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Abstract. In this paper, we investigate topological watersheds [1]. One of our main
results is a necessary and sufficient condition for a map G to be a watershed of a map
F , this condition is based on a notion of extension. A consequence of the theorem
is that there exists a (greedy) polynomial time algorithm to decide whether a map
G is a watershed of a map F or not. We introduce a notion of “separation between
two points” of an image which leads to a second necessary and sufficient condition.
We also show that, given an arbitrary total order on the minima of a map, it is
possible to define a notion of “degree of separation of a minimum” relative to this
order. This leads to a third necessary and sufficient condition for a map G to be a
watershed of a map F . At last we derive, from our framework, a new definition for
the dynamics of a minimum.

Keywords: mathematical morphology, discrete topology, graph, watershed, dynam-
ics, separation

1. Introduction

The watershed transform [3, 4, 5, 6, 7, 8] of greyscale images is very
popular as an important step of image segmentation methods [9, 10,
11]. Nevertheless, most existing approaches have several drawbacks.
The watershed algorithms produce a binary result, that is, they lose
the greyscale information that is present in the original image. This
information may be useful for further processing (e.g., reconnection of
corrupted contours). In fact, one may attempt to recover, from a binary
watershed, some greyscale values extracted from the original image
(e.g., to assign, to each catchment bassin and each watershed arc, the
minimal greyscale value of the corresponding region). Unfortunately,
it appears that this reconstructed greyscale image does not preserve
the contrast of the image (e.g., the altitudes of the passes are not
preserved), some counter-examples may be found in [1], [12] and [25].
In fact, most popular watersheds algorithms, such as the ones based on
the flooding paradigm, produce watersheds which are not necessarily
on the most significant contours of the original image. It follows that
there is a real difficulty to establish some properties of these watersheds
since some basic features of the original image are not always preserved.

c© 2004 Kluwer Academic Publishers. Printed in the Netherlands.
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In this paper1, we investigate a topological approach [1] which allows
to precisely define a greyscale watershed transform as an ultimate “W-
thinning”, a W-thinning being a kind of thinning which preserves the
connected components of the complement of each cross-section of the
original image (see also [14]). Here, a greyscale image is considered as a
map from the set of vertices of an arbitrary graph to the set of integers.
This approach is very general (e.g., it applies to images of arbitrary
dimension) and it does keep track of the useful greyscale information.
An algorithm was proposed for extracting such a watershed from a
map [1]. Nevertheless, at this time, no general property of topological
watersheds was proved.

Our main contributions are the following:
1) We give a first necessary and sufficient condition for a map G to
be a W-thinning of a map F , this condition is based on the notion of
extension. A consequence of the theorem is that there exists a (greedy)
polynomial time algorithm to decide whether a map G is a watershed
of a map F or not. This is an unexpected result because, in the classical
framework of homotopy (and simple points), such an algorithm cannot
exist [15].
2) We introduce a notion of k-separation between two points x and y
of an image: x and y are k-separated if the lowest altitude for joining
x and y is precisely k and if this altitude is strictly greater than the
altitudes of both x and y. We give a second necessary and sufficient
condition for a map G to be a W-thinning of a map F , this condition
is composed of the two following sub-conditions:
- the minima of G must be “extensions” of the minima of F ; and
- any couple of points which are k-separated for F , must be k-separated
for G.
3)We also show that, given an arbitrary total order on the minima of
a map, it is possible to define a notion of “degree of separation of a
minimum” relative to this order. This leads to a third necessary and
sufficient condition for a map G to be a W-thinning of a map F . At
last we derive, from our framework, a new definition for the dynamics
of a minimum [16, 17].

2. Basic definitions

Any discrete function may be represented by its different threshold
levels [18, 19, 20]. These levels constitute a “stack”. In fact, the datum

1 This paper is an improved version of a conference paper [13]. We now use stacks
instead of functions for deriving our results.
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of a function is equivalent to the datum of a stack. In this section,
we introduce new definitions for stacks and related notions, this set
of definitions allows to handle both the threshold levels of a discrete
function and the complements of these levels.

2.1. Discrete maps and stacks

Here and subsequently E stands for a non-empty finite set andK stands
for an element of Z, with K > 0. If X ⊆ E, we write X = {x ∈ E | x 6∈
X}. If k1 and k2 are elements of Z, we define [k1, k2] = {k ∈ Z | k1 ≤
k ≤ k2}. We set K = [−K,+K], and K◦ = [−K + 1,+K − 1] .

Definition 1:
Let F = {F [k] ⊆ E | k ∈ K} be a family of subsets of E with index
set K, such a family is said to be a K-family (on E). Any subset F [k],
k ∈ K, is a section of F (at level k) or the k-section of F . We set:

F = {F [k] | F [k] = F [k], k ∈ K},
F−1 = {F−1[k] | F−1[k] = F [−k], k ∈ K}.

The K-families F and F−1 are, respectively, the complement of F and
the symmetric of F .

Definition 2:
We say that a K-family F is an upstack on E if:

F [−K] = E, F [K] = ∅, and F [j] ⊆ F [i] whenever i < j.
We say that a K-family F is a downstack on E if:

F [−K] = ∅, F [K] = E, and F [i] ⊆ F [j] whenever i < j.
A K-family is a stack if it is either an upstack or a downstack.
We denote by S+ (resp. S−) the family composed of all upstacks on E
(resp. downstacks on E). We also set S = S+∪S−, i.e., S is the family
composed of all stacks on E .
Let F , G be both in S+ or both in S−. We say that G is under F ,
written G ⊆ F if, for all k ∈ K, G[k] ⊆ F [k].

If F is an upstack, then F and F−1 are downstacks. In fact we have:

S− = {F | F ∈ S+} = {F−1 | F ∈ S+},
S+ = {F | F ∈ S−} = {F−1 | F ∈ S−}.

Furthermore, if F ∈ S, then [F ]−1 = [F−1].

Definition 3: Let F ∈ S+ and let G ∈ S−. We define two maps
from E on K, also denoted by F and G, such that, for any x ∈ E,
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Figure 1. representation of an upstack F (the 1’s, k on the left), the downstack F−1

(the 1’s, k on the right), the downstack F (the 0’s, k on the left), and the upstack

[F ]−1 = [F−1] (the 0’s, k on the right).

F (x) = max{k ∈ K | x ∈ F [k]},
G(x) = min{k ∈ K | x ∈ G[k]},

these maps F and G are, respectively, the functions induced by the
upstack F and the downstack G, F (x) and G(x) are, respectively, the
altitudes of x for F and G.
Let F ∈ S and let x ∈ E. We set S(x, F ) = F [k], with k = F (x),
S(x, F ) is the section of x for F .

We observe that, if F ∈ S and x ∈ E, S(x, F ) = S(x, F−1).
Furthermore, if F ∈ S+, G ∈ S−, x ∈ E, and k ∈ K, we have:

F [k] = {x ∈ E | F (x) ≥ k} and G[k] = {x ∈ E | G(x) ≤ k},
−K ≤ F (x) < K and −K < G(x) ≤ K,
F (x) = F (x) + 1 and G(x) = G(x)− 1,
F−1(x) = −F (x) and G−1(x) = −G(x).

We also note that, if F and G are both in S+ or both in S−, then
F ⊆ G if and only if, for each x ∈ E, F (x) ≤ G(x) (resp. G(x) ≤ F (x)).

In Fig. 1, a representation of an upstack F is given. For example,
we have F [1] = F−1[−1] = {b, d, e}, F [1] = {a, c, f, g, h, i}, F (c) = 0,
F (c) = 1, S(c, F ) = {b, c, d, e, h}, S(c, F ) = {a, c, f, g, h, i}.

Remark 1 (maps): Let F be the family composed of all maps f
from E on K, such that, for all x in E, f(x) 6= K. Let f ∈ F . The
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upstack induced by f is the family F = {F [k] | k ∈ K}, such that, for
each k ∈ K, F [k] = {x ∈ E | f(x) ≥ k}. We note that F is indeed
an upstack on E. We also observe that, for each x ∈ E, f(x) = F (x).
Thus, we can associate, to each map f ∈ F , an upstack F , the function
induced by F being precisely f . Conversely, we can associate, to each
upstack F , an induced function f ∈ F (the function induced by the
upstack F ), the upstack induced by f being precisely F .

Remark 2 (duality): Let F1, ..., Fi be elements of S and k1, ..., kj
be in K. Let P(F1, ..., Fi, k1, ..., kj) be a certain proposition which de-
pends on F1, ..., Fi, k1, ..., kj . We will say that P(F1, ..., Fi, k1, ..., kj)
is dual if P(F1, ..., Fi, k1, ..., kj) is true whenever P(F−1

1 , ..., F−1
i , −k1,

...,−kj) is true.
For example, if F ∈ S and if k ∈ K, the property “The subset X of E
is the k-section of F” is dual.
Now, if F ∈ S and k ∈ K, let us define the k-cut of F to be the subset
{x ∈ E | F (x) ≤ k}. It may be easily seen that the property “The
subset X of E is the k-cut of F” is not dual.
In this paper, even if not explicitly mentioned, all properties (and all
definitions) are dual.

2.2. Graphs

Throughout this paper, Γ will denote a binary relation on E (thus,
Γ ⊆ E×E), which is reflexive (for all x in E, (x, x) ∈ Γ) and symmetric
(for all x, y in E, (y, x) ∈ Γ whenever (x, y) ∈ Γ). We say that the pair
(E,Γ) is a graph, each element of E is called a vertex or a point. We
will also denote by Γ the map from E to 2E (the set composed of all
subsets of E), such that, for all x ∈ E, Γ(x) = {y ∈ E | (x, y) ∈ Γ}. If
y ∈ Γ(x), we say that y is adjacent to x. If X ⊆ E and y ∈ Γ(x) for
some x ∈ X, we say that y is adjacent to X.
Let X ⊆ E, a path in X is a sequence π = 〈x0, ..., xl〉 such that xi ∈ X,
i ∈ [0, l], and xi ∈ Γ(xi−1), i ∈ [1, l]. We also say that π is a path from
x0 to xl in X. Let x, y ∈ X. We say that x and y are linked for X if
there exists a path from x to y in X. We say that X is connected if
any x and y in X are linked for X. We say that Y ⊆ E is a connected
component of X ⊆ E, if Y ⊆ X, Y is connected, and Y is maximal
for these two properties (i.e., Y = Z whenever Y ⊆ Z ⊆ X and Z is
connected).

In the sequel of this paper, we will assume that E is connected.
All notions and properties may be easily extended for non-connected
graphs.

JMIV875-CR.tex; 1/10/2004; 11:59; p.5
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2.3. Stacks and graphs

We are now in position to give some basic definitions relative to stacks
and graphs and to introduce the notion of “connection value” which
plays a key role in our framework (see also [21, 22, 23]).

Definition 4:
Let F ∈ S and let k ∈ K. A connected component of a non-empty
k-section of F is a component of F (at level k) or a k-component of F .
Let x ∈ E and let S(x, F ) be the section of x for F . We denote by
C(x, F ) the connected component of S(x, F ) which contains x, C(x, F )
is the component of x for F .
We say that x ∈ E and y ∈ E are k-linked for F if x and y are linked
for F [k], i.e., if x and y belong to the same connected component of
F [k].

Definition 5: Let F ∈ S and let X ⊆ E.
The subset X is an extremum of F if X is a component of F and if X
is minimal for this property (i.e., no proper subset of X is a component
of F ). If F ∈ S+, G ∈ S−, we also say that an extremum of F is a
maximum of F and that an extremum of G is a minimum of G.
The subset X is flat for F if F (x) = F (y) for all x, y in X. If X is flat
for F , the altitude of X for F is the value F (X) such that F (X) = F (x)
for every x ∈ X.

Observe that a subset X ⊆ E is an extremum of F if and only if X
is a component of F and flat for F .

Definition 6: Let F ∈ S+, G ∈ S−, and let x, y be two vertices
in E. We define:

F (x, y) = max{k | x and y are k-linked for F},
G(x, y) = min{k | x and y are k-linked for G},

F (x, y) and G(x, y) are the connection values between x and y for,
respectively, F and G. If X and Y are two subsets of E, we set

F (X,Y ) = max{F (x, y) | x ∈ X, y ∈ Y },
G(X,Y ) = min{F (x, y) | x ∈ X, y ∈ Y },

which are the connection values between X and Y for, respectively, F
and G .

Connection values may be expressed in terms of paths. If F ∈ S+,
G ∈ S−, and if π = 〈x0, ..., xl〉 is a path in E, let us set:

F (π) = min{F (xi) | i ∈ [0, l]},
G(π) = max{G(xi) | i ∈ [0, l]}.

JMIV875-CR.tex; 1/10/2004; 11:59; p.6
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It may be seen that two points x and y are k-linked for F ∈ S+ (resp.
G ∈ S−) if and only if there exists a path π from x to y such that
F (π) ≥ k (resp. G(π) ≤ k). Thus, if x and y are two points of E, and
if we denote by Π(x, y) the set composed of all paths from x to y in E,
we have:

F (x, y) = max{F (π) | π ∈ Π(x, y)},
G(x, y) = min{G(π) | π ∈ Π(x, y)}.

3. Topological watersheds

We introduce a notion of watershed solely based on topological criteria,
more precisely based on the preservation of certain connected compo-
nents [1]. We first present a definition for subsets, then, in a natural
way, we extend this definition to stacks (and, by the way, to functions
according to Remark 1).

Definition 7: Let X ⊆ E and let x ∈ X. We say that x is:
- a border point of X if x is adjacent to X;
- an inner point of X if x is not a border point of X;
- separating for X if x is adjacent to at least two connected components
of X.
- W-simple for X if x is adjacent to exactly one connected component
of X.

Thus, a point x is W-simple for X if and only if x is a border point
of X and not separating for X.

Definition 8: Let X, Y be subsets of E. We say that Y is a W-
thinning of X, written X ↘W Y , if:
i) Y = X; or if
ii) there exists a set Z which is a W-thinning of X and there exists a
W-simple point x for Z such that Y = Z \ {x}.
A W-thinning Y of X is a watershed of X if Y ↘W Z implies Z = Y .

In other words, Y is a W-thinning of X, if there exists a (possibly
empty) sequence 〈x0, ..., xl〉 such that Y = X \{x0, ..., xl}, and, for any
i ∈ [0, l], xi is W-simple for X \ {xj | j < i}. A subset Y is a watershed
of X if Y is a W-thinning of X and if there exists no W-simple point
for Y .

Definition 9: Let F ∈ S and let x ∈ E such that F (x) ∈ K◦. We
denote by S(x, F ) the section of x for F .

JMIV875-CR.tex; 1/10/2004; 11:59; p.7
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Figure 2. (a) an upstack represented by its function, (b) and (c) two topological
watersheds of (a).

We say that x is a border point for F if x is a border point of S(x, F );
We say that x is an inner point for F if x is an inner point of S(x, F );
We say that x is separating for F if x is separating for S(x, F );
We say that x is W-destructible for F if x is W-simple for S(x, F ).

We now introduce an operation on stacks which is the extension of
the removal of a point from a set.
Let F ∈ S and let x ∈ E such that F (x) ∈ K◦. We denote by F \ x
the element of S such that [F \ x][k] = F [k] \ {x} if k = F (x), and
[F \ x][k] = F [k] otherwise. In other words:
i) if F ∈ S+, then [F \x](x) = F (x)−1 and [F \x](y) = F (y) whenever
y 6= x;
ii) if F ∈ S−, then [F \x](x) = F (x)+1 and [F \x](y) = F (y) whenever
y 6= x.

Definition 10: Let F,G be both in S+ or both in S−. We say that
G is a W-thinning of F , written F ↘W G, if:
i) G = F ; or if
ii) there exists a W-thinning H of F and there exists a W-destructible

JMIV875-CR.tex; 1/10/2004; 11:59; p.8
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point x for H, such that G = H \ x.
A W-thinning G of F is a watershed of F if G↘W H implies H = G.

In Fig. 2 (a), an upstack F on the set E = {a, b, ..., j} is represented
by its induced function (see Remark 1). Thus F [k] = {x ∈ E | F (x) ≥
k}. For example we have F [6] = {i, b, h}. Let us consider the point e.
We have S(e, F ) = {x ∈ E | F (x) ≥ 5}. Thus S(e, F ) = {c, d, j, g, a}.
This subset is composed of two connected components but e is adjacent
to only one of these connected components, thus e is W-destructible.
On the other hand, j is not W-destructible since it is not a border
point. Two topological watersheds of (a) are represented Fig. 2 (b) and
(c).
Fig. 3 (a) gives another example of an upstack F on E represented by its
induced function, here E is a subset of Z2 (a rectangle). We choose for
Γ the well-known “4-adjacency relation”[24], i.e., each point is adjacent
to itself and to its North, South, East, West neighbors (whenever they
exist). A topological watershed of F (relative to (E,Γ)) is shown Fig.
3 (b).

The following theorem will be of primary importance for this paper.
It allows to extend, in a systematic way, results established for the
binary case to stacks and functions.

Theorem 1: Let F,G be both in S+ or both in S−. The stack G is
a W-thinning of F if and only if, for each k ∈ K, G[k] is a W-thinning
of F [k].

Proof:
i) Let x be a W-destructible point for F . By the very definition of a
W-destructible point, for each k ∈ K, [F \x][k] is a W-thinning of F [k].
By induction, if G is a W-thinning of F , then, for each k ∈ K, G[k] is
a W-thinning of F [k].
ii) Suppose F and G are two upstacks such that, for each k ∈ K, G[k]
is a W-thinning of F [k].
Let us consider the K-families Gi, i ∈ K, defined by:{

Gi[k] = F [k] if k ∈ [−K, i],
Gi[k] = G[k] if k ∈ [i+ 1,K].

- We observe that these K-families are upstacks. We also note that
GK = F and G−K = G. Furthermore, for any x in E, if Gi(x) > i,
then Gi(x) = G(x). Let us consider and index i and a point x in
F [i] \ G[i]. Since Gi[i] = F [i], and since x is an element of F [i], we
have Gi(x) ≥ i. But it is not possible that Gi(x) > i, otherwise, by the
preceding remark, we would have G(x) > i which contradicts x 6∈ G[i].

JMIV875-CR.tex; 1/10/2004; 11:59; p.9
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Figure 3. (a) original image, (b) a topological watershed of (a)

Thus, we may affirm that, whenever x is in F [i] \G[i], Gi(x) = i.
- Trivially, GK is a W-thinning of F . Suppose Gi is a W-thinning of F ,
for some i ∈ [−K + 1,K]. In order to prove the property by induction,
we will prove that Gi−1 is a W-thinning of F .
Since G[i] is a W-thinning of F [i], there exists a sequence 〈x0, ..., xl〉
such that G[i] = F [i]\{x0, ..., xl}, and, for any j ∈ [0, l], xj is W-simple
for F [i] \ {x0, ..., xj−1}. By the above remark, we have Gi(xj) = i, for
any j ∈ [0, l]. Let us consider the upstacks Gi,j , j ∈ [0, l+ 1], such that
Gi,0 = Gi, and Gi,j = Gi,j−1 \ xj−1 if j ∈ [1, l + 1]. It may be seen
that Gi,j [i] = Gi[i] \ {x0, ..., xj−1} and Gi,j [k] = Gi[k] if k 6= i. Thus,
since Gi[i] = F [i], xj is W-simple for Gi,j [i], for j ∈ [0, l]. Furthermore,
Gi,j(xj) = Gi(xj) = i. It follows that xj is W-destructible for Gi,j and
Gi,l+1 is a W-thinning of Gi,0. But Gi,0 = Gi, and we observe that
Gi,l+1 is precisely Gi−1. Since, by hypothesis, Gi is a W-thinning of F ,
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Gi−1 is a W-thinning of F . By induction, we may affirm that G is a
W-thinning of F .
A downstack G is a W-thinning of a downstack F if and only if the
upstack G−1 is a W-thinning of the upstack F−1. Thus, the property
is also true whenever F and G are downstacks. 2

Let F and G be two upstacks such that G is a watershed of F . We
observe that G[k] is not necessarily a watershed of F [k]. The reason is
that, G being an upstack, we must have G[k + 1] ⊆ G[k] : since this
constraint, there may exist some W-simple point for G[k] which cannot
be removed. For example, let us consider the upstack G of Fig. 2 (b)
which is a watershed of the upstack F of Fig. 2 (a). The point b is W-
simple for G[2], thus G[2] is a W-thinning of F [2], but not a watershed
of F [2]. Thus, Th. 1 does not hold for watersheds. In order to recover an
equivalent of Th. 1, we introduce the notion of a constrained watershed.

Definition 11: Let X, C be subsets of E, with C ⊆ X. Let Y be
a W-thinning of X, with C ⊆ Y . We say that Y is a watershed of X
constrained by C if Y ↘W Z and C ⊆ Z both imply Z = Y .

In other words Y is a watershed of X constrained by C if Y is a
W-thinning of X which contains C and if any point in Y \ C is not
W-simple for Y .

Let F and G be in S+ (resp. in S−). Trivially, from Th. 1, we may
affirm that:
i) The stack G is a W-thinning of F if and only if, for each k ∈ K◦, G[k]
is a W-thinning of F [k] such thatG[k+1] ⊆ G[k] (resp.G[k−1] ⊆ G[k]).
On the other hand we observe that G(x) = k if and only if x ∈
G[k] \G[k+ 1] (resp. x ∈ G[k] \G[k− 1]). Thus, by the very definition
of a W-destructible point, we may affirm that:
ii) There is no W-destructible point for G if and only if, for each k ∈ K◦
and for each x in G[k]\G[k+1] (resp. G[k]\G[k−1]), x is not W-simple
for G[k].

The following Th. 2 is a direct consequence of properties i) and ii).

Theorem 2: Let F and G be in S+ (resp. in S−). The stack G is
a watershed of F if and only if, for each k ∈ K◦, G[k] is a watershed
of F [k] constrained by G[k + 1] (resp. by G[k − 1]).

Remark 3 (emergence):
Let F be an upstack. Let FK , FK−1, ..., F−K be a sequence of upstacks
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with FK = F and such that for any k = K − 1,K − 2, ...−K:
- F k[k] is a watershed of F [k] constrained by F k+1[k + 1]; and
- F k[i] = F k+1[i], for any i 6= k.
Let us consider the upstack G = F−K . We see that G has been obtained
from F by a certain kind of computation which consists in performing
operations on sections of F , these sections being processed according to
their decreasing levels. Such a kind of computation has been called an
emergence in [25]. Of course, by the very definition of G, we may affirm
that G is a W-thinning of F . But we observe that such an upstack G
satisfies the condition of Th. 2. Two consequences may be derived of
this remark:
i) The upstack G is indeed a watershed of F .
ii) Any watershed of F may be obtained by such an emergence compu-
tation.
These properties have been given in [25]. In fact, Th. 2 allows to derive
them in a more direct way.

We give now a characterization of watersheds for a special class of
stacks (see also [22] for the definition of a connected function).

Let F ∈ S. We say that F is flat if, for each k ∈ K, F [k] = ∅ or
F [k] = E. In other words, F is flat if E is flat for F .
We say that F ∈ S is connected if, for each k ∈ K, F [k] is connected.
It may be seen that F is connected if and only if F has exactly one
extremum.

We leave to the interested reader the proof of the following property.

Property 3: Let F , G be both in S+ or both in S−, such that F is
connected and G ⊆ F . Let M be the unique extremum of F . The stack
G is a watershed of F if and only if G is flat and G(E) = F (M).

Thus, we are able to characterize a watershed of a connected stack.
The aim of this paper is to investigate such characterizations for arbi-
trary stacks.

4. Extensions

In this section, we will give a first necessary and sufficient condition
which allows to characterize W-thinnings of any given upstack.

JMIV875-CR.tex; 1/10/2004; 11:59; p.12



13

Let X be a subset of E. We denote by C(X) the set composed of all
connected components of X.

Definition 12: Let X, Y be non empty subsets of E such that
X ⊆ Y . We say that Y is an extension of X if each connected compo-
nent of Y contains exactly one connected component of X.
We also say that Y is an extension of X if X and Y are both empty.
If Y is an extension of X, the extension map relative to (X,Y ) is the
bijection ε from C(X) to C(Y ) such that, for each C ∈ C(X), ε(C) is
the connected component of Y which contains C.

If Y is an extension of X and Z is an extension of Y , clearly Z is
an extension of X. In fact, we have a more remarkable “triangular”
property.

Theorem 4: Let X, Y , Z be subsets of E such that Z is an extension
of X and X ⊆ Y ⊆ Z.
The subset Y is an extension of X if and only if Z is an extension of Y .

Proof: The case X = ∅ is trivial, we suppose that X 6= ∅.
i) Suppose Y is an extension of X. Let A be a connected component
of Z, A contains exactly one connected component B of X and B is
contained in one connected component C of Y . Thus A∩C 6= ∅, which,
by properties of connected components, implies that C ⊆ A. It follows
that each connected component of Z contains at least one connected
component of Y . But a connected component A of Z cannot contain
more than one connected component of Y , otherwise, since Y is an
extension of X, A would contain more than one connected component
of X. Thus, Z is an extension of Y .
ii) Suppose Z is an extension of Y . Let A be a connected component
of Y , A is contained in a connected component B of Z, B contains
exactly one connected component C of X, and C is contained in a
connected component D of Y . Thus D∩B 6= ∅, which, by properties of
connected components, implies that D ⊆ B. Since B contains one and
only one connected component of Y , we must have D = A. It follows
that any connected component of Y contains at least one connected
component of X. But a connected component A of Y cannot contain
more than one connected component of X, otherwise the connected
component of Z which contains A would contain more than one con-
nected component of X. Thus, Y is an extension of X. 2
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The following property is a direct consequence of Def. 7 and will be
used for establishing Th. 6.

Property 5: Let X ⊆ E, let x ∈ X, let Y = X \ {x}, and let C be
a connected component of Y .
i) The subset C contains more than one connected component of X if
and only if x is a separating point for X such that x ∈ C;
ii) The subset C does not contain any connected component of X if and
only if x is an inner point for X such that x ∈ C. In this case we must
have C = {x}.

Theorem 6: Let X and Y be subsets of E. The subset Y is a W-
thinning of X if and only if Y is an extension of X.

Proof: The case X = E is trivial, we suppose that X 6= E.
i) Let x be a W-simple point for X and let X ′ = X \ {x}. By Prop. 5,
each connected component of X ′ contains one and only one connected
component of X: X ′ is an extension of X. By induction (and by the
remark following Def. 12), if Y is a W-thinning of X, then Y is an
extension of X.
ii) Suppose Y is an extension of X. If X = Y , then we are done.
Otherwise, we will show that there exists a W-simple point x for X such
that Y ⊆ X ′ = X \ {x}. By the first part of the proof, X ′ will be an
extension of X, and, by Th. 4, Y will be an extension of X ′. We see that
this will establish the property by induction. Thus, suppose X 6= Y .
Hence, by definition of an extension, there must exist one connected
component D of Y which contains exactly one connected component
C of X and such that D 6= C. Let y ∈ C and z ∈ D \ C. Since D is
connected, there exists a path π from y to z inD. We set π = 〈x0, ..., xl〉,
with x0 = y and xl = z. Let j the highest index such that xj ∈ C. Thus
x = xj+1 ∈ D \ C. We observe that, since x is adjacent to xj ∈ C, we
have x ∈ X (otherwise we would have x ∈ C), thus x is a border point
for X. Furthermore x cannot be a separating point for X, otherwise
D would contain more than one connected component of X. It follows
that x is W-simple for X and we have Y ⊆ X ′ = X \ {x}. 2

Definition 13: Let F , G be both in S+ or both in S−. We say that
G is an extension of F if, for any k ∈ K, G[k] is an extension of F [k].

As a direct consequence of Th. 1, Th. 4, and Th. 6, we obtain the
following results.
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Theorem 7 (extension): Let F , G be both in S+ or both in S−.
The stack G is a W-thinning of F if and only if G is an extension of F .

Theorem 8 (confluence): Let F , G, H be all in S+ or all in S−
such that H is a W-thinning of F and H ⊆ G ⊆ F .
The stack G is a W-thinning of F if and only if H is a W-thinning
of G.

This last “confluence” property shows that W-thinnings are related
to greedy structures [26].
Let us consider the following recognition problem P: given two upstacks
F and G ⊆ F in S+, decide whether G is a W-thinning of F or not.
By definition, G is a W-thinning of F if G may be obtained from F by
iteratively lowering (by one) W-destructible points. If we directly use
this definition for solving P, we get an exponential method. By Th. 8,
P may be solved by the following greedy method which is polynomial:
Set H = F ;
i) arbitrarily select a point p which is W-destructible for H and which
satisfies H(p) > G(p);
ii) do H = [H \ p].
Repeat i) and ii) until stability; if H = G, then G is a W-thinning of
F ; otherwise G is not a W-thinning of F .

The above confluence property does not hold in the framework of
homotopic thinnings (by deformation retract [27], or by collapse [28],
or by simple points removal [24]). A counter-example is the so-called
Bing’s house [15]. A 3D-cube C may be thinned till one point P , but it
may also be thinned till a Bing’s house B. We may have P ⊆ B ⊆ C,
but B cannot be thinned till P . This very example shows that, in the
general case, the above greedy method does not work for the recognition
problem in the framework of homotopic thinnings.
Of course, W-thinnings preserve less topological characteristics than
homotopic thinnings. For example, a W-thinning of an object X ⊆ E
does not necessarily preserve the connected components of X. A W-
thinning of a simple closed curve in a 3D space may delete this curve,
thus, 3D holes (3D tunnels) are not necessarily preserved. Nevertheless,
the confluence property ensures that arbitrary W-thinnings cannot get
“stuck” in some configurations.
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5. Separation

In this section we introduce the notion of separation which will appear
to be closely related to extensions and W-thinnings. The proofs of
properties 9, 10, 11 may be easily derived and are left to the reader.

Definition 14: Let F ∈ S and let x and y be two points in E.
The point x dominates y for F if y belongs to the component of x in
F . The points x and y are linked for F if x dominates y for F or y
dominates x for F .

We observe that a stack F ∈ S is connected if and only if any pair
of points in E are linked for F (see also [22]).

Property 9: Let F ∈ S+, G ∈ S−, and x, y ∈ E.
i) x dominates y for F (resp. G) if and only if F (x, y) = F (x) (resp.
G(x, y) = G(x)), i.e., if and only if there is a path π from x to y such
that F (x) ≤ F (z) (resp. G(x) ≥ G(z)), for all z in π.
ii) x and y are linked for F (resp. G) if and only if F (x, y) = min
{F (x), F (y)} (resp. G(x, y) = max{G(x), G(y)}).
iii) x and y are linked for F (resp. G) if and only if, for each k ∈ K,
if x and y are in F [k] (resp. G[k]), then x and y are linked for F [k]
(resp. G[k]).

Property 10: Let F ∈ S and let Λ(F ) be the relation Λ(F ) =
{(x, y) ∈ E × E; x dominates y for F}. If x ∈ E, we set Λ(x, F ) =
{y ∈ E; (x, y) ∈ Λ(F )}.
i) The relation Λ(F ) is a preorder, i.e., Λ(F ) is a reflexive and transi-
tive relation.
ii) If y ∈ Λ(x, F ) and x ∈ Λ(y, F ), then we have F (x) = F (y). The
converse is, in general, not true.
iii) For any x ∈ E, there is at least one extremum X of F such that
X ⊆ Λ(x, F ).
iv) A subset X of E is an extremum of F if and only if, for all points
x in X, Λ(x, F ) = X.
v) A point x of E belongs to an extremum of F if and only if, for all
y ∈ Λ(x, F ), x ∈ Λ(y, F ).

Definition 15:
Let X ⊆ E and let x, y be in X. The points x and y are separated for
X if x and y are not linked for X, i.e., if x and y belong to distinct
connected components of X.
Let F ∈ S and let x and y be two points in E.
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The points x and y are separated for F if x and y are not linked for
F . The points x and y are k-separated for F if x and y are separated
for F and if the connection value for F between x and y is precisely k,
i.e., if F (x, y) = k.

In Fig. 2 (a), the point e dominates the point h for F , the points d
and a are 6-separated for F .

Property 11: Let F ∈ S+, G ∈ S−, and x, y ∈ E.
i) x and y are separated for F (resp. G) if and only if F (x, y) <
min{F (x), F (y)} (resp. G(x, y) > max{G(x), G(y)}).
ii) x and y are separated for F (resp. G) if and only if there exists
some k ∈ K such that x and y are separated for F [k] (resp. G[k]).
iii) x and y are k-separated for F (resp. G) if and only if:

- x and y belong to the same connected component of F [k] (resp.
G[k]), i.e., x and y are linked for F [k] (resp. G[k]); and

- x and y belong to distinct connected components of F [k+1] (resp.
G[k − 1]), i.e., x and y are separated for F [k + 1] (resp. G[k − 1]).
iv) If X and Y are two distinct extrema of F , then, any x ∈ X and
any y ∈ Y are separated for F .

Property 12: Let F ∈ S and let x and y be two points which are
k-separated for F . If x dominates z for F , then z and y are k-separated
for F .

Proof: By duality we may suppose that F ∈ S+.
Let π1 be a path from x to y such that F (π1) = F (x, y) = k, thus
k < min{F (x), F (y)}. Let π2 be a path from x to z such that F (π2) =
F (x, z) = F (x). We denote by π−1

2 the sequence obtained by revers-
ing π2. The path π3 = π−1

2 · π1 is a path from z to y such that
F (π3) = min{F (π−1

2 ), F (π1)} = k, thus, we must have F (z, y) ≥ k.
Let π4 be a path from z to y. The path π5 = π2 · π4 is a path from x
to y such that F (π5) = min{F (x), F (π4)}. We must have F (π4) ≤ k
otherwise we would have F (π5) > k which implies F (x, y) > k. Thus,
F (z, y) ≤ k. From the above it follows that F (z, y) = k and, since
F (z) ≥ F (x), we have F (z, y) < min{F (z), F (y)}. Consequently, z
and y are k-separated. 2

Definition 16:
Let X, Y be subsets of E such that X ⊆ Y . We say that Y is a
separation of X if any x and y in X which are separated for X, are
separated for Y , i.e., if each connected component of Y contains at
most one connected component of X.
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Let F and G be both in S+ or both in S−, and such that F ⊆ G. We
say that G is a separation of F if, for any k ∈ K, G[k] is a separation
of F [k].

The following property may be easily derived.

Property 13: Let F , G be both in S+ or both in S−, and such that
F ⊆ G. The stack G is a separation of F if and only if any x and y in
E which are k-separated for F , are k-separated for G.

The following theorem asserts that it is sufficient to consider extrema
of F for deciding whether G is a separation of F or not.

Theorem 14 (restriction to extrema): Let F and G be both in
S+ or both in S−, and such that F ⊆ G. The stack G is a separa-
tion of F if and only if, for all distinct extrema X, Y of F , we have
F (X,Y ) = G(X,Y ).

Proof: By duality, we may suppose that F and G are in S+.
i) Suppose G is a separation of F and let X, Y be distinct maxima of
F . Let k = F (X,Y ). For all x ∈ X, y ∈ Y , x and y are k-separated for
F , hence they are k-separated for G (Prop. 13).
Thus, G(X,Y ) = max{G(x, y); x ∈ X, y ∈ Y } = k = F (X,Y ).
ii) Suppose G is not a separation of F , i.e., there exist two points x
and y which are k-separated for F (thus k < min{F (x), F (y)}) but
not k-separated for G. If x and y are not k-separated for G, either x
and y are linked for G, in which case G(x, y) = min{G(x), G(y)}, or
G(x, y) 6= k. Since F ⊆ G, in both cases, we must have G(x, y) > k. Let
X and Y be two maxima of F such that X ⊆ Λ(x, F ) and Y ⊆ Λ(y, F ),
thus F ({x}, X) = F (x) > k and F ({y}, Y ) = F (y) > k.
By Prop. 12, we have F (X,Y ) = k (which implies X 6= Y ). Since
G({x}, X) ≥ F ({x}, X) > k and G({y}, Y ) ≥ F ({y}, Y ) > k, we
have G(X,Y ) ≥ min{G(X, {x}), G(x, y), G({y}, Y )} > k. Therefore,
G(X,Y ) 6= F (X,Y ). 2

6. Extrema extension and strong separation

If a stack G is a separation of a stack F , it may be seen that G may
have more extrema than F . Since our purpose is to study W-thinnings
and since W-thinnings cannot generate new extrema, we introduce the
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following notion.

If F ∈ S, we denote by E(F ) the set composed of all extrema of F .

Definition 17: Let F , G be both in S+ or both in S−, and such
that F ⊆ G.
We say that G is an extrema extension or an e-extension of F if there
is a bijection ε : E(F )→ E(G) such that:
i) for all X ∈ E(F ), X ⊆ ε(X); and
ii) for all X ∈ E(F ), F (X) = G[ε(X)].
We say that G is an extrema cover or an e-cover of F if any extremum
X of G contains at least one extremum Y of F such that G(X) = F (Y ).

Definition 18: Let F , G be both in S+ or both in S−, and such
that F ⊆ G. We say that G is a strong separation of F if G is both a
separation of F and an e-extension of F .

Property 15: Let F , G be both in S+ or both in S−, and such that
G is a separation of F . If G is an e-cover of F , then G is a strong
separation of F .

Proof: By duality, we may suppose that F and G are in S+.
Suppose G is both a separation and an e-cover of F .
i) Let X be a maximum of G. There exists a maximum Y of F such
that Y ⊆ X and G(X) = F (Y ). Suppose x and x′ are two elements
of X such that x ∈ Y , x′ ∈ Y ′, with Y ′ ∈ E(F ). Then we must have
Y = Y ′, otherwise x and x′ would be separated for F and linked for
G. Thus, any maximum X of G contains a unique maximum Y of F ,
furthermore G(X) = F (Y ).
ii) Let X be a maximum of F and let x ∈ X. Let Y be a maximum
of G such that Y ⊆ Λ(x,G). ¿From i), there is a unique maximum X ′

of F such that X ′ ⊆ Y . We must have X = X ′, otherwise x and any
element x′ ∈ X ′ would be separated for F but not separated for G.
Thus any maximum of F is contained in a maximum of G. Of course,
this maximum is unique. 2

We are now in position to prove the equivalence between W-thinnings
and strong separations. Beforehand, we have to establish the following
property relative to extensions (see Def. 12 and 13).

Property 16: Let F , G be in S+ (resp. in S−) and such that G is
an extension of F . For each k ∈ K, we denote by εk the extension map
relative to (F [k], G[k]). Let k, l ∈ K, with k ≤ l (resp. k ≥ l), and let
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X, Y be respectively a k-component and an l-component of F . Then
Y ⊆ X if and only if εl(Y ) ⊆ εk(X).

Proof: By duality, we may suppose that F and G are in S+.
i) If Y ⊆ X, we have εl(Y )∩ εk(X) 6= ∅ (since F ⊆ G) and, G being an
upstack, we must have εl(Y ) ⊆ εk(X).
ii) Suppose Y 6⊆ X. Let Z be the k-component of F which contains Y ,
we have Z 6= X. From i), we have εl(Y ) ⊆ εk(Z). It is not possible that
εl(Y ) ⊆ εk(X), otherwise, we would have εk(X) ∩ εk(Z) 6= ∅, which
implies εk(X) = εk(Z). Since εk is a bijection, this contradicts Z 6= X.
2

Property 17: Let F , G be both in S+ or both in S−.
The stack G is an extension of F if and only if G is a strong separation
of F .

Proof: By duality, we may suppose that F and G are in S+.
i) Suppose G is an extension of F . For each k ∈ K, we denote by εk the
extension map relative to (F [k], G[k]).
- Let X be a maximum of G and let k = G(X). The set Y = ε−1

k (X)
is a k-component of F . It is not possible that there exists a (k + 1)-
component Z of F , with Z ⊆ Y . Otherwise the component εk+1(Z) of
G[k + 1] would be such that εk+1(Z) ⊆ X (Prop.16) which contradicts
the fact that X is a maximum for G. ¿From this it follows that Y is
flat for F and that F (Y ) = k = G(X). Thus Y is a maximum for F ,
furthermore Y ⊆ X (by definition of an extension). Hence, G is an
e-cover of F .
- For each k ∈ K, any connected component of G[k] contains exactly
one connected component of F [k], thus G is a separation of F .
It follows that G is a strong separation of F (Prop. 15).
ii) Suppose G is a strong separation of F . Let k ∈ K.
- If F [k] = ∅, we must have G[k] = ∅, otherwise it could be seen that G
would not be an e-extension of F (a maximum of G which is included
in G[k] would not contain a maximum of F at the same altitude).
- Suppose F [k] 6= ∅. Let X be a connected component of G[k]. The
(non empty) subset X must contain at least one connected component
of F [k], otherwise it could be seen that G would not be an e-extension
of F (again, a maximum of G which is included in X would not contain
a maximum of F at the same altitude). Since G[k] is a separation of
F [k], we may affirm that X contains exactly one connected component
of F [k]. Thus G is an extension of F . 2
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Prop. 17 and Th. 7 lead to the following characterization of W-
thinnings.

Theorem 18 (strong separation): Let F , G be both in S+ or
both in S−. The stack G is a W-thinning of F if and only if G is a
strong separation of F .

7. Ordered extrema and the dynamics

Let us consider the following recognition problem P: given two upstacks
F and G such that F ⊆ G, decide whether G is a separation of F or
not. Recall that G is a separation of F iff any x and y in E which are
k-separated for F are k-separated for G (Prop. 13). Two points x and
y are k-separated for F iff F (x, y) < min{F (x), F (y)} and k = F (x, y).
This leads to a method for solving P which involves the computation of
the connection values F (x, y), x ∈ E and y ∈ E. We see that n(n−1)/2
connection values relative to F , with n = |E| are used to solve P by
using this direct approach (the computation of F (x, x) is unnecessary
and F (x, y) = F (y, x)). Theorem 14 asserts that, in fact, it is sufficient
to consider the connection values between distinct extrema of F . Thus
m(m − 1)/2 values relative to F are sufficient, m being the number
of extrema of F . This shows that the above n(n− 1)/2 values contain
some “redundant information” with respect to P. In this section, we
will see that, again, the m(m − 1)/2 connection values relative to the
extrema contain redundant information and that only (m − 1) values
are necessary to solve P.

Definition 19: Let E be a family composed of non empty subsets
of E and let ≺ be an ordering on E , i.e., ≺ is a relation on E which is
transitive and trichotomous (for any X, Y in E , one and only one of
X ≺ Y , Y ≺ X, X = Y is true). We denote by X≺max the element of E
such that, for all Y ∈ E \ {X≺max}, Y ≺ X≺max.
Let F be in S+ (resp. in S−) and let X ∈ E .
The connection value of X for (F,≺) is the number F (X,≺) such that:
- If X = X≺max, then F (X,≺) = −∞ (resp. F (X,≺) =∞); and
- If X 6= X≺max, then F (X,≺) = max{F (X,Y ) | Y ∈ E and X ≺ Y }
(resp. F (X,≺) = min{F (X,Y ) | Y ∈ E and X ≺ Y }).

Theorem 19 (ordered extrema): Let F , G be both in S+ (or both
in S−) such that F ⊆ G. Let ≺ be an ordering on the extrema of F .
The stack G is a separation of F if and only if, for each extremum X
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of F , we have F (X,≺) = G(X,≺).

Proof: By duality, we may suppose that F and G are in S+.
By Th. 14, if G is a separation of F , then, for each maximum X of F ,
we have F (X,≺) = G(X,≺).
Suppose G is not a separation of F . By Th. 14, it means that there exist
two distinct maxima X and Y of F such that F (X,Y ) 6= G(X,Y ). We
set k = F (X,Y ), since F ⊆ G, we have G(X,Y ) > k.
There exist two distinct components X ′ and Y ′ of F [k + 1] such that
X ⊆ X ′, Y ⊆ Y ′. Furthermore, there exists a component C of F [k]
such that X ′ ⊆ C and Y ′ ⊆ C.
Let X ′′ (resp. Y ′′) be the maximum of F which is a subset of X ′

(resp. Y ′) such that Z ≺ X ′′ (resp. Z ≺ Y ′′), for all maxima Z of
F , Z ⊆ X ′ and Z 6= X ′′ (resp. Z ⊆ Y ′ and Z 6= Y ′′). We observe that
F (X,X ′′) > k, F (Y, Y ′′) > k, and F (X ′′, Y ′′) = k.
Since G(X ′′, Y ′′) ≥ min{G(X ′′, X), G(X,Y ), G(Y, Y ′′)}, and since F ⊆
G, we have G(X ′′, Y ′′) > k.
Without loss of generality, suppose X ′′ ≺ Y ′′. We observe that, since all
maxima Z for F such that F (X ′′, Z) > k satisfy Z ⊆ X ′ and Z ≺ X ′′,
we must have F (X ′′,≺) ≤ k. Furthermore, since X ′′ ≺ Y ′′, we have
F (X ′′,≺) ≥ k. The result is F (X ′′,≺) = k.
But G(X ′′,≺) > k, which follows from G(X ′′, Y ′′) > k and X ′′ ≺ Y ′′.
¿From this we conclude that F (X ′′,≺) 6= G(X ′′,≺). 2

The above definition of the connection value of an extremum leads
to a new notion of dynamics the definition of which is given below. In
a forthcoming paper [29], it will be shown that this notion “encodes
more topological features” than the original one [16].

Let F be in S+ (resp. S−) and let ≺ be an ordering on the extrema
of F . We say that ≺ is an altitude ordering on the extrema of F if
X ≺ Y whenever F (X) < F (Y ) (resp. F (X) > F (Y )).
Let ≺ be an altitude ordering of the extrema of F and let X be an ex-
tremum for F . The dynamics of X for (F,≺) is the value Dyn(X;F,≺)
= F (X)− F (X,≺) (resp. Dyn(X;F,≺) = F (X,≺)− F (X)).

In Fig. 4, a topological watershed (b) of the original image (a) is rep-
resented. This watershed was computed with the algorithm presented in
[1], see also [30, 31]. The minima of the watershed (c) illustrate the well-
known over-segmentation problem. Using the methodology introduced
in mathematical morphology [16] and our notions, we can extract all
the minima which have a dynamics (according to an altitude ordering)
greater than a given threshold (here 20), and suppress all others with
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a geodesic reconstruction . We obtain the image (d), the topological
watershed (e), and the minima (f).

8. Conclusion

We have seen that a topological watershed of an image satisfies certain
basic properties and keeps some features of the original image. Fur-
thermore, it is possible to characterize a W-thinning (or a topological
watershed) of an upstack (or a map) by several necessary and sufficient
conditions.

Forthcoming related papers will include properties of the dynamics,
the link between topological watersheds and minimum spanning trees
[29], the link between mosaic images and topological watersheds [25],
and quasi-linear time algorithms for topological watersheds [30, 31].
See also [31] for comparisons with homotopic thinnings.
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(a) (d)

(b) (e)

(c) (f)

Figure 4. (a): original image, (b): a topological watershed of (a), (c): the minima of
(b), (d): a filtering of (a) with ordered dynamics, (e): a topological watershed of (d),
(f): the minima of (e).

JMIV875-CR.tex; 1/10/2004; 11:59; p.25



JMIV875-CR.tex; 1/10/2004; 11:59; p.26


