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Ultrametric watersheds

Laurent Najman

Université Paris-Est, Laboratoire d’Informatique Gaspard-Monge, Equipe A3SI,
ESIEE Paris, France

Abstract. We study hierachical segmentation in the framework of edge-
weighted graphs. We define ultrametric watersheds as topological water-
sheds null on the minima. We prove that there exists a bijection be-
tween the set of ultrametric watersheds and the set of hierarchical edge-
segmentations.

Introduction

This paper1 is a contribution to a theory of hierarchical image segmentation
in the framework of edge-weighted graphs. Image segmentation is a process of
decomposing an image into regions which are homogeneous according to some
criteria. Intuitively, a hierarchical segmentation represents an image at different
resolution levels.

In this paper, we introduce a subclass of edge-weighted graphs that we call
ultrametric watersheds. Theorem 9 states that there exists a one-to-one cor-
respondance, also called a bijection, between the set of indexed hierarchical
edge-segmentations and the set of ultrametric watersheds. In other words, to
any hierarchical edge-segmentation (whatever the way the hierarchy is built),
it is possible to associate a representation of that hierarchy by an ultrametric
watershed. Conversely, from any ultrametric watershed, one can infer a indexed
hierarchical edge-segmentation.

Following [1], we can say that, independently of its theoretical interest, such a
bijection theorem is useful in practice. Any hierarchical segmentation problem is
a priori heterogeneous: assign to an edge-weighted graph an indexed hierarchy.
Theorem 9 allows such classification problem to become homogeneous: assign
to an edge-weighted graph a particular edge-weighted graph called ultrametric
watershed. Thus, Theorem 9 gives a meaning to questions like: which hierarchy
is the closest to a given edge-weighted graph with respect to a given measure or
distance?

The paper is organised as follow. Related works are examined in section 1.
We introduce segmentation on edges in section 2, and in section 3, we adapt the
topological watershed framework from the framework of graphs with discrete
weights on the nodes to the one of graphs with real-valued weights on the edges.
We then define (section 4) hierarchies and ultrametric distances. The last part of
the paper (section 5) introduces hierarchical edge-segmentations and ultrametric

1 This work was partially supported by ANR grant SURF-NT05-2 45825



watersheds, the main result being the existence of a bijection between these two
sets (theorem 9).

Apart from Theorems 2 and 3, and to the best of the author’s knowledge,
all the properties and theorems formally stated in this paper are new. Proofs of
the various properties and theorems will be given in an extended version [2] to
be published in a journal paper.

1 Related works

1.1 Hierarchical clustering

From its beginning in image processing, hierarchical segmentation is thought of
as a particular instance of hierachical classification [3]. One of the fundamental
theorems for hierarchical clustering states that there exists a one-to-one corre-
spondance between the set of indexed hierarchical classification and a particular
subset of dissimilarity measures called ultrametric distances; This theorem is
generally attributed to Johnson [4], Jardine et al. [5] and Benzécri [3]. Since
then, numerous generalisations of that bijection theorem have been proposed
(see [1] for a recent review).

Our main theorem is an extension to hierarchical edge-segmentation of this
fundamental hierachical clustering theorem.

1.2 Hierarchical segmentation

There exist many methods for building a hierachical segmentation [6], which can
be divided in three classes: bottom-up, top-down, and split-and-merge. A recent
review of some of those approaches can be found in [7]. A useful representation of
hierarchical segmentations was introduced in [8] under the name of saliency map.
This representation has been used (under several names) by several authors, for
example for visualisation purposes [9] or for comparing hierarchies [10].

In this paper, we show that any saliency map is an ultrametric watershed,
and conversely.

1.3 Watersheds

For bottom-up approaches, a generic way to build a hierarchical segmenta-
tion is to start from an initial segmentation and progressively merge regions
together [11]. Often, this initial segmentation is obtained through a water-
shed [8, 12, 13]. See [14] for a recent review of these notions in the context of
mathematical morphology.

Among many others [15], topological watershed [16] is an original approach
to watersheding that modifies a map (e.g., a grayscale image) while preserving
the connectivity of each lower cross-section (see fig. 2). It as been proved [16,
17] that this approach is the only one that preserves altitudes of the passes
(named connection values in this paper) between regions of the segmentation.



Pass altitudes are fundamental for hierarchical schemes [8]. On the other hand,
topological watersheds may be thick. A study of the properties of different kinds
of graphs with respect to the thinness of watersheds can be found in [18, 19].
An interesting framework is that of edge-weighted graphs, where watersheds
are naturally thin; furthermore, in that framework, a subclass of topological
watersheds satisfies both the drop of water principle and a property of global
optimality [20].

In this paper, we translate topological watersheds from the framework of
node-weigthed-graphs to the one of edge-weighted graphs, and we identify ul-
trametric watersheds, a subclass of topological watersheds that is interesting for
hierarchical edge-segmentation.

2 Segmentation on edges

This paper is settled in the framework of edge-weighted graphs. Following the
notations of [21], we present some basic definitions to handle such kind of graphs.

We define a graph as a pair X = (V,E) where V is a finite set and E is
composed of unordered pairs of V , i.e., E is a subset of {{x, y} ⊆ V | x 6= y}.
We denote by |V | the cardinal of V , i.e, the number of elements of V . Each
element of V is called a vertex or a point (of X), and each element of E is called
an edge (of X). If V 6= ∅, we say that X is non-empty.
As several graphs are considered in this paper, whenever this is necessary, we
denote by V (X) and by E(X) the vertex and edge set of a graph X.
A graph X is said complete if E = V (X) × V (X).
Let X be a graph. If u = {x, y} is an edge of X, we say that x and y are adjacent
(for X). Let π = 〈x0, . . . , xℓ〉 be an ordered sequence of vertices of X, π is a
path from x0 to xℓ in X (or in V ) if for any i ∈ [1, ℓ], xi is adjacent to xi−1. In
this case, we say that x0 and xℓ are linked for X. We say that X is connected
if any two vertices of X are linked for X.
Let X and Y be two graphs. If V (Y ) ⊆ V (X) and E(Y ) ⊆ E(X), we say
that Y is a subgraph of X and we write Y ⊆ X. We say that Y is a connected
component of X, or simply a component of X, if Y is a connected subgraph of X

which is maximal for this property, i.e., for any connected graph Z, Y ⊆ Z ⊆ X

implies Z = Y .
Let X be a graph, and let S ⊆ E(X). The graph induced by S is the graph whose
edge set is S and whose vertex set is made of all points which belong to an edge
in S, i.e., ({x ∈ V (X) | ∃u ∈ S, x ∈ u}, S).

Important remark. Throughout this paper G = (V,E) denotes a connected
graph, and the letter V (resp. E) will always refer to the vertex set (resp. the
edge set) of G. We will also assume that E 6= ∅.
Let S ⊂ E. In the following, when no confusion may occur, the graph induced
by S is also denoted by S.

Typically, in applications to image segmentation, V is the set of picture
elements (pixels) and E is any of the usual adjacency relations, e.g., the 4- or
8-adjacency in 2D [22].



If S ⊂ E, we denote by S the complementary set of S in E, i.e., S = E \ S.
A set C ⊂ E is an (edge-)cut (of G) if each edge of C is adjacent to two

different nonempty connected components of C.
A graph S is called an (edge-)segmentation (of G) if E(S) is a cut.
Any connected component of a segmentation S is called a region (of S).

(a) (b) (c)

Fig. 1. Illustration of edge-segmentation and edge-cut. (a) A graph X. (b) An edge-
segmentation of X; the set of dotted-lines edges is the associated edge-cut of X. (c) A
subgraph of X which is not an edge-segmentation of X: the grey point is isolated.

The previous definitions of cut and segmentation (illustrated on fig. 1) are
not the usual ones. In particular, Prop. 1.(i) below states that there is no isolated
point in an edge-segmentation. If we need an isolated point x, it is always possible
to replace x with an edge {x′, y′}. Furthemore, isolated points are often noise in
an image.

It is interesting to state the definition of a segmentation from the point of
view of vertices of the graph. A graph X is said to be spanning (for V ) if
V (X) = V . We denote by φ the map that associates, to any X ⊂ G, the graph
φ(X) = {V (X), {{x, y} ∈ E|x ∈ V (X), y ∈ V (X)}}. We observe that φ(X) is
maximal among all subgraphs of G that are spanning for V (X), it is thus a
closing on the lattice of subgraphs of G [23]. We call φ the edge-closing.

Property 1 A graph S ⊆ G = (V,E) is an edge-segmentation of G if and only
if

(i) The graph induced by E(S) is S;
(ii) S is spanning for V ;
(iii) for any connected component X of S, X = φ(X).

3 Topological watershed

3.1 Edge-weighted graphs

We denote by F the set of all mappings from E to R
+ and we say that any

mapping in F weights the edges of G. For any F ∈ F , the pair (G, F ) is called



an edge-weighted graph. Whenever no confusion can occur, we will denote the
edge-weighted graph (G, F ) by F .

For applications to image segmentation, we will assume that the altitude
of u, an edge between two pixels x and y, represents the dissimilarity between x

and y (e.g., F (u) equals the absolute difference of intensity between x and y;
see [24] for a more complete discussion on different ways to set the mapping F

for image segmentation). Thus, we suppose that the salient contours are located
on the highest edges of (G, F ).

Let λ ∈ R
+ and F ∈ F , we define F [λ] = {v ∈ E | F (v) ≤ λ}. The graph

(induced by) F [λ] is called a (cross)-section of F . A connected component of a
section F [λ] is called a (level λ) component of F .

We define C(F ) as the set composed of all the pairs [λ, C], where λ ∈ R
+ and

C is a component of the graph F [λ]. We call altitude of [λ, C] the number λ. We
note that one can reconstruct F from C(F ); more precisely, we have:

F (v) = min{λ | [λ, C] ∈ C(F ), v ∈ E(C)}

For any component C of F , we set h(C) = min{λ | [λ, C] ∈ C(F )}. We define
C⋆(F ) as the set composed by all [h(C), C] where C is a component of F . The
set C⋆(F ), called the component tree of F [25,26], is a finite subset of C(F ) that
is widely used in practice for image filtering.

A (regional) minimum of F is a component X of the graph F [λ] such that
for all λ1 < λ, F [λ1]∩E(X) = ∅. We remark that a minimum of F is a subgraph
of G and not a subset of the points of G; we also remark that any minimum X

of F is such that |V (X)| > 1.
We denote by M(F ) the graph whose vertex set and edge set are, respectively,

the union of the vertex sets and edge sets of all minima of F .

3.2 Topological watersheds on edge-weighted graphs

Let X be a subgraph of G. An edge u ∈ E(X) is said to be W-simple (for
X) (see [16]) if X has the same number of connected components as X + u =
(V (X)∪u, E(X)∪{u}). An edge u such that F (u) = λ is said to be W-destructible
(for F ) with lowest value λ0 if there exists λ0 such that, for all λ1, λ0 < λ1 ≤ λ,
u is W-simple for F [λ1] and if u is not W-simple for F [λ0].

A topological watershed (on G) is a mapping that contains no W-destructible
edges.

A mapping F ′ is a topological thinning (of F ) if:

– F ′ = F , or if
– there exists a mapping F ′′ which is a topological thinning of F and there

exists an edge u W-destructible for F ′′ with lowest value λ such that ∀v 6=
u, F ′(v) = F ′′(v) and F ′(v) = λ0, with λ ≤ λ0 < F ′′(v).

An illustration of a topological watershed can be found in fig. 2.
The connection value between x ∈ V and y ∈ V is the number

F (x, y) = min{λ | x ∈ V (C), y ∈ V (C), [λ, C] ∈ C(F )} (1)
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Fig. 2. Illustration of topological watershed. (a) An edge-weighted graph F .
(b) A topological watershed of F . The minima of (a) are ({m, i}), ({p, l}),
({g, h}, {c, d}, {g, c}, {h, d}) and are in bold in (a).

In other words, F (x, y) is the altitude of the lowest element [λ, C] of C(F ) such
that x and y belong to C (rule of the least common ancestor).

Two points x and y are separated (for F ) if F (x, y) > max{λ1, λ2}, where
λ1 (resp. λ2) is the altitude of the lowest element [λ1, c1] (resp. [λ2, c2]) of C(F )
such that x ∈ c1 (resp. y ∈ c2). The points x and y are λ-separated (for F ) if
they are separated and λ = F (x, y).

The mapping F ′ is a separation of F if, whenever two points are λ-separated
for F , they are λ-separated for F ′.

If X and Y are two subgraphs of G, we set F (X, Y ) = min{F (x, y) | x ∈
X, y ∈ Y }.

Theorem 2 (Restriction to minima [16]). Let F ′ ≤ F be two elements of
F . The mapping F ′ is a separation of F if and only if, for all distinct minima
X and Y of M(F ), we have F ′(X, Y ) = F (X, Y ).

A graph X is flat (for F ) if for all u, v ∈ E(X), F (u) = F (v). If X is flat, the
altitude of X is the number F (X) such that F (X) = F (v) for any v ∈ E(X).

We say that F ′ is a strong separation of F if F ′ is a separation of F and
if, for each X ′ ∈ M(F ′), there exists X ∈ M(F ) such that X ⊆ X ′ and
F (X) = F (X ′).

Theorem 3 (strong separation [16]). Let F and F ′ in F with F ′ ≤ F . Then
F ′ is a topological thinning of F if and only if F ′ is a strong separation of F .

In other words, topological thinnings are the only way to obtain a watershed
that preserves connection values.

In the framework of edge-weighted graphs, topological watersheds allows for
a simple characterization.

Theorem 4. A mapping F is a topological watershed if and only if:

(i) M(F ) is a segmentation of G;



(ii) for any edge v = {x, y}, if there exist X and Y in M(F ), X 6= Y , such that
x ∈ V (X) and y ∈ V (Y ), then F (v) = F (X, Y ).

Note that if F is a topological watershed, then for any edge v = {x, y} such that
there exists X ∈ M(F ) with x ∈ V (X) and y ∈ V (X), we have F (v) = F (X).

4 Hierarchies and ultrametric distances

Let Ω be a finite set. A hierarchy H on Ω is a set of parts of Ω such that

(i) Ω ∈ H

(ii) for every ω ∈ Ω, {w} ∈ H

(iii) for each pair (h, h′) ∈ H2, h ∩ h′ 6= ∅ =⇒ h ⊂ h′ or h′ ⊂ h.

An indexed hierarchy on Ω is a pair (H,µ), where H denotes a given hierarchy
on Ω and µ is a positive function, defined on H and satisfying the following
conditions:

(i) µ(h) = 0 if and only if h is reduced to a singleton of Ω;
(ii) if h ⊂ h′, then µ(h) < µ(h′).

A distance d, in general, obeys the triangular inequality d(ω1, ω2) ≤ d(ω1, ω3)+
d(ω3, ω2) where ω1, ω2 and ω3 are any three points of the space. An ultrametric
distance (on Ω) is a function d from Ω × Ω to R

+ such that d(ω1, ω2) = 0 if
and only if ω1 = ω2, such that d(ω1, ω2) = d(ω2, ω1) and such that d obeys ul-
trametric inequality d(ω1, ω2) ≤ max(d(ω1, ω3), d(ω2, ω3)) for all ω1, ω2, ω3. The
ultrametric inequality [27] is stronger than the triangular inequality.

A partition of Ω is a collection (Ωi) of non-empty subsets of Ω such that any
element of Ω is exactly in one of these subsets. Note that any given partition
of the set Ω induces a large number of trivial ultrametric distances: d(ω1, ω1) =
0, d(ω1, ω2) = 1 if ω1 ∈ Ωi, ω2 ∈ Ωj , i 6= j, and d(ω1, ω2) = a if i = j, 0 < a < 1.
The general connection between indexed hierarchies and ultrametric distances
was proved by Benzécri [3] and Johnson [4]. This result states that there is a one-
to-one correspondance between indexed hierarchies and ultrametric distances
both defined on the same set. Indeed, associated with each indexed hierarchy
(H,µ) on Ω is the following ultrametric distance:

d(ω1, ω2) = min{µ(h) | ω1 ∈ h, ω2 ∈ h, h ∈ H}. (2)

In other words, the distance d(ω1, ω2) between two elements ω1 and ω2 in Ω is
given by the smallest element in H which contains both ω1 and ω2. Conversely,
each ultrametric distance d is associated with one and only one indexed hierarchy.

Observe the similarity between eq. 2 and eq. 1. Indeed, connection value is an
ultrametric distance on V whenever F > 0. More precisely, we have the following
property.

Property 5 Let F ∈ F . Then F (X, Y ) is an ultrametric distance on M(F ). If
furthemore, F > 0, then F (x, y) is an ultrametric distance on V .



Let Ψ be the mapping on F such that for any F ∈ F the map Ψ(F ) and for
any edge {x, y} ∈ E, Ψ(F )({x, y}) = F (x, y). It is straightforward to see that
Ψ(F ) ≤ F , that Ψ(Ψ(F )) = Ψ(F ) and that if F ′ ≤ F , Ψ(F ′) ≤ Ψ(F ). Thus Ψ

is an opening on the lattice (F ,≤) [28]. We remark that the subset of strictly
positive maps that are defined on the complete graph (V, V × V ) and that are
open with respect to Ψ is the set of ultrametric distances on V . The mapping Ψ

is known under several names, in particular the one of subdominant ultrametric
and the one of ultrametric opening. It is well known that Ψ is associated to
the simplest method for hierarchical classification called single linkage cluster-
ing [5,29], closely related to Kruskal’s algorithm [30] for computing a minimum
spanning tree.

Thanks to Th. 4, we observe that if F is a topological watershed, then Ψ(F ) =
F . However, an ultrametric distance d may have plateaus, and thus the weighted
complete graph (V, V ×V, d) is not always a topological watershed. Nevertheless,
those results underline that topological watersheds are related to hierarchical
classification, but not yet to hierarchical edge-segmentation; the study of such
relations is the subject of the rest of the paper.

5 Hierarchical edge-segmentations, saliency and

ultrametric watersheds

Informally, a hierarchical segmentation is a hierarchy made of connected regions.
However, in our framework, a segmentation is not a partition, and as the union
of two disjoint connected subgraphs of G is not a connected subgraph of G, the
formal definition is slightly more involved. A hierarchical (edge-)segmentation
(on G) is an indexed hierarchy (H,µ) on the set of regions of a segmentation S

of G, such that for any h ∈ H, φ(∪X∈hX) is connected (φ being the edge-closing
defined in section 2).

For any λ ≥ 0, we denote by H[λ] the graph induced by {φ(∪X∈hX)|h ∈
H,µ(h) ≤ λ}. The following property is an easy consequence of the definition of
a hierarchical segmentation.

Property 6 Let (H,µ) be a hierarchical segmentation. Then for any λ ≥ 0, the
graph H[λ] is a segmentation of G.

Property 5 implies that the connection value defines a hierarchy on the set
of minima of F . If F is a topological watershed, then by Th. 4, M(F ) is a
segmentation of G, and thus from any topological watershed, one can infer a
hierachical segmentation. However, F [λ] is not always a segmentation: if there
exists a minimum X of F such that F (X) = λ0 > 0, for any λ1 < λ0, F [λ1]
contains at least two connected components X1 and X2 such that |V (X1)| =
|V (X2)| = 1. Note that the value of F on the minima of F is not related to the
position of the divide nor to the associated hierarchy of minima/segmentations.
This leads us to introduce the following definition.

A map F ∈ F is an ultrametric watershed if F is a topological watershed,
and if furthemore, for any X ∈ M(F ), F (X) = 0.



Property 7 A map F is an ultrametric watershed if and only if for all λ ≥ 0,
F [λ] is a segmentation of G.
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Fig. 3. An example of an ultrametric watershed F and a cross-section of F .

This property is illustrated in fig. 3.
By definition of a hierarchy, two elements of H are either disjoint or nested.

If furthermore (H,µ) is a hierarchical segmentation, the graphs E(H[λ]) can be
stacked to form a map. We call saliency map [8] the result of such a stacking, i.e. a
saliency map is a map F such that there exists (H,µ) a hierarchical segmentation
with F (v) = min{λ|v ∈ E(H[λ])}.

Property 8 A map F is a saliency map if and only if F is an ultrametric
watershed.

A corrolary of property 8 states the equivalence between hierachical segmen-
tations and ultrametric watersheds. The following theorem is the main result of
this paper.

Theorem 9. There exists a bijection between the set of hierachical edge-segmentations
on G and the set of ultrametric watersheds on G.

As there exists a one-to-one correspondance between the set of indexed hi-
erarchies and the set of ultrametric distances, it is interesting to search if there
exists a similar property for the set of hierarchical segmentations. Let d be the
ultrametric distance associated to a hierarchical segmentation (H,µ). We call
ultrametric contour map (associated to (H,µ)) the map dE such that:

1. for any edge v ∈ E(H[0]), then dE(v) = 0;
2. for any edge v = {x, y} ∈ E(H[0]), dE(v) = d(X, Y ) where X (resp. Y ) is

the connected component of H[0] that contains x (resp. y).

Property 10 A map F is an ultrametric watershed if and only if F is the
ultrametric contour map associated to a hierarchical segmentation.



6 Conclusion

Fig. 4 is an illustration of the application of the framework developped in this
paper to a classical hierarchical segmentation scheme based on attribute open-
ing [8,14,25]. Fig. 5 shows some of the differences between applying such scheme
and applying a classical morphological segmentation scheme, e.g. attribute open-
ing followed by a watershed [12]. As watershed algorithms generally place water-
shed lines in the middle of plateaus, the two schemes give quite different results.

It is important to note that most of the algorithms proposed in the litterature
to compute saliency maps are not correct, often because they rely on wrong con-
nection values or because they rely on thick watersheds where merging regions
is difficult. Future papers will propose novel algorithms (based on the topologi-
cal watershed algorithm [31]) to compute ultrametric watersheds, with proof of
correctness.

On a more theoretical level, this work can be pursued in several directions.

– We will study lattices of watersheds [32] and will bring to that framework
recent approaches like scale-sets [9] and other metric approaches to segmen-
tation [10]. For example, scale-sets theory considers a rather general formula-
tion of the partitioning problem which involves minimizing a two-term-based
energy, of the form λC + D, where D is a goodness-of-fit term and C is a
regularization term, and proposes an algorithm to compute the hierarchi-
cal segmentation we obtain by varying the λ parameter. We can hope that
the topological watershed algorithm [31] can be used on a specific energy
function to directly obtain the hierarchy.

– Subdominant theory (mentionned at the end of section 4) links hierachical
classification and optimisation. In particular, the subdominant ultrametric
d′ of a dissimilarity d is the solution to the following optimisation problem
for p < ∞:

min{||d − d′||pp | d′ is an ultrametric distance and d′ ≤ d}

It is certainly of interest to search if topological watersheds can be solutions
of similar optimisation problems.

– Several generalisations of hierarchical clustering have been proposed in the
literature [1]. An interesting direction of research is to see how to extend in
the same way the topological watershed approach, for example for allowing
regions to overlap.
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(a) Original image (b) Ultrametric watershed (c) Cross section of (b)

Fig. 4. Example of ultrametric watershed.

(a) (b)

Fig. 5. Zoom on a comparison between two watersheds of a filtered version of the
image 4.a. Morphological filtering tends to create large plateaus, and both watersheds
(a) and (b) are possible, but only (a) is a subset of a watershed of 4.a. No hierarchical
scheme will ever give a result as (b).


