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1. Introduction

Topology-preserving operators, like homotopic
skeletonization, are used to transform the geometry
of an object while leaving unchanged its topological
characteristics. In discrete gridg{ or Z%), such a
transformation can be defined thanks to the notion of
simple point: intuitively, a point of an object is called
simple if it can be deleted from this object without
altering topology. This notion, pionneered by Duda,
Hart, Munson, Golay and Rosenfeld [12], has since
been the subject of an abundant literature. In particu-
lar, local characterizations of simple points have been
proposed, which enable efficient implementations of
thinning procedures.

In [11], the authors study some configurations
where an objecK strictly contains an object, topo-
logically equivalent toX, and whereX has no simple
point. We call such a configuration a lump (an exam-
ple of lump is given in Fig. 1a). Lumps cannot appear
in Z2, but they are not uncommon &3, where they
may “block” some homotopic thinning procedures and
prevent to obtain globally minimal skeletons. The ex-
istence of certain such objects, like the one of Fig. 1a,
illustrates a “counter-property” of simple points: delet-
ing a simple point always preserves topology, but one

can sometimes delete a non-simple point while preserv-

ing topology. In Fig. 1a, the point is not simple (in

that this kind of configuration has been considered, in

particular in [10].

(b)

Figure 1. A lump, made of 11 voxels, is depicted in (a). It edm
no simple voxel, and is simple-equivalent to the complex b (
made of 10 voxels. Both objects have three tunnels.

(@)

In this paper, we prove that in a particular case, a
3-D point can be removed while preserving topoldigy
and only if it is a simple point. This property holds in
the case of simply connected objects, that is, connected
objects which have no tunnels.

We develop this work in the framework of abstract
complexes. In this framework, we retrieve the main no-
tions and results of digital topology, such as the notion
of simple point.

2. Cubical complexes

Intuitively, a cubical complex may be thought of as
a set of elements having various dimensiang.cubes,

Sec. 4 we give a definition and a characterization which squares, edges, vertices) glued together according to
enable the reader to verify this claim), but we can see certainrules. In this section, we recall briefly some basic
that if we remove, intuitively, one tunnel is destroyed definitions on complexes, see also [4,3] for more details.
and another one is created. As a consequence, objectd.et Z be the set of integers. We consider the families of
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setsF3, Fi, such thatfy = {{a} |ac Z}, F1 = {{a,a+
1} |a€ Z}. A subsetf of Z" (n> 1) which is the
Cartesian product of exactiy elements oﬁ?} and(n—
m) elements of} is called afaceor anm-faceof Z",
mis thedimensiornof f, and we write dinif) =m.

We denote byF" the set composed of afi-faces
of Z" (m= 0 ton). An mface ofZ" is called apoint
if m=0, a(unit) intervalif m= 1, a(unit) squareif
m= 2, a(unit) cubeif m= 3. In the sequel, we will
focus onfFe,

Let f be am-face inF3, with me {0,...,3}. We
setf ={geF®|gC f}, we say thatf is acell or an
m-cell Any g € f is afaceof f, and anyg € f such
thatg # f is aproper faceof f.

A finite setX of faces ofFF® is a complex(in F3)
if for any f € X, we havef C X. Any subsety of a
complexX which is also a complex is aubcomplex
of X. If Y is a subcomplex oK, we writeY < X. If
X is a complex inF3, we also writeX < F2. In Fig. 2
and Fig. 3, some complexes are represented.

Let X < F3, a facef € X is afacetof X if there is
nog € X such thatf is a proper face of. We denote by
XT the set composed of all facets Xf The dimension
of a non-empty compleX in F3 is defined by diniX) =
max{dim(f) | f € X*}. We say thaK is anm-complex
if dim(X) =m.

Let X < F® be a complex. A sequence =
(fo,..., fk) of O-faces ofX is apath in X (from § to
f) if fi_1Ufi is a 1-face ofX, for all i € {1,...,k}.
The pointsfy and fi are theextremitiesof the path; the
path is said to be éoop if fg = fx. Theinverse ofrt
is the pathrt ! = (go,...,gk) whereg; = fy_;, for all
i €{0,...,k}. If T=(fo,...,fx) and 1 = (ho,...,hy)
are two paths such thdg = fi, the concatenation of
mand 1 is the pathm. W = (fo,..., f,h1,...,hy). If
k=0,i.e.t= (fp), the pathrtis called atrivial loop.
We say thaiX is connectedf, for any two pointsf,g
in X, there is a path itX from f to g. We say thal is
a connected component of iKY < X, Y is connected
and if Y is maximal for these two properties€., we
haveZ =Y whenevely < Z < X andZ is connected).

3. Topological invariants

Euler characteristics. Let X be a complex ifff3,
and let us denote by; the number of-faces ofX, i =
0,...,3. TheEuler characteristiof X, writtenx(X), is
defined byx(X) = ng — n1 + ny — nz. The Euler charac-
teristic is a well-known topological invariant. X and
Y are two complexes, we have the following basic prop-
erty: X(XUY) =x(X) +x(Y) = x(XNY).

Fundamental group. The fundamental group, in-
troduced by Poincaré, is another topological invariant
which describes the structure of tunnels in an object.
It is based on the notion of homotopy of loops. Briefly
and informally, consider the relation between loops in a
complexX, which links two loopstandm whenevem
can be “continuously deformed” (i) into ¥ (we say
thatmand W are homotopic inX). This relation is an
equivalence relation, the equivalence classes of which
form a group with the operation derived from the con-
catenation of loops: it is the fundamental groupxof

Let us now define precisely the fundamental group
in the framework of cubical complexes (see [7] for a
similar construction in the framework of digital topol-
ogy). LetX be a complex irf3, and letp be any point
in X (called base point). Lef\p(X) be the set of all
loops inX from pto p. Let i, 7 € Ap(X), we say that
mand 10 are directly homotopic (in X)f they are of
the formm=m.y.™ andW = m .Y ., with y and
Y having the same extremities and being contained in
a same face oK. We say thatt and 1 are homotopic
(in X), and we writert~y 17, if there exists a sequence
(T, ..., Ty) such thatmy = T, Ty = T, and T, 151 are
directly homotopic inX, for all i € {1,...,¢}. The rela-
tion ~x is an equivalence relation ové,(X). Let us
denote byl1,(X) the set of all equivalence classes for
this relation. The concatenation of loops is compatible
with the homotopy relation,e., T . T ~x Ti3. Ty When-
everty ~x Tk and Tk ~x Tu. Hence, it induces an op-
eration onl,(X) which, to the equivalence classes of
™, Tk € Ap(X), associates the equivalence classtof
. This operation (also denoted byprovides,(X)
with a group structure, that ig[1p(X),.) satisfies the
four following properties: closure (for al, Qin My(X),
P.Q e Mp(X)), associativity (for allP,Q,R in Mp(X),
P.(Q.R) = (P.Q).R), identity (there exists aiden-
tity element le Mp(X) such that for allP in My(X),

P.l =1.P=P), and inverse (for alP in M(X), there
exists an elemer® ! € Mp(X), called theinverse of P
such thatP.P~1 = P~1,P =1). The identity element
is the equivalence class of the trivial logp), and the
inverse of the equivalence class of a lomg Ap(X)
is the equivalence class of the inverse loopt. The
group (Mp(X),.) is called thefundamental group of X
with base point p

If X is connected, it can be shown that the funda-
mental groups oK with different base points are iso-
morphic, thus in the sequel we will not refer anymore
to the base point unless necessary.

We say that a group igivial if it is reduced to the
identity element. It may be easily seen that the funda-
mental group of any single cell is trivial. A complek



is said to besimply connectewhenever it is connected
and its fundamental group is trivial. Informally, sim-
ply connected objects are connected objects which do
not have tunnels. Such objects may have cavities (like
a hollow sphere).

Let X be ann-complex, withn > 0, and letmbe an
integer such that & m< n. We define then-skeleton of
X, denoted bygn(X), as the subcomplex of composed
of all the k-faces ofX, for all k < m. The following
property may be easily verified.
Proposition 1. Let X < F", let mand " be two loops
in X having the same base point. The logpand 1’
are homotopic in X if and only if they are homotopic
in $(X).

Thus, the fundamental group of a compkex F",
for any n > 2, only depends on the 0-, 1- and 2-faces
of X. The faces of higher dimension play no role in its
construction.

4. Topology preserving operations

Collapse.The collapse, a well-known operation in
algebraic topology [6], leads to a notion of homotopy
equivalence in discrete spaces. To put it briefly, the col-
lapse operation preserves topology.

Let X be a complex irff® and letf € X*. If there
exists one proper faggof f such thatf is the only face
of X which containg, then we say that the pair,g)
is afree pairfor X. If (f,g) is a free pair forX, the
complexY = X\ {f,g} is anelementary collapsef X.

In this case, we writX Y.

Let X,Y be two complexes. We say that col-
lapses onto Yif X =Y or if there exists acollapse
sequence from X to,M.e., a sequence of complexes
(Xo, ..., X¢) suchthalo =X, X, =Y, andX;_1 “\EX;, for
alli e {1,...,¢}. Fig. 2 illustrates a collapse sequence.
We say thaiX andY arecollapse-equivalenf X =Y
or if there exists a sequence of complex¥s, ..., X;)
such thatXo = X, X, =Y, and for anyi € {1,...,¢}, ei-
ther X N X;_1 or Xi_1 \E X holds. LetX,Y such that
Y < X. Obviously, if X collapses ontdr then X and
Y are collapse-equivalent, but the converse is not true
in general (a classical counter-example is Bing’s house,
see [5,11]).

It is well known that, if two complexeX andY

(a) (b)

(©) (d)

(e) (®
Figure 2. (a): a compleX, and a 3-facef. (f): a complexY which
is the detachment of from X. (a-f): a collapse sequence frok

toY.

/
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Figure 3. (a): the attachment df for X (see Fig. 2a). (b): the
attachment ok Tor the complex depicted in Fig. la.

ity (see [2]) based on the collapse operation, which can
be seen as a discrete counterpart of the one given by
T.Y. Kong [9].

The operation of detachment allows us to remove
a subcomplex from a complex, while guaranteeing that
the result is still a complex (see Fig. 2a,f). ek X <
F3. We setX ©OY = U{f | f € X\ Y}. The setX OY is
a complex which is theletachmenof Y from X.

Definition 2. Let X < F3. Let f € X*, we say that f
and f are simple forX if X collapses onto X f.

The notion of attachment leads to a local character-
ization [2] of simple facets, which follows easily from
the definitions. Le¥ < X < F3. Theattachment of Y for
X is the complex defined bgtt(Y,X) = YN (XQY).

are collapse-equivalent, then they have the same EulerProposition 3. Let X < F3, let f € X*. The facet f is

characteristics and they have isomorphic fundamental
groups.

Simplicity. Intuitively, a cell in a complexX is
called simple if it can be “removed” frortK while pre-
serving topology. We recall here a definition of simplic-

3

simple for X if and only iff collapses onto Attf,X).

In Fig. 2, we can check from the very definition of
a simple face, that the 3-fadeis indeed simple. As an
illustration of Prop. 3, we can verify that the 3-fake
of the complex depicted in Fig. 1a cannot collapse onto



its attachment, shown in Fig. 3; thuds not simple. complexX has a tunnel, more precisely it is not simply
connected. A proof is given in the appendix, which fol-
lows the same main lines as the proof of Prop. 3 in [1].

5. The new property Finally, let us state and prove our main result.
Theorem 8. Let X C [F3, such that X is simply con-

In the image processing literature, a digital image nected. Let x be a voxel of X. Then x is simple for X if

is often considered as a set of pixels in 2-D or voxels and only if X® x is simple-equivalent to X.

in 3-D. A voxel is an elementary cube, thus an easy Proof. The forward implication is obvious, let us prove

correspondance can be made between this classical viewthe converse.

and the framework of cubical complexes. In the sequel Suppose thaK © x is simple-equivalent t&X andx is

of the paper, we calloxelany 3-cell. If a compleX < not simple forX. Remark that, sincX is simply con-

I3 is a union of voxels, we writ&X C F3. If X,Y C 3 nected an © xis simple-equivalent t&, X © xis also
andY = X, then we writeY C X. From now on, we simply connected (for collapse preserves the fundamen-
consider only complexes that are unions of voxels. tal group). From the very definition of the attachment,

Notice that, ifX C F3 and if  is a voxel ofX, then we havex(X) = x(XOxuUx) = x(XOx) + x(x) —
X © f CF3. There is indeed an equivalence between x(Att(x,X)). SinceX andX © x are simple-equivalent
the operation on complexes that consists of removing we havex(X) = x(X ©x), furthermorex(x) = 1 sincex
(by detachment) a simple voxel, and the removal of a is a cell. From this we deduggAtt(x, X)) = 1, hence
26-simple voxel in the framework of digital topology Att(x, X) is non-empty, and from Th. 4tt(x, X) can-
(see [8,3]). not be connected. From Prop. 7, there exists a loop in
Let us quote a characterization of 3-D simple vox- X that is not homotopic to a trivial loop, thus the fun-
els proposed by Kong in [9], which is equivalent to the damental group oK is not trivial, a contradiction with
following theorem for subcomplexes BF; this charac- the fact thatX is simply connected.]
terization will be used in the proof of our main theorem. Since any contractible set is obviously simply con-
Theorem 4 (Adapted from Kong [9]) Let X C F3. Let nected, we have the following corollary.
f € Xt. Thenf is a simple voxel for X if and only if ~ Corollary 9. Let X C F3, such that X is contractible.
Att(f,X) is connected ang(Att(f,X)) = 1. Let x be a voxel of X. Then x is simple for X if and only
Definition 5. Let X,Y T F3. We say that X and Y are if X ©x is simple-equivalent to X.
simple-equivalenif X =Y or if there exists a sequence
of complexegXo, ..., X;) suchthat =X, X =Y, and 6. Conclusion
foranyie {1,...,¢}, we have either

X =Xi-1©x, where xis a voxel that is simple for We proved a new property about the notion of 3-
X1 0r ) L D simple point, which has been extensively studied for
Xi-1=X ©x;, where xis a voxel that is simple foriX ¢,y years and proved useful in many applications.
We say that X igontractibleif X is simple-equivalent 114 interest of this result is not only theoretical, since
to a single voxel. configurations of the same nature as the lump of Fig. 1a

Remark that, iX andY are simple-equivalentthen  grq jikely to appear in practical image processing pro-
they are collapse-equivalent; hence they have the same,qqres (see [11]).

Euler characteristics and their fundamental groups are

isomorphic. We can now define the notion of lump
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Appendix: proof of Prop. 7

Proof. Let C; andC, be two distinct components of
Att(x,X). Remark thaC; andC, are subcomplexes of
X Ox. SinceX O xis connected, there must exist a path
y1 in X © x that links a pointp; € C; to a pointp; € Cs.
Lety, be a path fronp; to p1 in X; y=yi1.Yy2 constitutes
a loop in X. We have seen that, in order to define the
fundamental group, the base point can be arbitrarily
chosen; the choice of a loop havipgas its extremities
may thus be made without loss of generality.

For any pathm, let us define the number(#C;)
of pairs of consecutive points af that are of the type
(u,v) with uin C; andv not inx, or inversely. Obviously
#(y2,C1) =0, and sincey lies in X © x and connect€;
to Cy, it can be seen that(¥,C1) must be odd, hence
#(y,C1) must also be odd.

Let us consider a looy directly homotopic in
X to y. We will prove in the following that #/,C;)
is odd. By induction, this property will extend to any
loop homotopic inX to y. By definition, we havey =
P1.Q.P; andy = P;.R. P, with Q andR having the
same extremities and being contained in a same face
of X. Observe that, by Prop. 1, we may suppose that
fis a 1- or a 2-face. Iff < x or if fNCy = 0, then
obviously #Y,C1) = #(y,C1). Suppose now thatt £ x
and f NCy #£ 0.

Without loss of generality, we can wri@ andR
in the formQ = Q1Q[Q2Q, ... QkQ,, k>0, andR =
RIR|RR, ... RiR), ¢ > 0, with all subsequenc&y and

R being composed by points insi@eg, all subsequences
Q andR; being composed by points outsi@g, and all
these subsequences being non-empty except possibly
Q1, Ry, QL, and%.

Sincef NCy # 0 we havef Nx£ 0, and sincef £ x
and f < X, we havef Nx < Att(x,X). Hence, sinc€;
is a connected component Aft(x, X), we must have
f Nx = Cy. From this, we deduce that iy all the points
that are not irC; are outside, thus all the points in the
subsequenced andR’ are outsidex.

Thus, the pairsQ;Q2, Q2Q5.....Q,_;Qk each
bring a contribution of one unit to #Ci). We
have indeed: #,C1) = #(P1,C1) + 6(Q1) + 2k — 3+
O(Q) + #(P2,C1), where d(m) = 0 whenever the
path 11 is empty, andd(m) = 1 otherwise. Remark
that 6(Qq) = 1 iff the first point of Q is in C;, and
&(Q,) = 1 iff the last point ofQ is not inC;. Remark
also that ifk = 1, then necessarilp(Q1) = 6(Q,) =
1. By the same reasonning, we havéy#;)
#(P1,C1) + 0(Ry) +2¢ — 3+ 6(?1;) +#(P,,Cy), further-
mored(Q1) = 6(Ry) andd(Q) = 8(R;) becaus® and
R have the same extremities. Sincg/#£,) is odd, we
see that #/,C,) is also odd.

Hence the result, since for any trivial loagpwe
have #11,C;) = 0.0



