⊆ X+, we say thatY is aprincipal subcomplex of Xand we
write Y ⊑ X (see Fig. 4).

Let X ⊆ Fn. A sequenceπ = 〈 fi〉ℓi=0 (ℓ ≥ 0) of faces inX is apath in X (from f0 to
fℓ) if for each i ∈ [0, ℓ − 1], either fi is a face offi+1 or fi+1 is a face offi ; the integer
ℓ is thelength ofπ. The pathπ is said to beclosedwheneverf0 = fℓ, it is a trivial path
wheneverℓ = 0.

Let X ⊆ Fn. A path inX made of 0- and 1-faces is called a 1-path. A 1-path from a
0-facex to a 0-facey (with possiblyx = y), is said to beelementaryif its 1-faces are all
distinct. A non-trivial elementary closed path is called acycle.

Let X ⊆ Fn. We say thatX is connectedif, for any pair of faces (f , g) in X, there is
a path inX from f to g. It is easily shown that, ifX is a complex, thenX is connected
if and only if there exists an elementary path fromx to y in X wheneverx andy are
0-faces inX.

Let X ⊆ Fn, and letY be a non-empty subset ofX, we say thatY is a connected
component of Xif Y is connected and ifY is maximal for these two properties (i.e., if
we haveZ = Y wheneverY ⊆ Z ⊆ X andZ is connected). We will sometimes write
componentas a shortcut for connected component. The number of components ofX is
denoted by|C(X)|. Notice that|C(∅)| = 0.

2.2 Collapse and simple sets

Let X be a complex inFn and let f ∈ X. If there exists a faceg ∈ f̂ ∗ such thatf is the
only face ofX that strictly includesg, theng is said to befree for X, and the pair (f , g)
is said to be afree pair for X. Notice that, if (f , g) is a free pair forX, then we have
necessarilyf ∈ X+ and dim(g) = dim( f ) − 1.

Let X be a complex, and let (f , g) be a free pair forX. Letm= dim( f ). The complex
X \ { f , g} is anelementary collapse of X, or anelementary m-collapse of X.

Let X, Y be two complexes. We say thatX collapses onto Y, and we writeXց Y, if
Y = X or if there exists acollapse sequence from X to Y, i.e., a sequence of complexes
〈Xi〉

ℓ
i=0 (ℓ ≥ 1) such thatX0 = X, Xℓ = Y, andXi is an elementary collapse ofXi−1, for

eachi ∈ [1, ℓ] (see Fig. 5). LetJ = 〈( fi , gi)〉ℓi=1 be the sequence of pairs of faces ofX
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x y

z t

(a) (b) (c) (d) (e) (f)

Fig. 2. (a) Four points ofZ2: x = (0,1); y = (1, 1); z = (0,0); t = (1,0). (b) A representation of
the set of faces{ f0, f1, f2} in F2, where f0 = {z} (0-face), f1 = {x, y} (1-face), andf2 = {x, y, z, t}
(2-face). (c) A 1-cell ˆc. (d) A 2-cell d̂. (e) The boundary ˆc∗ of ĉ. (f) The boundaryd̂∗ of d̂.

(a) (b) (c) (d)

Fig. 3. (a) A setX of 0-, 1- and 2-faces inF3, which is not a complex. (b) The setX+, composed
of the facets ofX. (c) The setX−, i.e. the closure ofX, which is a complex. (d) A subcomplex
of X−.

(a) (b) (c)

Fig. 4. (a) A complexX. (b) A subsetY of X, which is a principal subcomplex ofX (i.e., Y ⊑ X).
(c) A subsetZ of X, which is a subcomplex ofX but not a principal subcomplex ofX.

(a) (b) (c) (d)

Fig. 5. (a) A complexX. (d) A subcomplexY of X. (a,b,c,d) A collapse sequence fromX to Y.

(a) (b)

Fig. 6. (a) Bd(X), whereX is the complex of Fig. 5(a). (b)Bd1(X).

(a) (b) (c) (d) (e)

Fig. 7. (a) A complexX. (b) A subcomplexY of X that is simple forX. (c) The detachment ofY
from X. (d) The attachment ofY to X. (e) A subcomplexZ of X that isnot simple forX.
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such thatXi = Xi−1 \ { fi , gi}, for any i ∈ [1, ℓ]. We also call the sequenceJ a collapse
sequence (from X to Y). If X collapses ontoY andY is a complex made of a single point,
we say thatX is collapsible.

Let Y,X ⊆ Fn. We say thatX is an extension of Y[1] if Y ⊆ X and each connected
component ofX includes exactly one connected component ofY.

Proposition 2 (proved in [12]) Let Y � X � Fn. If X ց Y, then X is an extension of
Y. In consequence, collapse preserves the number of connected components.

Let X � Fn, the complex that is the closure of the set of all free faces for X, is
called theboundary of X, and is denoted byBd(X). We denote byBd1(X) the complex
that is the closure of the set of all free 1-faces forX (see Fig. 6). Of course, we have
Bd1(X) � Bd(X).

Proposition 3 (proved in [12]) Let Y � X � Fn, let α be a set of facets of X that are
not in Y,i.e., α ⊆ X+ \ Y. If Bd(α−) ⊆ Y, then X does not collapse onto Y.

Proposition 4 (proved in [12]) Let Z � X � Fn be two complexes such that Xց Z.
Let J= 〈( fi , gi)〉ℓi=1 be a collapse sequence from X to Z. Suppose that there exists Y� X
such that Z� Y and for any i∈ [1, ℓ], either{ fi , gi} ⊆ Y or { fi , gi} ⊆ X\Y. Then, Xց Y
and Yց Z.

Let J = 〈( fi , gi)〉ℓi=1 be a collapse sequence. This collapse sequence is said to be
decreasingif for any i ∈ [1, ℓ − 1], we have dim(fi) ≥ dim( fi+1).

Proposition 5 ([16]) Let Y � X � Fn. If X collapses onto Y, then there exists a de-
creasing collapse sequence from X to Y.

Let X,Y be two complexes. LetZ be such thatX ∩ Y � Z � Y, and let f , g ∈ Z \ X.
The pair (f , g) is a free pair forX ∪ Z if and only if ( f , g) is a free pair forZ. Thus, by
induction, we have the following property.

Proposition 6 ([2]) Let X,Y � Fn. The complex X∪ Y collapses onto X if and only if
the complex Y collapses onto X∩ Y.

The operation of detachment allows us to remove a subcomplexfrom a complex
while guaranteeing that the result is still a complex (see Fig. 7).

Definition 7 ([2]) Let Y � X � Fn. We set X ⊘ Y = (X+ \ Y+)−. The set X ⊘ Y is a
complex that is called thedetachment ofY from X.

Intuitively a cell f̂ or a subcomplexY of a complexX is simple if its removal from
X “does not modify the topology ofX”. Let us now recall a definition of simplicity [2]
based on the collapse operation, which can be seen as a discrete counterpart of the one
given by Kong [7].

Definition 8 ([2]) Let Y � X � Fn. We say that Y issimple for X if X collapses
onto X ⊘ Y.
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If f̂ is a simple cell, we will also say thatf is simple.
The notion of attachment, as introduced by Kong [6, 7], leadsto a local characteri-

sation of simple sets (Prop. 9).
Let Y � X � Fn. Theattachmentof Y for X is the complex defined byAtt(Y,X) =

Y∩ (X ⊘ Y) (see Fig. 7). Remark that any facetf of X such thatAtt( f̂ ,X) , f̂ ∗ includes
a free face forX.

Proposition 9 ([2]) Let Y � X � Fn. The complex Y is simple for X if and only if Y
collapses onto Att(Y,X).

Remark 10 If Y = ∅, or if Y � X contains no facet of X, then Y is obviously a simple
set for X, as we have X ⊘ Y = X. More generally, it can be proved [13] that the de-
tachment of a subcomplex Y from X is equal to the detachment ofthe maximal principal
subcomplex Z of X included in Y. Without loss of generality, the study of the simple sets
Y of a complex X can then be restricted to those verifying Y⊑ X and Y, ∅. From now
on, we will always implicitly consider that a simple set verifies these hypotheses.

3 Confluence properties in cubical complexes

Consider three complexesA, B,C. If A collapses ontoC andA collapses ontoB, then we
know thatA, B andC “have the same topology”. If furthermore we haveC � B � A, it
is tempting to conjecture thatB collapses ontoC. We call this a confluence property. For
example, this property implies that any complex inF2 obtained by a collapse sequence
from a full rectangle indeed collapses onto a point.

Quite surprisingly, such a property does not hold inF3 (and more generally in
Fn, n ≥ 3). A classical counter-example to this assertion is Bing’shouse ([3], see also
[11]). A realisation of Bing’s house as a 2-complex can be obtained by collapse from a
full cuboid, and has no free face: it is thus a counter-example for the above conjecture,
with A: a cuboid,B: Bing’s house, andC: a point inB.

As we will show in this article, in the two-dimensional discrete planeF2 and more
generally in the class of discrete spaces called pseudomanifolds, a confluence property
indeed holds (Th. 21).

In this section, we establish confluence properties that areessentially 1-dimensional,
a step for proving the more general confluence properties of Section 5.

A tree is a graph that is collapsible. It may be easily proved that a graph is a tree if
and only if it is connected and does not contain any cycle (see[5]).

Let X � Fn be a complex. The set of alli-faces ofX, with i ∈ [0, n], is denoted by
Fi(X). We denote by|Fi(X)| the number ofi-faces ofX, i ∈ [0, n]. TheEuler character-
istic of X, writtenχ(X), is defined byχ(X) =

∑n
i=0(−1)i |Fi(X)|. The Euler characteristic

is a well-known topological invariant; in particular, it can be easily seen that collapse
preserves it.

Let X,Y � Fn. A fundamental and well-known property of the Euler characteristic,
deriving from the so-called inclusion-exclusion principle in set theory, is the following:
χ(X ∪ Y) = χ(X) + χ(Y) − χ(X ∩ Y).

The following property generalises a classical characterisation of trees: a graphX is
a tree if and only ifX is connected andχ(X) = 1.
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Proposition 11 (proved in [12]) Let X,Y be such that Y� X � Fn, anddim(X\Y) ≤ 1.
Then, X collapses onto Y if and only if X is an extension of Y andχ(Y) = χ(X).

From Props. 2, 11, and the fact that collapse preserves the Euler characteristic, we
derive straightforwardly the following two propositions.

Proposition 12 Let A, B,C be such that C� B � A � Fn and such thatdim(B\C) ≤ 1.
If A collapses onto C and A collapses onto B, then B collapses onto C.

Proposition 13 Let A, B,C be such that C� B � A � Fn and such thatdim(A\B) ≤ 1.
If A collapses onto C and B collapses onto C, then A collapses onto B.

4 Pseudomanifolds

Intuitively, a (2-D) manifold [10] is a 2-D (finite or infinite) space which is locally “like”
the 2-D Euclidean space (spheres and tori are, for instance,manifolds).

The notion of (2-D) pseudomanifold is less restrictive since it authorises several
pieces of surface to be adjacent in a singular point (as two cones sharing the same apex,
for instance). Note that any manifold is a pseudomanifold, but the converse is not true.
Some examples of pseudomanifolds are provided in Fig. 8.

In the framework of cubical complexes, a 2-D pseudomanifoldcan be defined as
follows. We denote byFn

2 the set composed of allm-faces ofZn, with m ∈ [0, 2]. We
say thatπ is a 2-path (in X)if π is a path inX composed of 1- and 2-faces.

Definition 14 Let M ⊆ Fn
2 be such thatdim(M) = 2. We say that M is a(2-D) pseudo-

manifoldif the following four conditions hold:

(i) for any f ∈ M, we havef̂ ⊆ M;
(ii) M is pure;
(iii) for any pair of 2-faces( f , g) in M, there is a2-path in M from f to g;
(iv) any1-face of M is included in exactly two2-faces of M.

Notice that, in particular,F2
2 = F

2 (namely the discrete plane) is a pseudomanifold.
Notice also that, ifM is a finite pseudomanifold, thenM is a pure 2-complex that
cannot be collapsed, sinceM has no free face by definition.

In the sequel, we focus on complexes that are strict subsets of a pseudomanifold.

Proposition 15 (proved in [12]) Let M ⊆ Fn
2 be a pseudomanifold, and let X� M.

Then, Bd(Bd1(X)) = Bd(Bd(X)) = ∅.

Proposition 16 (proved in [12]) Let M ⊆ Fn
2 be a pseudomanifold, let B� M such

that dim(B) = 2 and B, M, let f be a2-face of B, and let g be a2-face in M\ B. If π
is a2-path from f to g in M, thenπ necessarily contains a1-face of Bd(B).

Prop. 17 follows easily from Prop. 16.

Proposition 17 Let M ⊆ Fn
2 be a pseudomanifold, let B� M. If dim(B) = 2 and

B , M, then there exists at least one pair( f , g) that is free for B, withdim( f ) = 2.
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(a) (b) (c)

Fig. 8. 2-D pseudomanifolds. (a) A topological sphere. (b) A topological torus. (c) A pinched
torus. (a) and (b) are (pseudo)manifolds, (c) is a pseudomanifold but not a manifold.

5 Confluence properties in pseudomanifolds

Our goal in this section is to establish confluence properties, similar to Props. 12 and
13, in the case whereA, B andC are complexes that are subsets of a pseudomanifold.

It is tempting to try to generalise Prop. 11 to this case, for confluence properties
would immediately follow from such a result. But in fact, thebackward implication of
Prop. 11 does not hold in the general case (that is, when dim(X \Y) is not constrained),
even ifX andY are complexes that are subsets of a pseudomanifold.

A counter-example is given byM: a pinched torus (see Fig. 8(c)),A � M: a
topological disk (e.g., a square and all the faces included in it),X = M ⊘ A, and
Y = Bd(X) = X∩A (a topological circle). It is easily checked thatχ(M) = χ(X∪A) = 1,
χ(A) = 1 andχ(Y) = 0, and sinceχ(X ∪ A) = χ(X) + χ(A) − χ(X ∩ A) we deduce
χ(X) = 0 = χ(Y). We have alsoY � X and|C(Y)| = |C(X)| = 1, thusX is an extension
of Y. However, by construction,X has no free face outsideY, thusX does not collapse
ontoY.

A similar counter-example could be built from a sphereM, which is a manifold,
and a ringA (a closed ribbon that is a pure 2-complex). In this caseX is made of two
topological discs andX∩A is made of two topological circles. We haveχ(M) = χ(X) =
2 andχ(A) = χ(X ∩ A) = 0.

Nevertheless, we have the following property.

Proposition 18 (proved in [12]) Let M ⊆ Fn
2 be a pseudomanifold, and let X� M,

X , M. The complex X is collapsible if and only if|C(X)| = χ(X) = 1.

Proposition 19 (Downstream confluence)Let M ⊆ Fn
2 be a pseudomanifold, and let

C � B � A � M. If A collapses onto C and A collapses onto B, then B collapses onto
C.

Proof If |F2(B)| = |F2(C)| then by Prop. 12,B ց C. Suppose that|F2(B)| > |F2(C)|.
Suppose that the proposition holds for anyB′ instead ofB, with |F2(C)| ≤ |F2(B′)| <
|F2(B)|. Let q be a 2-face ofB not in C. SinceA ց C and by Prop. 5, there exists
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a sequence of 2-collapse operations starting fromA and that removesq. Let S be the
set of faces removed by this sequence, clearly there exists a2-pathπ in S, from a 1-
facep that belongs toBd1(A), to q. Let h be the 2-face just followingp in π. If h ∈ B
then necessarilyp ∈ Bd1(B); and if h < B, we deduce from Prop. 16 thatπ contains
at least one 1-face ofBd1(B). Since by constructionC contains no element ofπ, we
haveBd1(B)+ * C, thusB has a free pair (f , g) that is not inC, with dim(f ) = 2. Let
B′ = B \ { f , g}. ObviouslyA ց B′, thus by the recurrence hypothesisB′ ց C, hence
Bց C. �

Proposition 20 (Upstream confluence)Let M ⊆ Fn
2 be a pseudomanifold, and let C�

B � A � M. If A collapses onto C and B collapses onto C, then A collapses onto B.

Proof If |F2(A)| = 0 then by Prop. 13,A ց B. Suppose that|F2(A)| > 0 and that the
proposition holds for anyA′ instead ofA, with |F2(A′)| < |F2(A)|. Consider the setα
of 1-faces that are free forA and not inC, i.e., α = F1(Bd(A) \ C). If α = ∅, then the
hypothesisAց C implies that|F2(A)| = |F2(C)| = |F2(B)|, and the result follows from
Prop. 13. We now suppose thatα , ∅. By Prop. 15, no face inBd(A) is free forBd(A),
hence no face inα− is free forα− ∪ C. Thus, all the faces inα cannot be facets ofB,
for otherwise by Prop. 3,B could not collapse ontoC. From this, we deduce that there
exists a 1-faceg in α such that eitherg ∈ Bd(B) or g < B. Let f be the 2-face ofA that
includesg.
Case 1:g ∈ Bd(B). Thus, (f , g) is a free pair for bothA andB. Let A′ = A \ { f , g} and
B′ = B \ { f , g}. We haveC � B′ � A′, A′ ց C (by Prop. 19) andB′ ց C (also by
Prop. 19), thus by the recurrence hypothesisA′ ց B′. It can be seen that any sequence
of collapse operations fromA′ to B′ is also a sequence of collapse operations fromA
to B.
Case 2:g < B. Thus, (f , g) is a free pair forA that is not inB, let A′ = A \ { f , g}. We
haveC � B � A′, A′ ց C (by Prop. 19) andBց C, thus by the recurrence hypothesis
A′ ց B henceAց B. �

The following theorem summarises Props. 19 and 20.

Theorem 21 (Confluences)Let M ⊆ Fn
2 be a pseudomanifold, and let C� B � A � M

be such that A collapses onto C. Then, A collapses onto B if andonly if B collapses
onto C.

6 Minimal simple sets in pseudomanifolds

Informally, a minimal simple set [11, 13] is a simple set which does not strictly include
any other simple set. In this section, we first establish the equivalence between the
notions of simple cell and minimal simple set in pseudomanifolds (Prop. 25). Then we
demonstrate that, in such spaces, any simple set can be fullydetached, while preserving
topology, by iterative detachment of simple cells, in any possible order (Th. 26).

Definition 22 ([13]) Let X� Fn and S⊑ X. The subcomplex S is aminimal simple set
(for X) if S is a simple set for X and S is minimal with respect to the relation ⊑ (i.e.
Z = S whenever Z⊑ S and Z is a simple set for X).
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Proposition 23 ([12]) Let M ⊆ Fn
2 be a pseudomanifold, and let S⊑ X � M such that

S is a minimal simple set for X. Then, S is connected.

This property of minimal simple sets indeed holds in more general conditions, see [13].

Proposition 24 (proved in [12]) Let M ⊆ Fn
2 be a pseudomanifold, let X� M be a

connected 2-complex, let S⊑ X be a simple subcomplex of X, and let f be a facet of
S such that Att( f̂ ,X) is not empty and not connected. Then, X⊘ f̂ is an extension of
Att( f̂ ,X).

Proposition 25 Let M ⊆ Fn
2 be a pseudomanifold, and let S⊑ X � M such that S is a

minimal simple set for X. Then, S is necessarily a1-cell or a2-cell.

Proof Suppose thatS is not reduced to one cell. Then, each facet ofS must be non-
simple forX. No facetf of S is such thatAtt( f̂ ,X) = ∅. If S contains a 1-facet, then let
f be such a facet. IfS is a pure 2-complex, then at least one 2-face ofS must include a
free face forX, otherwiseX could not collapse ontoX ⊘ S, let us assume thatf is such
a 2-face. LetA = Att( f̂ ,X). In both cases (dim(f ) = 1 or dim(f ) = 2), we know thatA
is disconnected. From now, we suppose that dim(f ) = 2 (the case where dim(f ) = 1 is
similar and simpler).
From Prop. 23,S is connected and from Props. 9 and 2,Att(S,X) is connected. Without
loss of generality, we assume thatX is connected (otherwise we replaceX by the com-
ponent ofX that includesS). By Prop. 24, each component ofX ⊘ f̂ includes exactly
one component ofA. Let X1 be the component ofX ⊘ f̂ that includesAtt(S,X) (and
thus alsoX ⊘ S), and letA1 be the component ofA that is inX1. Let g andh be the two
1-faces off̂ ∗ \ A that include each a 0-face ofA1. Obviously (f , g) is a free pair forX,
let X′ = X \ { f , g}. Remark thath is a facet ofX′. We haveXց X′ andXց X ⊘ S, by
Prop. 19 we deduceX′ ց X ⊘ S.
Let J = 〈( fi , gi)〉ℓi=1 be a collapse sequence fromX′ to X ⊘ S. Let t ∈ [1, ℓ] be such that
ft = h. It can be seen thatgt < X1 (otherwise the result of the collapse operation would
be disconnected, for by construction any path inX′ from X ⊘ S to the remaining face
in h would containh), and of courseft < X1. Furthermore, any other pair ofJ is either
in X1 or in X′ \ X1, since the only facet ofX′ \ X1 that includes a face ofX1 is ft. Thus
by Prop. 4,X′ ց X1, henceXց X1, i.e., X ⊘ X1 is a simple set forX. Remark that by
construction, we haveX ⊘ X1 ⊑ S. Thus, the minimality ofS implies thatS = X ⊘ X1,
henceAtt(S,X) = A1.
It is plain that f̂ ց A1, thus by Prop. 6 we haveX1 ∪ f̂ ց X1; and sinceX ց X1, by
Prop. 20 we deduce thatX ց X1 ∪ f̂ , i.e., X ⊘ (X1 ∪ f̂ ) is a simple set forX. This
contradicts the minimality ofS, sinceX ⊘ (X1 ∪ f̂ ) ⊑ S. �

From Props. 25 and 19, we derive straightforwardly our main theorem.

Theorem 26 Let M ⊆ Fn
2 be a pseudomanifold, and let S⊑ X � M such that S is a

simple set for X. Then:

(i) there is a facet of X in S which is simple for X; and
(ii ) for any cell f̂ in S which is simple for X, S ⊘ f̂ is a simple set for X ⊘ f̂ .
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7 Conclusion

In this article we have established, in the case of digital 2-D pseudomanifolds, a conflu-
ence property of the collapse operation (Th. 21). From this result, we have proved that
in pseudomanifolds, any minimal simple set is a simple cell (Prop. 25). This led us to
the property stating that any simple set can be removed by iterative removal of simple
cells in any order (Th. 26).

It is indeed possible to retrieve Ronse’s theorem (Th. 1) from the results presented
above, based on the equivalence betweenZ2 equipped with a (8, 4)-adjacency frame-
work and the set of pure 2-complexes inF2 [7]. To this aim, it is necessary to prove that
any subcomplexS ⊑ X (whereX is a pure 2-complex inF2) that is strongly deletable
for X, is also simple forX in the sense of Def. 8 (the converse also holds). The Jordan’s
theorem is needed for this proof, which is not in the scope of the present article.
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Lectures on Modern Mathematics II, pages 93–128, 1964.

4. E.R. Davies and A.P.N. Plummer. Thinning algorithms: A critique and a new methodology.
Pattern Recognition, 14(1–6):53–63, 1981.

5. P. Giblin.Graphs, surfaces and homology. Chapman and Hall, 1981.
6. T. Yung Kong. On topology preservation in 2-D and 3-D thinning. International Journal of

Pattern Recognition and Artificial Intelligence, 9(5):813–844, 1995.
7. T. Yung Kong. Topology-preserving deletion of 1’s from 2-, 3- and 4-dimensional binary

images. In E. Ahronovitz and C. Fiorio, editors,Discrete Geometry for Computer Imagery -
DGCI’97, 7th International Workshop, Proceedings, volume 1347 ofLecture Notes in Com-
puter Science, pages 3–18, Montpellier, France, December 3–5 1997. Springer.

8. T.Y. Kong and A. Rosenfeld. Digital topology: Introduction and survey.Computer Vision,
Graphics, and Image Processing, 48(3):357–393, 1989.

9. V.A. Kovalesky. Finite topology as applied to image analysis. Computer Vision, Graphics,
and Image Processing, 46(2):141–161, 1989.

10. C.R.F. Maunder.Algebraic topology. Dover, 1996.
11. N. Passat, M. Couprie, and G. Bertrand. Minimal simple pairs in the 3-D cubic grid.Journal

of Mathematical Imaging and Vision, 32(3):239–249, 2008.
12. N. Passat, M. Couprie, L. Mazo, and G. Bertrand. Topological properties of thinning in 2-D

pseudomanifolds. Technical Report IGM2008-5, Universit´e de Marne-la-Vallée, 2008.
13. N. Passat and L. Mazo. An introduction to simple sets. Technical Report LSIIT-2008-1,
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