
HAL Id: hal-00622399
https://hal.science/hal-00622399

Submitted on 12 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quasi-linear algorithms for the topological watershed
Michel Couprie, Laurent Najman, Gilles Bertrand

To cite this version:
Michel Couprie, Laurent Najman, Gilles Bertrand. Quasi-linear algorithms for the topological water-
shed. Journal of Mathematical Imaging and Vision, 2005, 22 (2-3), pp.231-249. �hal-00622399�

https://hal.science/hal-00622399
https://hal.archives-ouvertes.fr


Quasi-linear algorithms for the topological

watershed

Michel Couprie(a,b) and Laurent Najman(a,b) and
Gilles Bertrand(a,b)

(a) Laboratoire A2SI, Groupe ESIEE BP99, 93162 Noisy-le-Grand Cedex France
(b) IGM, Unité Mixte de Recherche CNRS-UMLV-ESIEE UMR 8049

e-mail: (m.couprie,l.najman,g.bertrand)@esiee.fr;
url: www.esiee.fr/∼coupriem/Sdi eng

Abstract

The watershed transformation is an efficient tool for segmenting grayscale images.
An original approach to the watershed [1,9] consists in modifying the original image
by lowering some points while preserving some topological properties, namely, the
connectivity of each lower cross-section. Such a transformation (and its result) is
called a W-thinning, a topological watershed being an “ultimate” W-thinning. In
this paper, we study algorithms to compute topological watersheds. We propose
and prove a characterization of the points that can be lowered during a W-thinning,
which may be checked locally and efficiently implemented thanks to a data structure
called component tree. We introduce the notion of M-watershed of an image F ,
which is a W-thinning of F in which the minima cannot be extended anymore
without changing the connectivity of the lower cross-sections. The set of points in
an M-watershed of F which do not belong to any regional minimum corresponds
to a binary watershed of F . We propose quasi-linear algorithms for computing M-
watersheds and topological watersheds. These algorithms are proved to give correct
results with respect to the definitions, and their time complexity is analyzed.

Key words: discrete topology, mathematical morphology, watershed, component
tree, segmentation

Introduction

The watershed transformation was introduced as a tool for segmenting gray-
scale images by S. Beucher and C. Lantuéjoul [3] in the late 70’s, and is now
used as a fundamental step in many powerful segmentation procedures. A
popular presentation of the watershed is based on a flooding paradigm. Let us

Preprint submitted to Kluwer JMIV 1 October 2004



consider a grayscale image as a topographical relief: the gray level of a pixel
becomes the altitude of a point, the basins and valleys of the relief correspond
to the dark areas, whereas the mountains and crest lines correspond to the light
areas (Fig. 1a1, a2). Let us imagine the surface of this relief being immersed in
still water, with holes pierced in local minima. Water fills up basins starting
at these local minima, and dams are built at points where waters coming from
different basins would meet. As a result, the surface is partitioned into regions
or basins which are separated by dams, called watershed lines.

Efficient watershed algorithms based on such immersion simulation were pro-
posed by L. Vincent, P. Soille [34] and F. Meyer [22,4] in the early 90’s. Many
different watershed paradigms and algorithms have been proposed until now,
see [27] for a review. In the continuous space, a definition and some properties
of the watersheds of “regular” functions have been studied by L. Najman and
M. Schmitt [26]. However, until recently, there was no general framework in-
cluding a precise definition, strong properties, and algorithms which may be
proved to indeed implement the definition.

A different approach to watersheds, originally proposed by G. Bertrand and
M. Couprie [9], is developed in [1,25]. In this approach, we consider a transfor-
mation called topological watershed, which modifies a map (e.g., a grayscale
image) while preserving some topological properties, namely, the connectiv-
ity 1 of each lower cross-section. The motivation for such a condition will
appear a little later, when we will discuss the properties of this transforma-
tion. Let F be a map and λ be a number, the lower cross-section F [λ] is the

1 The notions of connectivity, path, connected components, etc. will be precisely
defined in section 1.

1 2 3 7 6 5 4

1 3 4 7 6 5 5

3 3 8 8 8 5 5

4 6 8 8 7 6 9

3 3 5 9 7 5 4

2 3 4 9 6 5 3

r

p

q

1 1 1 7 4 4 4

1 1 1 7 4 4 4

1 1 1 7 6 4 4

4 4 4 7 3 6 6

2 2 2 7 3 3 3

2 2 2 7 3 3 3

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 1 1 0 0

1 1 1 1 0 1 1

0 0 0 1 0 0 0

0 0 0 1 0 0 0

a1 b1 c1

a2 b2 c2

Fig. 1. a1, a2: original images; b1 (resp. b2): topological watershed of a1 (resp. a2);
c1 (resp. c2): W-crest of a1 (resp. a2), in white.

2



set composed of all the points having an altitude strictly lower than λ (Fig. 3).
A point x is said to be W-destructible for F (where W stands for Watershed) if
its altitude can be lowered by one without changing the number of connected
components of F [k], with k = F (x). A map G is called a W-thinning of F
if it may be obtained from F by iteratively selecting a W-destructible point
and lowering it by one. A topological watershed of F is a W-thinning of F
which contains no W-destructible point. This transformation has the effect of
spreading the regional minima of the map (see Fig. 1). Let F be a map and
let G be a topological watershed of F , the set of points which do not belong
to any regional minimum of G is called a W-crest of F . The W-crest of F
corresponds to a binary watershed of F (see Fig. 1c1, c2).

In [1], G. Bertrand develops a framework in which fundamental properties of
topological watersheds are proved, and where the notion of separation plays
a central role. Consider a map F , we can say that two points p and q are k-
separated if there exists a path between p and q, the maximal altitude of which
is k − 1 > max(F (p), F (q)), and if there is no path between p and q with a
maximal altitude strictly less than k−1 (notice that this notion of k-separation
between two points is closely related to the notion of grayscale connectivity
introduced by Rosenfeld [28], see also [6]). For example, in Fig. 1a1, the point p
and the point q are 5-separated, but the point p and the point r are not
separated. We say that a map G, such that G ≤ F , is a separation of F , if
whenever p and q are k-separated for F , p and q are k-separated for G. We
say that G is a strong separation of F if G is a separation of F and if the
minima of G are “extensions” of the minima of F . In Fig. 1, it can be checked
that b1 is a strong separation of a1.

One of the main theorems proved in [1] (the strong separation theorem) states
that G is a W-thinning of F if and only if G is a strong separation of F .
The “if” part of the theorem corresponds to a notion of contrast preservation.
We will say informally that a transformation “preserves the contrast” if the
transformation preserves the altitude of the minima of the image and if, when
two minima are separated by a crest in the original image, they are still sepa-
rated by a crest of the same altitude in the transform. For example in Fig. 1,
if we take any two minima which are k-separated in ai (i = 1,2) for a given k,
we know that they are k-separated in bi since bi is a W-thinning of ai. This
constrast preservation property is not satisfied in general by the most popular
watershed algorithms (see [23,25]).
The “only if” part of the theorem mainly states that, if one needs a transfor-
mation which preserves the contrast in this sense, then this transformation is
necessarily a W-thinning. This remarkable result shows that the topological
watershed is a fundamental tool to obtain a contrast preserving watershed
transformation.

In this paper, we study algorithms to compute topological watersheds. A naive

3



algorithm could be the following: for all p in E (n points), check the number
of connected components of the lower cross-section at the level of p which are
adjacent to p (cost for each point p: O(n) with a classical connected compo-
nent labelling algorithm), lower the value of p by one if this number is exactly
one. Repeat this whole process until no W-destructible point remains. Con-
sider an image which consists of a single row of n + 2 points, such that each
point has an altitude of g except for the two points at the beginning and at
the end of the row, which have an altitude of 0 (with any positive integers
n, g). The outer loop will be executed g times. The time complexity of this
naive algorithm is thus at least in O(n2 × g).
We reduce the complexity by two means.
First, we propose and prove a new characterization of the W-destructible
points which may be checked locally and efficiently: the total time for check-
ing the W-destructibleness of all the vertices in a graph with n vertices and m
arcs is in O(n + m). We obtain this result thanks to a data structure called
component tree, which may be constructed in quasi-linear time [24], that is, in
O(N×α(N)) where N = n+m and α(N) is a function which grows extremely
slowly with N (we have α(1080) ≈ 4). This complexity can be reached thanks
to a reduction to the disjoint set problem [31].
Second, we propose different strategies to ensure that a point is lowered at
most once during the execution of the algorithm. One of these strategies relies
on the notions of M̃ -point and M-watershed. A point p is an M̃ -point if it is
adjacent to a regional minimum and if it can be lowered by W-thinning down
to the level of this minimum. An M-watershed is obtained by iteratively low-
ering M̃ -points until stability. Recall that a W-crest of a map F is composed
by the points which do not belong to any regional minimum of a topological
watershed of F . We prove that the set of points which do not belong to any
regional minimum of an M-watershed of F is always a W-crest of F , in other
words, we can compute a W-crest by only lowering M̃ -points. We propose a
quasi-linear algorithm for computing an M-watershed — hence a W-crest —
of a map.
We also propose a quasi-linear algorithm for the topological watershed trans-
formation. These algorithms are proved to give correct results with respect to
the definitions, and their time complexity is analyzed.
In order to ease the reading of the paper, we defer the proofs to the annex.

1 Topological notions for graphs

Let E be a finite set, we denote by P(E) the set of all subsets of E. Throughout
this paper, Γ will denote a binary relation on E (thus, Γ ⊆ E × E), which is
reflexive (for all p in E, (p, p) ∈ Γ) and symmetric (for all p, q in E, (q, p) ∈ Γ
whenever (p, q) ∈ Γ). We say that the pair (E,Γ) is a graph, each element of E
is called a vertex or a point . We will also denote by Γ the map from E into
P(E) such that, for any p in E, Γ(p) = {q ∈ E; (p, q) ∈ Γ}. For any point p,

4



the set Γ(p) is called the neighborhood of p. If q ∈ Γ(p) then we say that p
and q are adjacent or that q is a neighbor of p. If X ⊆ E and q is adjacent
to p for some p ∈ X, we say that q is adjacent to X.

For applications to digital image processing, assume that E is a finite subset
of Zn (n = 2, 3), where Z denotes the set of integers. A subset X of E repre-
sents the “object”, its complementaryX = E\X represents the “background”,
and Γ corresponds to an adjacency relation between points of E. In Z2, Γ may
be one of the usual adjacency relations, for example the 4-adjacency or the
8-adjacency in the square grid. Let us recall briefly the usual notions of path
and connected component in graphs.

Let (E,Γ) be a graph, let X ⊆ E, and let p0, pk ∈ X. A path from p0 to pk
in X is an ordered family (p0, . . . , pk) of points of X such that pi+1 ∈ Γ(pi),
with i = 0 . . . k − 1.
Let p, q ∈ X, we say that p and q are linked for X if there exists a path from p
to q in X. We say that X is connected if any p and q in X are linked for X.
We say that a subset Y of E is a connected component of X if Y ⊆ X, Y is
connected, and Y is maximal for these two properties, i.e., if Y ⊆ Z ⊆ X and
if Z is connected, then Z = Y . In the sequel of the article, we will assume
that E is connected.

We are interested in transformations that preserve the number of connected
components of the background. For that purpose, we introduce the notion of
W-simple point in a graph. Intuitively, a point of X is W-simple if it may be
removed from X while preserving the number of connected components of X.

Definition 1 Let X ⊆ E, let p ∈ X.
We say that p is a border point (for X) if p is adjacent to X.
We say that p is an inner point (for X) if p is not a border point for X.
We say that p is separating (for X) if p is adjacent to at least two connected
components of X.
We say that p is W-simple (for X) if p is adjacent to exactly one connected
component of X.

Notice that a point which is not W-simple, is either an inner point or a sep-
arating point. In Fig. 2, the points of the set X are represented by “1”s, and
the 4-adjacency is assumed, as for all subsequent examples. The points which
are W-simple are circled. It may be easily seen that one cannot locally de-
cide whether a point is W-simple or not. Consider the points x and y in the
third row: their neighborhoods are alike, yet x is W-simple (it is adjacent to
exactly one connected component of X), and y is not, since it is adjacent to
two different connected components of X.

5



1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 0 1 0 1 0 1 1

1 1 0 1 0 1 0 1 1

1 1 0 0 0 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

x y

Fig. 2. A set X (the 1’s) and its complement X (the 0’s). The W-simple points are
circled.

2 Topological notions for weighted graphs and stacks

Now, we extend these notions to a weighted graph (E,Γ, F ), where F is a
function from E to Z. A weighted graph is a model for a digital grayscale
image; for any point p ∈ E, the value F (p) represents the gray level of p. Let
kmin and kmax be two elements of Z such that kmin < kmax. We set K = {k ∈
Z; kmin ≤ k < kmax}, and K+ = K ∪ {kmax}. We denote by F the set composed
of all functions from E to K. Let F ∈ F , let k ∈ K+. We denote by F [k] the
set {p ∈ E;F (p) ≥ k}; F [k] is called a level set of F . Notice that F [kmin] = E
and F [kmax] = ∅.

Any function in F can be represented by its different level sets. For a given
function, these level sets constitute a “stack”: in fact, the datum of a function
is equivalent to the datum of a stack. We give here a minimal set of definitions
borrowed from [1] for stacks, which is is sufficient for our purpose; the inter-
ested reader should refer to [1] for a more complete presentation. Considering
the equivalence between a function and its corresponding stack, we will use
the same symbol for both of them.

Definition 2 Let F = {F [k]; k ∈ K+} be a family of subsets of E.
We say that F is an upstack on E if F [kmin] = E, F [kmax] = ∅, and F [j] ⊆ F [i]
whenever i ≤ j.
We say that F is a downstack on E if F [kmin] = ∅, F [kmax] = E, and F [i] ⊆
F [j] whenever i ≤ j.
We denote by S+ (resp. S−) the set of all upstacks (resp. downstacks) on E.
Any element of S+ ∪ S− is called a stack on E.
Let F be a stack on E, we define the stack F = {F [k] = F [k]; k ∈ K} which
is called the complement of F . Let F be a stack on E, any element F [k] of F
is called a section of F (at level k), or the k-section of F .
Let F ∈ S+ and let G ∈ S−. We define the functions induced by F and G,
also denoted by F , G, such that for any p ∈ E:

F (p) = max{k ∈ K; p ∈ F [k]} ; G(p) = min{k ∈ K; p ∈ G[k]}.

Important remark: Let F ∈ F . Clearly, the level sets of F form an upstack
(also denoted by F ), and the function induced by the upstack F is precisely

6



3 3 3 2 2 2 1

3 3 3 2 2 1 1

3 3 2 2 1 1 0

3 2 2 2 1 0 0

2 1 1 2 0 0 0

1 1 1 1 2 1 1

1 1 1 2 1 0 1

x

z

y r

s

F

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 1 1

0 0 0 0 1 1 1

0 0 0 0 0 0 0

0 0 0 0 0 1 0

F [1]

0 0 0 0 0 0 1

0 0 0 0 0 1 1

0 0 0 0 1 1 1

0 0 0 0 1 1 1

0 1 1 0 1 1 1

1 1 1 1 0 1 1

1 1 1 0 1 1 1

F [2]

0 0 0 1 1 1 1

0 0 0 1 1 1 1

0 0 1 1 1 1 1

0 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

F [3]

Fig. 3. A grayscale image F and its lower sections F [1], F [2] and F [3] (in white).
Notice that F [4] = E and F [0] = ∅.

the function F . The complement F of the upstack F is a downstack. For any
k ∈ K+, we have F [k] = F [k] = {p ∈ E;F (p) < k} = {p ∈ E;F (p) ≤ k} ;
and for any p ∈ E, we have

F (p) = F (p) + 1.

Definition 3 Let F ∈ F , let k ∈ K+. A connected component of a non-empty
k-section of F is called a component of F (at level k), or a k-component of F .
A component m of F is said to be a minimum of F (and also a minimum
of F ) if there is no other component of F which is included in m.
Let p ∈ E, the component of p in F , denoted by C(p, F ) or simply by C(p)
when no confusion may occur, is defined as the component of F [k] which con-
tains p, with k = F (p).
We denote by Γ−(p, F ) the set of lower neighbors of the point p for the func-
tion F , that is, Γ−(p, F ) = {q ∈ Γ(p);F (q) < F (p)}. Notice that Γ−(p, F ) =
Γ−(p, F ). When no confusion may occur, we write Γ−(p) instead of Γ−(p, F ).

Fig. 3 shows a grayscale image F and three sections of F . Since we use the
4-adjacency, F [2] is made of two components (in white), whereas F [3] is made
of one component. The set F [1] is made of two components which are minima
of F . We have: C(x, F ) = E ; C(r, F ) is the component of F [1] which contains
six points; and C(y, F ) = C(z, F ): it is the unique component of F [3].

Definition 4 Let F ∈ F , let p ∈ E, let k = F (p).
We say that p is a border point (for F ) if p is an border point for F [k].
We say that p is an inner point (for F ) if p is an inner point for F [k].
We say that p is separating (for F ) if p is separating for F [k].
The point p is W-destructible (for F ) if p is W-simple for F [k]. Let v ∈ K,
the point p is W-destructible with lowest value v (for F ) if for any h such
that v < h ≤ F (p), p is W-simple for F [h], and if p is not W-simple for F [v].

In other words, the point p is W-destructible for F if and only if p is a border
point for F (i.e., Γ−(p) 6= ∅) and all the points in Γ−(p) belong to the same
connected component of F [k], with k = F (p).

In Fig. 3, the points x, r, s are inner points, y is a W-destructible point (with
lowest value 1), and z is a separating point.

7



Let F ∈ F , let p ∈ E, let v ∈ K such that v < F (p), we denote by [F \ p ↓ v]
the element of F such that [F \ p ↓ v](p) = v and [F \ p ↓ v](q) = F (q)
for all q ∈ E \ {p}. Informally, it means that the only difference between the
function F and the function [F \ p ↓ v], is that the point p has been lowered
down to the value v. We also write [F \ p] = [F \ p ↓ v] when v = F (p)− 1.
If we consider F ′ = [F \ p ↓ v], it may be easily seen that for all h in K+,
the number of connected components of F ′[h] equals the number of connected
components of F [h]. That is to say, the value of a W-destructible point may
be lowered by one or down to its lowest value without changing the number
of connected components of any section of F .

Definition 5 Let F ∈ F . We say that G ∈ F is a W-thinning of F if
i) G = F, or if
ii) there exists a function H which is a W-thinning of F and there exists a
W-destructible point p for H such that G = [H \ p].
We say that G is a (topological) watershed of F if G is a W-thinning of F
and if there is no W-destructible point for G.

Let F ∈ F , let p ∈ E, let v ∈ K. It may be easily seen that, if p is W-
destructible with lowest value v, then [F \ p ↓ v] is a W-thinning of F and p
is not W-destructible for [F \ p ↓ v] ; and that the converse is also true.

In other words, one can obtain a W-thinning of a function F by iteratively
selecting a W-destructible point and lowering it by one. If this process is
repeated until stability, one obtains a topological watershed of F . Notice that
the choice of the W-destructible point is not necessarily unique at each step,
thus, in general, there may exist several topological watersheds for the same
function.

In Fig. 4, we present an image 4a and a topological watershed 4b of 4a. Note
that in 4b, the minima of 4a have been spread and are now separated from each
other by a “thin line”; nevertheless, their number and values have been pre-
served. Fig. 4c shows a W-thinning of 4a which is not a topological watershed
of 4a (there are still some W-destructible points).

Let us emphasize the essential difference between this notion of watershed and
the notion of homotopic grayscale skeleton, pioneered by V. Goetcherian [11]
and extensively studied in [2,10] for the case of 2D digital images. With the
topological watershed, only the connected components of the lower cross-
sections of the function are preserved, while the homotopic grayscale skele-
ton preserves both these components and the components of the upper cross-
sections. As a consequence, an homotopic grayscale skeleton may be computed
by using a purely local criterion for testing whether a point may be lowered
or not, while computing a topological watershed requires the use of a global
data structure (see Sec. 5).

8



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 2 11 11 11 4 4 3 3 0 5 11 11 11 3 2 0

0 3 12 6 7 5 11 7 6 5 7 11 5 7 7 12 4 0

0 15 7 4 2 3 5 11 11 11 11 5 3 1 7 7 15 0

0 3 14 7 3 5 11 8 7 8 8 11 5 3 7 14 5 0

0 1 2 13 11 11 3 2 2 1 2 4 11 11 13 4 3 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 11 11 11 0 0 0 0 0 0 11 11 11 0 0 0

0 0 11 2 2 2 11 0 0 0 0 11 1 1 1 11 0 0

0 11 2 2 2 2 2 11 0 0 11 1 1 1 1 1 11 0

0 0 11 2 2 2 11 0 0 0 0 11 1 1 1 11 0 0

0 0 0 11 11 11 0 0 0 0 0 0 11 11 11 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

b
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 11 11 11 0 0 0 0 0 0 11 11 11 0 0 0

0 0 12 2 2 2 11 0 0 0 0 11 1 1 1 12 0 0

0 15 2 2 2 2 2 11 0 0 11 1 1 1 1 1 15 0

0 0 14 2 2 2 11 0 0 0 0 11 1 1 1 14 0 0

0 0 0 13 11 11 0 0 0 0 0 0 11 11 13 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

c
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 11 11 11 0 0 0 0 0 0 11 11 11 0 0 0

0 0 11 2 2 2 11 0 0 0 0 11 1 1 1 11 0 0

0 15 2 2 2 2 2 11 11 11 11 1 1 1 1 1 15 0

0 0 11 2 2 2 11 0 0 0 0 11 1 1 1 11 0 0

0 0 0 11 11 11 0 0 0 0 0 0 11 11 11 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

d

Fig. 4. a: original image; b: a topological watershed of a; c: a W-thinning of a which
is also an M-watershed of a (see section 6); d: an homotopic grayscale skeleton of a.
In a, we have circled six points which have different types (see Section 3). From
left to right: S̃-point (12), S-point (11), M̃ -point (4), P̃ -point (6), M -point (0),
P -point (7).

Fig. 4d shows an homotopic grayscale skeleton of 4a. Notice the difference
with 4b in the center of the image, a “skeleton branch” at level 11 which
does not separate different minima, and also the two peaks (level 15) which
have been preserved. In applications where the goal is to find closed contours
around the regions of interest, the notion of watershed is a better choice.

Let us quote some definitions and a property of [1] which will be used in the
sequel of this article.

Definition 6 Let F ∈ F , let p and q be two points of E, and let k ∈ K+.
We say that p and q are k-linked (in F ) if p and q are linked for F [k].

9



We say that p dominates q (in F ) if q belongs to the component of p in F .
We say that p and q are linked (in F ) if p dominates q in F or q dominates p
in F .
We define the connection value between p and q (for F ) by:
F (p, q) = min{k; p and q are k-linked in F}.
We say that p and q are separated (in F ) if p and q are not linked in F .
We say that p and q are k-separated (in F ) if p and q are separated in F and if
the connection value for F between p and q is precisely k, i.e., if F (p, q) = k.

The equivalence between this definition of k-separated points and another
definition based on paths, stated informally in the introduction, can be easily
shown (see [1]). Fig. 3 gives some illustrations: the points x and r are linked
(x dominates r), and the points r and s are 2-separated, as it can easily be
checked using the following property.

Property 1 ([1]) Let F ∈ F . Two points p and q are k-separated in F , if
and only if:
i) p and q belong to the same component of F [k], and
ii) p and q belong to distinct components of F [k − 1].

The next property allows us to characterize a W-destructible point p by con-
sidering only the connection values between the lower neighbors of p. It will
be used to establish our main characterization theorem (th. 9).

Property 2 Let F ∈ F , let p ∈ E. The point p is W-destructible for F if and
only if Γ−(p) 6= ∅ and, for all q and r in Γ−(p) with q 6= r, we have F (q, r) ≤
F (p).

3 Classification of points and transitions

As pointed out in the introduction, the time complexity of a naive topological
watershed algorithm is O(n2 × g), where n denotes the number of points and
g = kmax−kmin. In order to design a quasi-linear W-thinning algorithm, we need
to consider what may happen when we lower the value of a point. The examples
of Fig. 4a may help the reader to understand the following definitions.

Let us consider a point p ∈ E which is not W-destructible for F ∈ F . Several
cases may be distinguished. From Def. 4, such a point is either an inner point
or a separating point for F . Furthermore, if p is an inner point, then either p
belongs to a minimum of F or not.

On the other hand, if p is W-destructible for F , then p is not W-destructible
for [F \ p ↓ v] where v is the lowest value of p. Again, we can distinguish the
same possibilities for the status of p with respect to [F \ p ↓ v]. The following
definition formalizes these observations (S stands for separating, I for Inner,

10



M for minimum and P for plateau).

Definition 7 Let F ∈ F , let p ∈ E, p not W-destructible for F .
We say that p is an S-point (for F ) if p is separating for F .
We say that p is an I-point (for F ) if p is an inner point for F .
We say that p is an M -point (for F ) if p belongs to a minimum of F .
We say that p is a P -point (for F ) if p is an inner point for F which does not
belong to a minimum of F .
Let q be a point which is W-destructible for F , and let v be its lowest value.
We say that q is an S̃-point (for F ) (resp. an Ĩ-point, an M̃ -point, a P̃ -point)
if q is an S-point for [F \ q ↓ v] (resp. an I-point, an M -point, a P -point).
If p is a T -point, with T ∈ {S, M , P , S̃, M̃ , P̃}, we say that T is the type
of p.

Notice that all M -points and all P -points are I-points, and that all M̃ -points
and all P̃ -points are Ĩ-points. Notice also that any point in E has a unique
type, i.e., it is either an S-point, an M -point, a P -point, an S̃-point, an M̃ -
point, or a P̃ -point. In Fig. 4a, we have circled six points which are represen-
tative of each type.

The two following properties characterize respectively Ĩ-points and S̃-points.
They are fundamental to understand and to prove the characterization of
destructible points proposed in section 5.

Property 3 Let F ∈ F , let p ∈ E, let v ∈ K.
The point p is an Ĩ-point for F with lowest value v if and only if:
i) Γ−(p) 6= ∅; and
ii) any two points q, r in Γ−(p) are linked in F ; and
iii) v = min{F (q); q ∈ Γ−(p)}.

Property 4 Let F ∈ F , let p ∈ E, let v ∈ K.
The point p is an S̃-point for F with lowest value v if and only if:
i) Γ−(p) 6= ∅; and
ii) ∀q, r ∈ Γ−(p), if q and r are k-separated in F then k ≤ v + 1; and
iii) there exist two points q, r in Γ−(p) which are (v + 1)-separated in F .

The type of a point p depends on the connected components of the sections
of F which are adjacent to p, and we know that lowering a W-destructible
point preserves the connectivity of all these sections. It may thus be seen that,
during a W-thinning process, the type of a point p can only be changed by
the modification of either the point p itself or a neighbor of p (this will be
proved with the following theorem). By a systematic examination of all the
possibilities, we deduce that only certain transitions are possible for the type
of a point p during a W-thinning process (all of them are illustrated in Fig. 5).

Theorem 5 Let F ∈ F , let p ∈ E. During a W-thinning process, the possible

11



transitions for the type of the point p are exactly those depicted in the graph
of Fig. 5a, where the solid lines correspond to transitions due to the lowering
of the point p itself, and the dashed lines correspond to transitions due to the
lowering of a neighbor of p.

S S
~

P
~

M
~

P M

0 9 0 0 0 8 8 2 2 2 5 3 3 1

0 9 6 5 8 8 8 8 2 7 7 7 3 2

0 9 1 1 8 9 8 8 2 7 7 3 3 3

0 9 9 7 8 8 8 8 2 7 7 7 3 4

0 9 0 0 0 8 8 5 2 7 7 5 3 5

0 9 9 0 0 8 8 5 2 7 7 5 3 6

1 2 3 4 5 6 7 8 9 10 11 12 13

a b

Fig. 5. a: The eleven transition types that may occur in a W-thinning process.
b: Illustration of each possible transition type. Point (3,2) (value 6) down to 5:
[S̃ → S] for itself. Point (6,5) (value 8) down to 0: [M̃ → M ] for itself. Point (6,3)
(value 9) down to 8: [P̃ → P ] for itself. Point (2,4) (value 9) down to 0: [S̃ → S] for
(3,4). Point (10,3) (value 7) down to 2: [M̃ → S̃] for (11,3). Point (6,1) (value 8)
down to 0: [M̃ → S] for (7,1). Point (5,3) (value 8) down to 1: [P̃ → M̃ ] for (6,3).
Point (10,5) (value 7) down to 2: [P̃ → S̃] for (11,5). Point (6,5) (value 8) down
to 0: [P̃ → S] for (7,5). Point (8,3) (value 8) down to 7: [P → P̃ ] for (7,3). Point
(8,3) (value 8) down to 2: [P → M̃ ] for (7,3).

As a corollary of this theorem, we immediately deduce that a point p which
is an S-point (resp. an M -point) for F , is also an S-point (resp. an M -point)
for any W-thinning of F .

4 Component tree

Let us present the data structure called component tree, that will allow us
to characterize W-destructible points, as well as the other types of points,
locally and efficiently (section 5). We shall see in this section that there is a
strong relation between the component tree and the notion of k-separation;
this relation will be used to prove the point type characterization (theorem 9).

Let F ∈ F , let C(F ) denote the set of all couples [k, c] where c is a k-component
of F , for all values of k between kmin and kmax. We call altitude of [k, c] the
number k. By abuse of terminology, we will also call component an element
of C(F ).

We see easily that these components can be organized in a tree structure, that
we call component tree. This structure has been introduced in the domain of
data analysis [35,14], and appears to be a fundamental tool to represent some
“meaningful” information contained in a numerical function [13,12]. Several
authors, such as Vachier [33], Breen and Jones [7,16], Salembier et al. [30],

12



Meijster and Wilkinson [21] have used this structure in order to implement
efficiently some morphological operators (e.g., connected operators, granu-
lometries, extinction functions). The component tree has also be used as a
basis for image matching algorithms [18,19]. Algorithms to compute the com-
ponent tree for the case of digital images can be found in [7,30,20]; the last
reference also contains a discussion about time complexity of the different al-
gorithms. Until recently, the fastest algorithm to compute the component tree
was proved to run in O(n× ln(n)) complexity, where n is the number of image
points. L. Najman and M. Couprie have proposed a quasi-linear algorithm [24].
For the sake of completeness, we present this algorithm in Annex 2. Let us
now give a formal definition of the component tree and related notions.

Definition 8 Let F ∈ F , let [k, c], [k1, c1], [k2, c2] be elements of C(F ).
We say that [k1, c1] is the parent of [k2, c2] if k1 = k2 + 1 and c2 ⊆ c1, in this
case we also say that [k2, c2] is a child of [k1, c1].
With this relation “parent”, C(F ) forms a directed tree that we call the compo-
nent tree of F , and that we will also denote by C(F ) by abuse of terminology.
An element of C(F ) which has no child is called a leaf, and an element of C(F )
which has at least two childs is called a fork.

Fig. 6b shows the component tree associated to the function depicted in Fig. 6a.

Definition 9 We say that [k1, c1] is an ancestor of [k2, c2] if k2 ≤ k1 and
c2 ⊆ c1. In this case, we also say that [k1, c1] is over [k2, c2], and that [k2, c2]
is under [k1, c1].
We say that the component [k, c] is a common ancestor of [k1, c1], [k2, c2] if [k, c]
is an ancestor of both [k1, c1] and [k2, c2].
We say that the component [k, c] is the least common ancestor of [k1, c1],
[k2, c2], and we write [k, c] = LCA([k1, c1], [k2, c2]), if [k, c] is a common an-
cestor of [k1, c1], [k2, c2], and if there is no other common ancestor of [k1, c1],
[k2, c2] under [k, c].
We say that the component [k, c] is the proper least common ancestor of [k1, c1]
and [k2, c2] if [k, c] is the least common ancestor of [k1, c1], [k2, c2], and if [k, c]
is different from [k1, c1] and from [k2, c2].

For example, in Fig. 6, the fork [3, g] is the proper least common ancestor of
the leafs [1, a] and [2, e], and the components [1, b] and [2, d] have no proper
least common ancestor.

Definition 10 We say that the components [k1, c1], [k2, c2] are separated if
they have a proper least common ancestor, otherwise we say that they are
linked.
Let M be a set {[k1, c1], [k2, c2], . . . , [kn, cn]} of elements of C(F ). We say that
the component [k, c] is the highest fork for M if the two following conditions

13



are satisfied:
i) for any pair [ki, ci], [kj, cj] of distinct elements of M , if [ki, ci], [kj, cj] are
separated then the altitude of LCA([ki, ci], [kj, cj]) is less or equal to k; and
ii) there exists a pair [ki, ci], [kj, cj] of separated elements of M such that [k, c]
is the proper least common ancestor of [ki, ci], [kj, cj].

For example, in Fig. 6, the set {[1, a], [3, g], [4, i]} has no highest fork, and the
component [3, g] is the highest fork of the set {[1, a], [3, g], [2, e], [4, i]}.

We make the following observations:
a) Any two components always have a unique least common ancestor. In par-
ticular, if [k1, c1] is over [k2, c2], then LCA([k1, c1], [k2, c2]) = [k1, c1]. On the
other hand, two components which are linked have no proper least common
ancestor.
b) Two components are separated if and only if they are disjoint; and two
components [k1, c1], [k2, c2] are linked if and only if either c1 ⊆ c2 or c2 ⊆ c1

(see Annex 1, lemma 6.1).
c) A set of components may have no highest fork, and if the highest fork exists,
it is indeed a fork, i.e., an element with at least two childs (otherwise it could
not be a proper least common ancestor).
d) If a set of components has a highest fork, then this highest fork is unique.

The following property makes a strong link between the component tree and
the notion of separation, and justifies the common vocabulary used for both
notions. It follows straightforwardly from Prop. 1 and from b) above.

Property 6 Let F ∈ F , let p, q ∈ E, let k = F (p), l = F (q), let h ∈ K.
i) The points p, q are h-separated in F if and only if [k, C(p)] and [l, C(q)] are
separated and their proper least common ancestor in C(F ) is a component of
altitude h.
ii) The points p, q are linked in F if and only if the components [k, C(p)] and
[l, C(q)] are linked.

The following property and theorem are from [1]. They show, in particular,
that the component tree structure is preserved by any W-thinning.

Let X,Y be non-empty subsets of E such that X ⊆ Y . We say that Y is
an extension of X if each connected component of Y contains exactly one
connected component of X. We also say that Y is an extension of X if X
and Y are both empty.
We denote by C(X) the set composed of all connected components of X. If Y is
an extension of X, the extension map relative to (X,Y ) is the bijection σ from
C(X) to C(Y ) such that, for any C ∈ C(X), σ(C) is the connected component
of Y which contains C.
Let F,G be two stacks. We say that G is an extension of F if, for any k ∈ K+,
G[k] is an extension of F [k], and we denote by σk the extension map relative

14



to (F [k], G[k]).

Property 7 ([1]) Let F be a stack, let G be an extension of F . Let k, h ∈ K+.
If X ∈ C(F [k]) and Y ∈ C(F [h]) then Y ⊆ X if and only if σh(Y ) ⊆ σk(X).

Theorem 8 ([1]) Let F and G be two elements of F such that G ≤ F .
The function G is a W-thinning of F if and only if G is an extension of F .

5 Characterization of W-destructible points

We saw in section 1 that checking whether a point is W-simple cannot be
done locally (i.e., based on the mere knowledge of the status of the point
and its neighbors), thus checking whether a point is W-destructible or not
cannot be done locally if the only available information is the graph (E,Γ)
and the function F . As discussed in the introduction, with a naive approach
a connected component search (at least in O(n), with n = |E|) is necessary
for each tested point, thus the complexity of a naive topological watershed
algorithm has a term in n2; furthermore, a point may be lowered several times
until it is no more W-destructible. The following theorem and algorithms
make it possible to perform this test on all the vertices of a weighted graph
in linear time, and also to check directly how low the W-destructible point
may be lowered until it is no more W-destructible (its lowest value), thanks
to the component tree which may be built in quasi-linear time. In addition,
the proposed algorithm provides the type of the considered point.

Recall that a W-destructible point is necessarily an Ĩ-point or an S̃-point
(section 3). We can now introduce the characterization theorem, which trans-
lates straightforwardly, thanks to Prop. 6, the properties 3 and 4 in terms of
relations between elements of the component tree.

Theorem 9 Let F ∈ F , let p ∈ E.
We denote by V (p) the set {[F (q), C(q)], q ∈ Γ−(p)}. Then:
i) The point p is an Ĩ-point for F if and only if V (p) 6= ∅ and V (p) has no
highest fork in C(F ); in this case the lowest value of p is w − 1, where w
denotes the altitude of the lowest element of V (p).
ii) The point p is an S̃-point for F if and only if V (p) 6= ∅ and V (p) has a
highest fork in C(F ), the altitude of which is v ≤ F (p); in this case the lowest
value of p is v − 1.

Let F ∈ F , we define the component mapping Ψ which associates, to each
point p, a pointer Ψ(p) to the element [F (p), C(p)] of the component tree C(F ).

In Fig. 6, we illustrate the characterization of W-destructible points using
theorem 9. The function F (grayscale image) is depicted in (a), and four
sections of F are shown in the bottom row. Each component of these sections

15



is identified by a letter. The component tree C(F ) is shown in (b), and the
component mapping Ψ in (c). From top to bottom, let us consider the four
circled points p1, p2, p3, p4. Thanks to the component mapping Ψ, we can build
the sets V (p1) = {[1, a]} (no highest fork), V (p2) = {[1, a], [2, c], [3, g]} (no
highest fork), V (p3) = {[1, b], [2, e], [3, g]} (highest fork = [3, g]), and V (p4) =
{[1, b], [2, e]} (highest fork = [3, g]). From theorem 9 we conclude that:
• p1 and p2 are Ĩ-points (thus they are W-destructible) and may be lowered
down to 0 (they are M̃ -points),
• p3 is an S̃-point (thus p3 is W-destructible) with lowest value 2,
• p4 is not W-destructible (p4 is an S-point).

1 1 1 1 3 0 0 0 0

0 0 0 3 2 3 0 0 0

0 0 3 2 2 2 3 0 0

0 3 1 3 2 3 1 3 0

0 0 3 0 2 0 2 0 0

0 0 0 0 2 0 0 0 0

9:[4,i]

7:[3,g]

2:[1,b]

6:[2,f]4:[2,d]

8:[3,h]

1:[1,a]

3:[2,c] 5:[2,e]

3 3 3 3 9 2 2 2 2

1 1 1 9 7 9 2 2 2

1 1 9 7 7 7 9 2 2

1 9 6 9 7 9 5 9 2

1 1 9 1 7 2 7 2 2

1 1 1 1 7 2 2 2 2

a b c

ba
d

f e

c g

h i

F [1] F [2] F [3] F [4]

Fig. 6. Illustration of theorem 9. a: original image F ; b: component tree C(F ); c:
component mapping Ψ; bottom row: sections F [1], F [2], F [3], F [4] (in white, with
their components labelled by letters).

The problem of finding the lowest common ancestor of two nodes in a di-
rected tree has been well studied, and efficient algorithms exist: D. Harel and
R.E. Tarjan [15] showed that it is possible to build in linear time a represen-
tation of a tree, which allows to find the lowest common ancestor of any two
nodes in constant time. An algorithm allowing a practical implementation is
provided in [5]. We denote by BLCA (for Binary LCA) the procedure which
implements this algorithm, and which takes as arguments a tree (represented
in a convenient manner) and two nodes.

We remark that using theorem 9 to check whether a point is W-destructible,
involves the computation of the highest fork of the elements of the set V (p),
and this may require a number of calls to BLCA which is quadratic with
respect to the cardinality of V (p): every pair of elements of V (p) has to be
considered. In fact, we can have a linear complexity with the following algo-
rithm and property.

Let C be a component tree, let V be a set of components of C, we denote by
min(V ) an element of V which has the minimal altitude. For this algorithm

16



and the following ones, we assume that C is represented in a convenient manner
for BLCA.

Function HighestFork (Input C a component tree, V a set of components of C)
01. [k1, c1] ← min(V ) ; let [k2, c2] . . . [km, cm] be the other elements of V
02. km ← k1 ; cm ← c1

03. For i From 2 To n Do
04. [k, c] ← BLCA(C, [ki, ci], [km, cm])
05. If [k, c] 6= [ki, ci] Then km ← ki ; cm ← ci
06. If km = k1 Then Return [∞, ∅] Else Return [km, cm]

Property 10 Let C be a component tree, and let V be a non-empty set of
components of C.
i) The algorithm HighestFork returns the highest fork of the set V , or the
indicator [∞, ∅] if there is no highest fork.
ii) This algorithm makes n − 1 calls of the BLCA operator, where n is the
number of elements in V .

Based on theorem 9, we propose the following algorithm for testing the type
of a point. In addition, if the point is W-destructible then this algorithm also
returns the lowest component to which the point can be added, otherwise the
value [∞, ∅] is returned. Notice that, if this component has the finite altitude k,
then the lowest value for the point p is k − 1.

Function TestType (Input F , p, C(F ), Ψ)
01. V ← set of elements of C(F ) pointed by Ψ(q) for all q in Γ−(p)
02. If V = ∅ Then
03. If [F (p) + 1, C(p)] is a leaf of C(F ) Then
04. Return (M , [∞, ∅])
05. Else
06. Return (P , [∞, ∅])
07. Else
08. [km, cm] ← HighestFork(C(F ),V )
09. If [km, cm] = [∞, ∅] Then
10. If min(V ) is a leaf of C(F ) Then
11. Return (M̃ , min(V ))
12. Else
13. Return (P̃ , min(V ))
14. Else
15. If km ≤ F (p) Then
16. Return (S̃, [km, cm])
17. Else
18. Return (S, [∞, ∅])

If we only want to test a particular type, then the previous procedure may be
simplified. We give below specialized functions for detecting W-destructible
and M̃ -points respectively, which will be used in the next sections.

Function W-Destructible (Input F , p, C(F ), Ψ)

17



01. V ← set of elements of C(F ) pointed by Ψ(q) for all q in Γ−(p)
02. If V = ∅ Then Return [∞, ∅]
03. [km, cm] ← HighestFork(C(F ),V )
04. If [km, cm] = [∞, ∅] Then Return min(V )
05. If km ≤ F (p) Then Return [km, cm] Else Return [∞, ∅]

Function M-destructible (Input F , p, C(F ), Ψ)
01. V ← set of elements of C(F ) pointed by Ψ(q) for all q in Γ−(p)
02. If V = ∅ Then Return [∞, ∅]
03. If min(V ) is not a leaf of C(F ) Then Return [∞, ∅]
04. [km, cm] ← HighestFork(C(F ),V )
05. If [km, cm] = [∞, ∅] Then Return min(V ) Else Return [∞, ∅]

From the previous properties and observations, we deduce straightforwardly:

Property 11 Algorithms TestType, W-Destructible and M-destructible
give correct results with regard to the definition of the different types of points
(Defs. 4 and 7), and are linear in time complexity with respect to the number
of neighbors of p.

Notice that, if Γ is a regular grid with a small connectivity degree (such as the
graphs of the 4-adjacency or the 8-adjacency on Z2), then we can regard this
complexity as constant. Notice also that even a naive implementation of the
LCA operator leads to acceptable performance in practice, since the depth of
the tree is usually quite limited. Furthermore, we can remark that the compo-
nents of the tree which have exactly one child are not useful to characterize the
type of a point, since they cannot be lowest common ancestors. It is thus pos-
sible to remove all these components from the tree, and update the component
mapping accordingly, before using it for point type characterization.

6 M-Thinning and binary watershed algorithm

The outline of a topological watershed algorithm is the following:
Repeat Until Stability

Select a W-destructible point p, using a certain criterion
Lower the value of p

It can be seen that, even if a W-destructible point is lowered down to its lowest
value, it may again become W-destructible in further steps of the W-thinning
process, due to the lowering of some of its neighbors. For example, the point
at level 6 circled in white in Fig. 4a is W-destructible with lowest value 3. If
we lower this point down to 3, we will have to lower it again, after the lowering
of its neighbor at level 3 down to 0.

In order to ensure a linear complexity, we must avoid multiple selections of
the same point during the execution of the algorithm. The properties of this

18



section and the following one provide selection criteria which guarantee that a
point lowered once will never be W-destructible again during the W-thinning
process.

The first criterion concerns points which may be lowered by W-thinning down
to the value of a neighbor which belongs to a minimum. Such a point is an
M̃ -point, and such an action is called an M-lowering . The aim of theorem 12
is to show that, if M̃ -points are sequentially selected and M-lowered, and if we
continue this process until stability, giving a result G, then no W-thinning of G
will contain any M̃ -point. Since, obviously, a point which has been M-lowered
will never be considered again in a W-thinning algorithm, we will obtain a
M-thinning algorithm which considers each point at most once, and produces
a result in which the minima cannot be extended by further W-thinning.

Definition 11 Let F,G ∈ F , we say that G is an M-thinning of F if G = F
or if G can be obtained from F by sequentially M-lowering some M̃-points.
We say that G is an M-watershed of F if G is a M-thinning of F and has no
M̃-point.

Theorem 12 Let F ∈ F , let G be an M-watershed of F . Any W-thinning
of G has exactly the same minima as G.

A corollary of this theorem is that the set of points which do not belong
to any minimum of an M-watershed of F is always a W-crest of F . Thus,
we can compute a W-crest by only lowering M̃ -points. In Fig. 4c, we see an
M-watershed of 4a.

In the following algorithm, we introduce a priority function µ which is used
to select the next M̃ -point. The priority function µ associates to each point p
a positive integer µ(p), called the priority of p. This function is used for the
management of a priority queue, a data structure which allows to perform
efficiently, on a set of points, an arbitrary sequence of the two following oper-
ations (L denotes a priority queue and p a point):
AddPriorityQueue(L, p, µ(p)): store the point p with the priority µ(p) into
the queue L;
ExtractPriorityQueue(L): remove and return a point which has the mini-
mal priority value among those stored in L (if several points fulfill this condi-
tion, an arbitrary choice is made).
The choice and the interest of the priority function will be discussed after-
wards, but notice that whatever the chosen priority function (for example a
constant function), the result will always be an M-watershed of the input.

Procedure M-watershed (Input F , C(F ), Ψ , µ ; Output F )
01. L ← EmptyPriorityQueue
02. For All p ∈ E Do
03. If M-destructible(F , p, C(F ), Ψ) 6= [∞, ∅] Then

19



04. AddPriorityQueue(L, p, µ(p)) ; mark p
05. While L 6= EmptyPriorityQueue Do
06. p ← ExtractPriorityQueue(L) ; unmark p
07. [i, c] ← M-destructible(F , p, C(F ), Ψ)
08. If [i, c] 6= [∞, ∅] Then
09. F (p) ← i− 1 ; Ψ(p) ← pointer to [i, c]
10. For All q ∈ Γ(p), q 6= p, q not marked Do
11. If M-destructible(F , q, C(F ), Ψ) 6= [∞, ∅] Then
12. AddPriorityQueue(L, q, µ(q)) ; mark q

The following property is a direct consequence of property 7, theorem 8, the-
orem 9, property 11 and of the fact that, obviously, each point is selected at
most once by this algorithm.

Property 13 Whatever the chosen priority function, the output of Procedure
M-watershed is an M-watershed of the input.
The time complexity of Procedure M-watershed is in O(n+m) + k, where k
is the overall complexity for the management of the priority queue.

This watershed algorithm is the first one which is proved to guarantee a correct
placement of the divide set with respect to contrast preservation (see [23,25]
for a comparison with some classical watershed algorithms). More precisely,
from the previous property and the strong separation theorem of [1] (see Intro-
duction), we immediately deduce that the result of Procedure M-watershed
is always a strong separation of the input.

We introduced the priority function and the priority queue in order to take
into account some geometrical criteria. For example, with a constant priority
function, plateaux or even domes located between basins may be thinned in
different ways, depending on the arbitrary choices that are allowed by the calls
to ExtractPriorityQueue with this particular priority function (line 06). In
order to “guide” the watershed set towards the highest locations of the domes
and the “center” of the plateaux, we choose a lexicographic priority function µ
described below.

Let F ∈ F , let d be a distance on E, let p ∈ E. We denote by D(p) be the
minimal distance between p and any point q strictly lower than p, that is,
D(p) = min{d(p, q);F (q) < F (p)}.
It is easy to build a function µ such that, for any p, q in E:
- if F (p) < F (q) then µ(p) > µ(q);
- if F (p) = F (q) and D(p) ≤ D(q) then µ(p) ≥ µ(q).

The efficient management of priority queues is the subject of many articles.
Recently, a priority queue algorithm has been proposed by M. Thorup [32],
which allows an operation of insertion, extraction of the minimal element or
deletion to be performed in O(log logm), where m is the number of elements

20



stored in the structure. This cost can be regarded as constant for practical
applications. Furthermore, in most current situations of image analysis, where
the number of possible values for the priority function is limited and the
number of neighbors of a point is a small constant, specific linear algorithms
can be used. An example of such a linear strategy is given in the next section,
with algorithm TopologicalWatershed.

7 Watershed algorithm

After iteratively lowering M̃ -points until stability, we have to process the other
W-destructible points in order to get a watershed. Let F ∈ F , let us call an
MS-watershed of F a function obtained from F by iteratively lowering M̃ -
points and S̃-points until stability. We could think that all P̃ -points will be
eventually changed to M̃ -points and then M-lowered in such a process, as it
is the case for images like Fig. 4a. But the examples of Fig. 7 show that it is
not always the case, in other words, an MS-watershed of F is not always a
topological watershed of F . Furthermore, there may exist thick regions made
of P̃ -points in an MS-watershed, and although M̃ -points and S̃-points may be
lowered directly down to their lowest possible value, we have no such guarantee
for the P̃ -points (see theorem 5).

0 0 9 2 2

0 0 9 2 2

4 4 6 9 2

1 1 9 2 2

1 1 9 2 2

0 0 0 30 4 4

40 0 30 3 30 4

1 40 31 30 4 4

1 40 32 31 35 35

1 1 40 35 2 2

1 1 40 2 2 2

Fig. 7. Examples of W-destructible points in an MS-watershed which are neither
M̃ -points nor S̃-points: the point at 6 in the image on the left, the points at 31 and
32 in the image on the right.

Thus, we must propose a criterion for the selection of the remaining W-
destructible points, in order to avoid multiple selections of the same point.
The idea is to give the greatest priority to a W-destructible point which may
be lowered down to the lowest possible value. We prove that an algorithm
which uses this strategy never selects the same point twice. A priority queue
could be used, as in the previous section, to select W-destructible points in
the appropriate order. Here, we propose a specific linear watershed algorithm
which may be used when the grayscale range is small.

Procedure TopologicalWatershed (Input F , C(F ), Ψ ; Output F )
01. For k From kmin To kmax − 1 Do Lk ← ∅
02. For All p ∈ E Do
03. [i, c] ← W-Destructible(F , p, C(F ), Ψ)
04. If i 6=∞ Then
05. Li−1 ← Li−1 ∪ {p} ; K(p) ← i− 1 ; H(p) ← pointer to [i, c]

21



06. For k = kmin To kmax − 1 Do
07. While ∃p ∈ Lk Do
08. Lk = Lk \ {p}
09. If K(p) = k Then
10. F (p) ← k ; Ψ(p) ← H(p)
11. For All q ∈ Γ(p), k < F (q) Do
12. [i, c] ← W-Destructible(F , q, C(F ), Ψ)
13. If i =∞ Then K(q) ← ∞
14. Else If K(q) 6= i− 1 Then
15. Li−1 ← Li−1 ∪ {q} ; K(q) ← i− 1
16. H(q) ← pointer to [i, c]

We have the following guarantees:

Property 14 In algorithm TopologicalWatershed,
i) at the end of the execution, F is a topological watershed of the input function;
ii) let n and m denote respectively the number of vertices and the number of
arcs in the graph (E,Γ). If kmax − kmin ≤ n, then the time complexity of the
algorithm is in O(n+m).

As discussed in the previous section, this algorithm provides topological guar-
antees but does not care about geometrical criteria. If we want to take such
criteria into account, we can use first the procedure M-watershed with the
priority function described at the end of section 6, and then the procedure
TopologicalWatershed.

8 Conclusion

We presented quasi-linear algorithms for computing W-crests and topological
watersheds, which are proved to give correct results with respect to the defini-
tions, and to indeed achieve the claimed complexity. From the purely topolog-
ical point of view, we consider as equivalent the different possible watersheds
of the same function; but other constraints must be taken into account when
dealing with certain applications. We provided in section 6 a criterion which
is often considered as a good choice in many practical situations. Filtering
methods based on the component tree, like connected operators, can be easily
integrated to the presented algorithms. It is also possible to design a vari-
ant taking a set of markers as secondary input, following a classical approach
based on geodesic reconstruction. Forthcoming publications will develop these
points.

22



References

[1] G. Bertrand, “On topological watersheds”, Journal of Mathematical Imaging
and Vision, to appear in this issue, 2005.

[2] G. Bertrand, J. C. Everat, M. Couprie, “Image segmentation through operators
based upon topology”, Journal of Electronic Imaging , Vol. 6, No. 4, pp. 395-405,
1997.

[3] S. Beucher, Ch. Lantuéjoul, “Use of watersheds in contour detection”,
Proc. Int. Workshop on Image Processing, Real-Time Edge and Motion
Detection/Estimation, Rennes, France, 1979.

[4] S. Beucher, F. Meyer, “The morphological approach to segmentation: the
watershed transformation”, Mathematical Morphology in Image Processing,
Chap. 12, pp. 433-481, Dougherty Ed., Marcel Dekker, 1993.

[5] M.A. Bender, M. Farach-Colton, “The LCA problem revisited”, Proc. 4th Latin
American Symposium on Theoretical Informatics, LNCS, Vol. 1776, pp. 88-94,
Springer, 2000.

[6] U.M. Braga-Neto, J. Goutsias, “A theoretical tour of connectivity in image
processing and analysis”, Journal of Mathematical Imaging and Vision, Vol. 19,
pp. 5-31, 2003.

[7] E.J. Breen, R. Jones, “Attribute openings, thinnings and granulometries”,
Computer Vision and Image Understanding, Vol. 64, No. 3, pp. 377-389, 1996.

[8] T. H. Cormen, C. Leiserson, R. Rivest, Introduction to algorithms, McGraw-
Hill, 1990.

[9] M. Couprie, G. Bertrand, “Topological grayscale watershed transformation”,
Proc. SPIE Vision Geometry VI , Vol. 3168, pp. 136-146, 1997.

[10] M. Couprie, F.N. Bezerra, G. Bertrand, “Topological operators for grayscale
image processing”, Journal of Electronic Imaging , Vol. 10, No. 4, pp. 1003-
1015, 2001.

[11] V. Goetcherian, “From binary to grey tone image processing using fuzzy logic
concepts”, Pattern Recognition, Vol. 12, No. 12, pp. 7-15, 1980.

[12] P. Guillataud, Contribution à l’analyse dendroniques des images, PhD thesis of
Université de Bordeaux I, 1992.

[13] P. Hanusse, P. Guillataud, “Sémantique des images par analyse dendronique”,
8th Conf. Reconnaissance des Formes et Intelligence Artificielle, Vol. 2, pp. 577-
588, AFCET Ed., Lyon, 1992.

[14] J.A. Hartigan, “Statistical theory in clustering”, Journal of classification, No. 2,
pp. 63-76, 1985.

[15] D. Harel, R.E. Tarjan, “Fast algorithms for finding nearest common ancestors”,
SIAM J. Comput., Vol. 13, No. 2, pp. 338-355, 1984.

23



[16] Ronald Jones, “Connected filtering and segmentation using component trees”,
Computer Vision and Image Understanding, Vol. 75, No. 3, pp. 215-228, 1999.

[17] T.Y Kong, A. Rosenfeld, “Digital topology: introduction and survey”, Computer
Vision, Graphics and Image Processing, Vol. 48, pp. 357-393, 1989.

[18] J. Mattes, J. Demongeot, “Tree representation and implicit tree matching for
a coarse to fine image matching algorithm”, Proc. MICCAI, LNCS, Springer,
Vol. 1679, pp. 646-655, 1999.

[19] J. Mattes, M. Richard, J. Demongeot, “Tree representation for image matching
and object recognition”, Proc. DGCI, LNCS, Springer, Vol. 1568, pp. 298-309,
1999.

[20] J. Mattes, J. Demongeot, “Efficient algorithms to implement the confinement
tree”, Proc. DGCI, LNCS, Springer, Vol. 1953, pp. 392–405, 2000.

[21] A. Meijster and M. Wilkinson, “A comparison of algorithms for connected set
openings and closings”, IEEE PAMI, Vol. 24, pp. 484-494, 2002.

[22] F. Meyer, “Un algorithme optimal de ligne de partage des eaux”, Proc. 8th
Conf. Reconnaissance des Formes et Intelligence Artificielle, Vol. 2, pp. 847-
859, AFCET Ed., Lyon, 1991.

[23] L. Najman, M. Couprie, “Watershed algorithms and contrast preservation”,
Proc. DGCI, LNCS , Springer, Vol. 2886, pp. 62–71, 2003.

[24] L. Najman, M. Couprie, “Quasi-linear algorithm for the component tree”, Proc.
SPIE Vision Geometry XII, Vol. 5300, pp. 98-107, 2004.

[25] L. Najman, M. Couprie, G. Bertrand, “Watersheds, mosaics, and the emergence
paradigm”, to appear in Discrete Applied Mathematics, 2004.

[26] L. Najman, M. Schmitt, “Watershed of a continuous function”, Signal
Processing, Vol. 38, pp. 99-112, 1994.

[27] J.B.T.M. Roerdink, A. Meijster, “The watershed transform: definitions,
algorithms and parallelization strategies”, Fundamenta Informaticae, Vol. 41,
pp. 187-228, 2000.

[28] A. Rosenfeld, “On connectivity properties of grayscale pictures”, Pattern
Recognition, Vol. 16, pp. 47-50, 1983.

[29] J. Serra, Image Analysis and Mathematical Morphology, Vol. II: Theoretical
Advances, Academic Press, 1988.

[30] P. Salembier, A. Oliveras, L. Garrido, “Antiextensive connected operators for
image and sequence processing”, IEEE Trans. on Image Processing, Vol. 7,
No. 4, pp. 555-570, 1998.

[31] R.E. Tarjan, “Disjoint sets” Data Structures and Network Algorithms, Chap. 2,
pp. 23-31, SIAM, 1978.

24



[32] M. Thorup, “On RAM priority queues”, 7th ACM-SIAM Symposium on
Discrete Algorithms, pp. 59-67, 1996.

[33] C. Vachier, Extraction de caractéristiques, segmentation d’images et
Morphologie Mathématique, PhD Thesis, École des Mines, Paris, 1995.

[34] L. Vincent, P. Soille, “Watersheds in digital spaces: an efficient algorithm based
on immersion simulations”, IEEE Trans. on Pattern Analysis and Machine
Intelligence, Vol. 13, No. 6, pp. 583-598, 1991.

[35] D. Wishart, “Mode analysis: a generalization of the nearest neighbor which
reduces chaining effects”, Numerical Taxonomy, A.J. Cole Ed, Academic Press,
pp. 282-319, 1969.

Annex 1: Proofs

Proof of Prop. 2: Let k = F (p). Suppose that p is W-destructible for F ,
thus p is adjacent to exactly one component of F [k] and Γ−(p) 6= ∅. Take any
two points q, r in Γ−(p), since they belong to the same component of F [k],
we deduce that F (q, r) ≤ k. Conversely, suppose that Γ−(p) 6= ∅ and for
all q and r in Γ−(p), we have F (q, r) ≤ k. Since Γ−(p) 6= ∅ there is at least
one component of F [k] adjacent to p, and the other condition implies that
all the points in Γ−(p) belong to the same component of F [k], thus p is W-
destructible. �

Proof of Prop 3: Suppose that the conditions i), ii) and iii) are verified. We
see (Prop. 2) that p is destructible. Let F (1) = [F \ p], if F (1)(p) > v we see
that the conditions i), ii) and iii) are still verified for F (1), and thus p is still
destructible. We can repeat this process until the step n such that F (p)−n = v,
and we easily deduce from iii) that p is an inner point for F (n) = [F \ p ↓ v].
The proof of the converse property is straightforward. �

Proof of Prop 4: The proof is essentially the same as the proof of Prop. 3. �

Lemma 5.1 Let F ∈ F , let p ∈ E, let k = F (p) and let v ∈ K, v < k. The
function [F \ p ↓ v] is a W-thinning of F if and only if, for any h such that
v < h ≤ k, p is W-simple for F [h].

Proof: immediate from the definitions. �

Lemma 5.2 Let F ∈ F , let p ∈ E be an S-point for F , let q be a point and
let w be an integer such that [F \ q ↓ w] is a W-thinning of F , let F ′ denote
[F \ q ↓ w]. Then, p is an S-point for F ′.

Proof: Since p is not W-destructible, we have q 6= p. We know that p is adjacent
to (at least) two distinct components c1 and c2 of F [k], with k = F (p). Suppose

25



that p is adjacent to only one component of F ′[k] (obviously, p is adjacent to
at least one component of F ′[k]). This implies that F (q) ≥ k, that w < k
and that q is adjacent to both c1 and c2, a contradiction with lemma 5.1 since
[F \ q ↓ w] is a W-thinning of F . �

Lemma 5.3 Let F ∈ F , let p ∈ E be an S̃-point with lowest value v for F ,
let q be a point and let w be an integer such that [F \ q ↓ w] is a W-thinning
of F , let F ′ denote [F \ q ↓ w]. Then, p is either an S̃-point for F ′ with lowest
value v, or an S̃-point for F ′ with lowest value w > v, or an S-point for F ′.
In the two last cases, the point q is necessarily adjacent to p.

Proof: Let k = F (p). We know that p is adjacent to exactly one component
of F [h], for all h such that v < h ≤ k, and that p is adjacent to (at least) two
distinct components c1, c2 of F [v].
• If q = p, we see that p remains an S̃-point with lowest value v for [F \ p ↓ h]
with h > v, and that p becomes an S-point for [F \ p ↓ v].
• If q is not adjacent to p, we see that p is still adjacent to exactly one com-
ponent of F ′[h] for all h such that v < h ≤ k. Suppose that q is not adjacent
to p and that p is adjacent to exactly one component of F ′[v] (obviously p
is adjacent to at least one component of F ′[v]). It means that q is adjacent
to both c1 and c2, that F (q) ≥ v and that F ′(q) < v, a contradiction with
lemma 5.1 since F ′ is a W-thinning of F .
• Suppose now that q is adjacent to p and that q 6= p. If p is W-simple for
all F ′[h] with v < h ≤ k, then p is still an S̃-point for F ′ with lowest value v
(same as above). Otherwise, p may be either an S̃-point for F ′ with lowest
value w, with v < w < k, or an S-point for F ′ (see examples in Fig. 5). �

Lemma 5.4 Let F ∈ F , let p ∈ E be an Ĩ-point for F which is adjacent to a
minimum m of F . Then p is an M̃-point with lowest value F (m).

Proof: let v = F (m), let q be a point of m adjacent to p. Let r be any point
in Γ−(p) which is not in m (if there is no such point, the proof is done). By
Prop. 3 we know that r and q are linked in F , thus, since m is a minimum, the
component of r in F must contain m, and F (r) ≥ F (m). Again by Prop. 3,
we deduce that F (m) is the lowest value of p, which implies that p is an
M̃ -point. �

Proof of Theorem 5: Let k = F (p), let T1 denote the type of the point p
for F , let q be a W-destructible point for F , let v be an integer such that
[F \ q ↓ v] is a W-thinning of F , let F ′ denote [F \ q ↓ v] and let T2 denote
the type of the point p for F ′.
1) Case T1 = M . Since p is not W-destructible, we have q 6= p. If q is not
adjacent to p then obviously T2 = T1. Suppose now that q is adjacent to p,
and that F ′(q) = v < k. If F (q) = k, then, since p is an M -point for F ,
we know that q is also an M -point for F , and thus q is not W-destructible

26



for F , a contradiction. If F (q) > k, then consider [F \ q ↓ k] and apply the
same argument as above. In conclusion, we have either q not adjacent to p or
F ′(q) ≥ k, thus T2 = T1.
2) Case T1 = P . Since p is not W-destructible, we have q 6= p. If q is not
adjacent to p then obviously T2 = T1. Suppose now that q is adjacent to p.
If F ′(q) = v ≥ k then T2 = T1, otherwise we see that p is W-destructible for F ′

with lowest value v, and that p has no strictly lower neighbor for [F ′ \ p ↓ v],
thus p is either an M̃ -point or a P̃ -point, as shown in Fig. 5).
3) Case T1 = S. See lemma 5.2.
4) Case T1 = S̃. See lemma 5.3.
5) Case T1 = P̃ . Let w be the lowest value of p.
If q = p and F ′(q) > w then T2 = T1.
If q = p and F ′(q) = w then, since p is an inner point for F ′ and not an M̃ -
point for F , we know that p is adjacent to exactly one component of F ′[w+ 1]
which is not a minimum, thus T2 = P .
We know that p is adjacent to exactly one component of F [h], for all h such
that v < h ≤ k, and that p is not adjacent to any component of F [w].
If q is not adjacent to p we see that the same remains true for F ′, thus T2 = T1.
Suppose now that q is adjacent to p and q 6= p. We see that p must be adjacent
to at least one component of F ′[k], thus T2 is not an inner type (see examples
of the three possibilities other than T1 in Fig. 5).
6) Case T1 = M̃ . The arguments are the same as for case 5, except that T2

can be M instead of P , and cannot be P̃ (see Lemma 5.4, and observe that p
remains adjacent to a minimum).

Lemma 6.1 Let F ∈ F , let k1, k2 ∈ K+, and let c1, c2 be two components
of F [k1], F [k2] respectively. Then c1 and c2 are either disjoint or tied by an
inclusion relation.

Proof: If k1 = k2 then we have either c1 ∩ c2 = ∅ or c1 = c2 (property of con-
nected components). Otherwise, suppose without loss of generality that k1 >
k2. Let c′2 be the component of F [k1] which contains c2. We have either c1∩c′2 =
∅ or c1 = c′2 (same as above). If c1∩ c′2 = ∅ then we have c1∩ c2 = ∅, otherwise
we have c2 ⊆ c1. �

Proof of Prop. 10: If km = k1 at line 06, then clearly [k1, c1] is under all the
other elements of V and there is no highest fork (any two elements of V are
linked). Otherwise, one gets easily convinced that:
- the component [km, cm] found at line 06 is indeed the LCA of a given pair of
separated components in V , and
- no other pair of separated components in V can have a higher LCA. �

Lemma 12.1 Let F, F ′ ∈ F , let p, q ∈ E and v, w ∈ K such that:
i) [F \ p ↓ v] is not a W-thinning of F , and
ii) F ′ = [F \ q ↓ w] is a W-thinning of F , and

27



iii) [F ′ \ p ↓ v] is a W-thinning of F ′.
Then p and q are neighbors, F (q) ≥ F (p), and w ≤ v.

Proof: by lemma 5.2, we deduce that p cannot be an S-point for F , because
it could not become a W-destructible point in this case. Suppose now that p
is an S̃-point for F with lowest value h > v, then by lemma 5.3 the point p
is either an S-point or an S̃-point for F ′ with a lowest value greater than h,
a contradiction with iii) since h > v. Thus, p is either an Ĩ-point with lowest
value h > v or a P -point (in this case, we set h = F (p)). For any k ≤ h, no
component of F [k] is adjacent to p. Since [F ′ \ p ↓ v] is a W-thinning of F’
we know that, for any k such that v < k ≤ h, there is exactly one component
of F ′[k] adjacent to p (see lemma 5.1). We deduce that for any such k, this
component must contain q which must be a neighbor of p, and that w ≤ v. �

Lemma 12.2 Let F ∈ F , let p ∈ E such that:
i) p is not an M̃-point for F , and
ii) there exists a point q and a value w such that [F \ q ↓ w] is a W-thinning
of F , and p is an M̃-point for [F \ q ↓ w].
Then, q is an M̃-point for F .

Proof: immediate from lemma 12.1. �

Proof of Theorem 12: Let G′ be a W-thinning of G and suppose that G′

has a minimum which is strictly larger than the corresponding minimum of G.
Consider the sequence of point lowerings which leads from G to G′, and let G =
F 0, F 1, . . . , F n = G′ be the successive results of these operations. Let F k be
the first element in the sequence in which a point p is M-lowered. Thus F k =
[F k−1 \ p ↓ v] is the result of M-lowering the point p, in other words p is an
M̃ -point for F k−1. Consider now the last F i in the sequence F 0 . . . F k−2 such
that p is not an M̃ -point for F i. If no such element exists, then we have a
contradiction since there is no M̃ -point for F 0 = G. Otherwise, since p is an
M̃ -point for F i+1 and not for F i, from lemma 12.2 we deduce that the point q
which has been lowered between F i and F i+1 has indeed been M-lowered. This
contradicts our definition of F k. �

Proof of Prop 14:
a) From property 7 and theorem 8, it follows that the initial component tree
of F remains a component tree for all the modified versions of F in this al-
gorithm. We also see that the component mapping Ψ is updated in order to
keep correct pointers from the vertices of the graph to the corresponding tree
elements.
b) We see easily that (K(p) = k and p in Lk) ⇔ p is W-destructible for F
with lowest value k.
c) Let us prove that in lines 07-16, there is no W-destructible point for F
with a lowest value k′ < k. It is true when k = kmin. From lemma 12.1, we

28



know that a point cannot receive a lowest value v unless one of its neighbors
is lowered down to a value v′ ≤ v. All the lowerings are done at line 10, by
the statement F (p) ← k. Thus, the property remains true as k increases.
d) From a) and b), we deduce that at each step of the execution, F is a W-
thinning of the input function.
e) From c), we deduce that at the end of the execution, F has no W-destructible
point.
i) Follows from d) and e).
ii) For any given value of k, a point which is lowered at line 10 will not be
lowered again in any step k′ > k. Thus, each point is lowered at most once.
Also, the total number of executions of lines 12-16 will not exceed m. Glob-
ally, the sum of the costs of all calls to the function W-Destructible is in
O(n + m). The calls to list management functions are in constant time. The
total number of elements stored in the lists Li cannot exceed n+m. �

Annex 2: Quasi-linear algorithm for the component tree

Let us first describe briefly the disjoint set problem, which consists in main-
taining a collection S of disjoint subsets of a set E under the operation of
union. Each set X in S is represented by a unique element of X, called the
canonical element. Three operations allow the management of the collection
(in the following x and y denote two distinct elements of E):
MakeSet(x): add the set {x} to the collection S, provided that the element x
does not already belongs to a set in S. The canonical element of {x} is x.
Find(x): return the canonical element of the set in S which contains x.
Link(x, y): let X and Y be the two sets in S whose canonical elements are x
and y respectively. Both sets are removed from S, their union Z = X ∪ Y is
added to S and a canonical element for Z is selected and returned.

R.E. Tarjan [31] has proposed a very simple and very efficient algorithm to
achieve any intermixed sequence of such operations with a quasi-linear com-
plexity. More precisely, if m denotes the number of operations and n denotes
the number of elements, the worst-case complexity is in O(m×α(m,n)) where
α(m,n) is a function which grows very slowly, for all practical purposes α(m,n)
is never greater than four. The implementation of this algorithm is given below.
The maps ’par’ (stands for ’parent’) and ’rank’, which constitute a representa-
tion of the disjoint sets in the form of directed trees, are represented by global
arrays in memory. For more detailed explanations and complexity analysis,
see [31].

Procedure MakeSet (element x)
par(x) ← x ; rank(x) ← 0

Function Find (element x)
If par(x) 6= x Then par(x) ← Find(par(x))
Return par(x)

29



Function Link (element x, y)
If rank(x) > rank(y) Then exchange(x, y)
If (rank(x) = rank(y)) Then rank(y) ← rank(y) + 1
par(x) ← y
Return y

Now let us give our algorithm to build the component tree. A more detailed
explanation, together with a proof of the complexity, can be found in [24].

Procedure BuildComponentTree
Input : (E,Γ) - graph; N = number of points in E
Input : F - map from E to Z
Output : Nn - number of nodes (of the component tree) (≤ N)
Output : nodes - array [0 . . . N − 1] of node
Output : Ψ - map from E to [0 . . . N − 1] (component mapping)
Local : subtreeRoot - map from [0 . . . N − 1] to [0 . . . N − 1]

01. Sort the points in increasing order of value for F ; Nn ← N
02. For All p ∈ E Do nodes[p] ← MakeNode(p); subtreeRoot[p] ← p;

MakeSet1(p); MakeSet2(p) ← p
03. For All p of E in increasing order of value for F Do
04. curCanonicalElt ← Find1(p)
05. curNode ← Find2(subtreeRoot[curCanonicalElt])
06. For each (already processed) neighbor q of p with F (q) ≤ F (p) Do
07. adjCanonicalElt ← Find1(q)
08. adjNode ← Find2(subtreeRoot[adjCanonicalElt])
09. If curNode 6= adjNode Then
10. If nodes[curNode]→height = nodes[adjNode]→height Then
11. tmpNode ← Link2(adjNode,curNode)
12. If tmpNode =curNode Then
13. Add the list of childs of nodes[adjNode]
14. to the list of childs of nodes[curNode]
15. Else
16. Add the list of childs of nodes[curNode]
17. to the list of childs of nodes[adjNode]
18. delete nodes[adjNode]; nodes[adjNode] ← nodes[curNode]
19. curNode ← tmpNode; Nn ← Nn − 1
20. Else
21. nodes[curNode]→addChild(nodes[adjNode])
22. curCanonicalElt ← Link1(adjCanonicalElt, curCanonicalElt)
23. subtreeRoot[curCanonicalElt] ← curNode
24. For All p ∈ E Do Ψ(p) ← Find2(p)

30


