
HAL Id: hal-00622395
https://hal.science/hal-00622395v1

Submitted on 13 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A note on 3-D simple points and simple-equivalence
Gilles Bertrand, Michel Couprie, Nicolas Passat

To cite this version:
Gilles Bertrand, Michel Couprie, Nicolas Passat. A note on 3-D simple points and simple-equivalence.
Information Processing Letters, 2009, 109 (13), pp.700-704. �10.1016/j.ipl.2009.03.002�. �hal-00622395�

https://hal.science/hal-00622395v1
https://hal.archives-ouvertes.fr


A note on 3-D simple points and simple-equivalence
Gilles Bertrand(a), Michel Couprie(a) and Nicolas Passat(b)
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(b) LSIIT, UMR 7005 CNRS/UdS, Strasbourg University, France

e-mail: (g.bertrand,m.couprie)@esiee.fr, passat@unistra.fr

Keywords: Digital topology, cubical complexes, simple
point, fundamental group.

1. Introduction

Topology-preserving operators, like homotopic
skeletonization, are used to transform the geometry
of an object while leaving unchanged its topological
characteristics. In discrete grids (Z

2 or Z
3), such a

transformation can be defined thanks to the notion of
simple point: intuitively, a point of an object is called
simple if it can be deleted from this object without
altering topology. This notion, pionneered by Duda,
Hart, Munson, Golay and Rosenfeld [12], has since
been the subject of an abundant literature. In particu-
lar, local characterizations of simple points have been
proposed, which enable efficient implementations of
thinning procedures.

In [11], the authors study some configurations
where an objectX strictly contains an objectY, topo-
logically equivalent toX, and whereX has no simple
point. We call such a configuration a lump (an exam-
ple of lump is given in Fig. 1a). Lumps cannot appear
in Z

2, but they are not uncommon inZ3, where they
may “block” some homotopic thinning procedures and
prevent to obtain globally minimal skeletons. The ex-
istence of certain such objects, like the one of Fig. 1a,
illustrates a “counter-property” of simple points: delet-
ing a simple point always preserves topology, but one
can sometimes delete a non-simple point while preserv-
ing topology. In Fig. 1a, the pointx is not simple (in
Sec. 4 we give a definition and a characterization which
enable the reader to verify this claim), but we can see
that if we removex, intuitively, one tunnel is destroyed
and another one is created. As a consequence, objects

of Fig. 1a and Fig. 1b have the same topology. Notice
that this kind of configuration has been considered, in
particular in [10].

x

(a) (b)

Figure 1. A lump, made of 11 voxels, is depicted in (a). It contains
no simple voxel, and is simple-equivalent to the complex in (b),
made of 10 voxels. Both objects have three tunnels.

In this paper, we prove that in a particular case, a
3-D point can be removed while preserving topologyif
and only if it is a simple point. This property holds in
the case of simply connected objects, that is, connected
objects which have no tunnels.

We develop this work in the framework of abstract
complexes. In this framework, we retrieve the main no-
tions and results of digital topology, such as the notion
of simple point.

2. Cubical complexes

Intuitively, a cubical complex may be thought of as
a set of elements having various dimensions (e.g.cubes,
squares, edges, vertices) glued together according to
certain rules. In this section, we recall briefly some basic
definitions on complexes, see also [4,3] for more details.
Let Z be the set of integers. We consider the families of

Preprint submitted to Elsevier March 18, 2009



setsF1
0, F

1
1, such thatF1

0 = {{a} | a∈ Z}, F
1
1 = {{a,a+

1} | a ∈ Z}. A subset f of Z
n (n ≥ 1) which is the

Cartesian product of exactlym elements ofF1
1 and(n−

m) elements ofF1
0 is called afaceor anm-faceof Z

n,
m is thedimensionof f , and we write dim( f ) = m.

We denote byFn the set composed of allm-faces
of Z

n (m= 0 to n). An m-face ofZn is called apoint
if m= 0, a (unit) interval if m = 1, a (unit) squareif
m = 2, a (unit) cubeif m = 3. In the sequel, we will
focus onF

3.
Let f be am-face inF

3, with m∈ {0, . . . ,3}. We
set f̂ = {g∈ F

3 | g⊆ f}, we say thatf̂ is a cell or an
m-cell. Any g ∈ f̂ is a faceof f , and anyg ∈ f̂ such
thatg 6= f is aproper faceof f .

A finite setX of faces ofF3 is a complex(in F
3)

if for any f ∈ X, we have f̂ ⊆ X. Any subsetY of a
complexX which is also a complex is asubcomplex
of X. If Y is a subcomplex ofX, we write Y � X. If
X is a complex inF3, we also writeX � F

3. In Fig. 2
and Fig. 3, some complexes are represented.

Let X � F
3, a facef ∈ X is a facetof X if there is

nog∈ X such thatf is a proper face ofg. We denote by
X+ the set composed of all facets ofX. Thedimension
of a non-empty complexX in F

3 is defined by dim(X) =
max{dim( f ) | f ∈ X+}. We say thatX is anm-complex
if dim(X) = m.

Let X � F
3 be a complex. A sequenceπ =

( f0, . . . , fk) of 0-faces ofX is a path in X (from f0 to
fk) if fi−1 ∪ fi is a 1-face ofX, for all i ∈ {1, . . . ,k}.
The pointsf0 and fk are theextremitiesof the path; the
path is said to be aloop if f0 = fk. The inverse ofπ
is the pathπ−1 = (g0, . . . ,gk) wheregi = fk−i , for all
i ∈ {0, . . . ,k}. If π= ( f0, . . . , fk) and π′ = (h0, . . . ,hℓ)
are two paths such thath0 = fk, the concatenation of
π and π′ is the pathπ� π′ = ( f0, . . . , fk,h1, . . . ,hℓ). If
k = 0, i.e. π= ( f0), the pathπ is called atrivial loop.
We say thatX is connectedif, for any two points f ,g
in X, there is a path inX from f to g. We say thatY is
a connected component of Xif Y � X, Y is connected
and if Y is maximal for these two properties (i.e., we
haveZ = Y wheneverY � Z � X andZ is connected).

3. Topological invariants

Euler characteristics.Let X be a complex inF3,
and let us denote byni the number ofi-faces ofX, i =
0, . . . ,3. TheEuler characteristicof X, writtenχ(X), is
defined byχ(X) = n0−n1+n2−n3. The Euler charac-
teristic is a well-known topological invariant. IfX and
Y are two complexes, we have the following basic prop-
erty: χ(X∪Y) = χ(X)+χ(Y)−χ(X∩Y).

Fundamental group.The fundamental group, in-
troduced by Poincaré, is another topological invariant
which describes the structure of tunnels in an object.
It is based on the notion of homotopy of loops. Briefly
and informally, consider the relation between loops in a
complexX, which links two loopsπandπ′ wheneverπ
can be “continuously deformed” (inX) into π′ (we say
that π andπ′ are homotopic inX). This relation is an
equivalence relation, the equivalence classes of which
form a group with the operation derived from the con-
catenation of loops: it is the fundamental group ofX.

Let us now define precisely the fundamental group
in the framework of cubical complexes (see [7] for a
similar construction in the framework of digital topol-
ogy). LetX be a complex inF3, and letp be any point
in X (called base point). LetΛp(X) be the set of all
loops inX from p to p. Let π,π′ ∈ Λp(X), we say that
π and π′ are directly homotopic (in X)if they are of
the formπ= π1 � γ� π2 andπ′ = π1 � γ′ � π2, with γ and
γ′ having the same extremities and being contained in
a same face ofX. We say thatπ andπ′ arehomotopic
(in X), and we writeπ∼X π′, if there exists a sequence
〈π0, . . . ,πℓ〉 such thatπ0 = π, πℓ = π′, andπi ,πi−1 are
directly homotopic inX, for all i ∈ {1, . . . , ℓ}. The rela-
tion ∼X is an equivalence relation overΛp(X). Let us
denote byΠp(X) the set of all equivalence classes for
this relation. The concatenation of loops is compatible
with the homotopy relation,i.e., π1 �π2 ∼X π3 �π4 when-
everπ1 ∼X π3 andπ2 ∼X π4. Hence, it induces an op-
eration onΠp(X) which, to the equivalence classes of
π1,π2 ∈ Λp(X), associates the equivalence class ofπ1 �

π2. This operation (also denoted by�) providesΠp(X)
with a group structure, that is,(Πp(X), �) satisfies the
four following properties: closure (for allP,Q in Πp(X),
P � Q∈ Πp(X)), associativity (for allP,Q,R in Πp(X),
P � (Q � R) = (P � Q) � R), identity (there exists aniden-
tity element I∈ Πp(X) such that for allP in Πp(X),
P� I = I �P = P), and inverse (for allP in Πp(X), there
exists an elementP−1 ∈ Πp(X), called theinverse of P,
such thatP � P−1 = P−1

� P = I ). The identity element
is the equivalence class of the trivial loop(p), and the
inverse of the equivalence class of a loopπ∈ Λp(X)
is the equivalence class of the inverse loopπ−1. The
group(Πp(X), �) is called thefundamental group of X
with base point p.

If X is connected, it can be shown that the funda-
mental groups ofX with different base points are iso-
morphic, thus in the sequel we will not refer anymore
to the base point unless necessary.

We say that a group istrivial if it is reduced to the
identity element. It may be easily seen that the funda-
mental group of any single cell is trivial. A complexX
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is said to besimply connectedwhenever it is connected
and its fundamental group is trivial. Informally, sim-
ply connected objects are connected objects which do
not have tunnels. Such objects may have cavities (like
a hollow sphere).

Let X be ann-complex, withn> 0, and letmbe an
integer such that 0≤m≤ n. We define them-skeleton of
X, denoted bySm(X), as the subcomplex ofX composed
of all the k-faces ofX, for all k ≤ m. The following
property may be easily verified.
Proposition 1. Let X� F

n, let π and π′ be two loops
in X having the same base point. The loopsπ and π′

are homotopic in X if and only if they are homotopic
in S2(X).

Thus, the fundamental group of a complexX � F
n,

for any n≥ 2, only depends on the 0-, 1- and 2-faces
of X. The faces of higher dimension play no role in its
construction.

4. Topology preserving operations

Collapse.The collapse, a well-known operation in
algebraic topology [6], leads to a notion of homotopy
equivalence in discrete spaces. To put it briefly, the col-
lapse operation preserves topology.

Let X be a complex inF3 and let f ∈ X+. If there
exists one proper faceg of f such thatf is the only face
of X which containsg, then we say that the pair( f ,g)
is a free pair for X. If ( f ,g) is a free pair forX, the
complexY = X \{ f ,g} is anelementary collapseof X.
In this case, we writeX ցe Y.

Let X,Y be two complexes. We say thatX col-
lapses onto Yif X = Y or if there exists acollapse
sequence from X to Y, i.e., a sequence of complexes
〈X0, . . . ,Xℓ〉 such thatX0 = X, Xℓ =Y, andXi−1 ց

e Xi , for
all i ∈ {1, . . . , ℓ}. Fig. 2 illustrates a collapse sequence.
We say thatX andY arecollapse-equivalentif X = Y
or if there exists a sequence of complexes〈X0, . . . ,Xℓ〉
such thatX0 = X, Xℓ =Y, and for anyi ∈ {1, . . . , ℓ}, ei-
ther Xi ց

e Xi−1 or Xi−1 ց
e Xi holds. LetX,Y such that

Y � X. Obviously, if X collapses ontoY then X and
Y are collapse-equivalent, but the converse is not true
in general (a classical counter-example is Bing’s house,
see [5,11]).

It is well known that, if two complexesX andY
are collapse-equivalent, then they have the same Euler
characteristics and they have isomorphic fundamental
groups.

Simplicity. Intuitively, a cell in a complexX is
called simple if it can be “removed” fromX while pre-
serving topology. We recall here a definition of simplic-

f

(a) (b)

(c) (d)

(e) (f)

Figure 2. (a): a complexX, and a 3-facef . (f): a complexY which
is the detachment of̂f from X. (a-f): a collapse sequence fromX
to Y.

(a) (b)

Figure 3. (a): the attachment of̂f for X (see Fig. 2a). (b): the
attachment of ˆx for the complex depicted in Fig. 1a.

ity (see [2]) based on the collapse operation, which can
be seen as a discrete counterpart of the one given by
T.Y. Kong [9].

The operation of detachment allows us to remove
a subcomplex from a complex, while guaranteeing that
the result is still a complex (see Fig. 2a,f). LetY � X �
F

3. We setX ⊘ Y = ∪{ f̂ | f ∈ X \Y}. The setX ⊘ Y is
a complex which is thedetachmentof Y from X.
Definition 2. Let X� F

3. Let f ∈ X+, we say that f
and f̂ are simple forX if X collapses onto X ⊘ f̂ .

The notion of attachment leads to a local character-
ization [2] of simple facets, which follows easily from
the definitions. LetY �X � F

3. Theattachment of Y for
X is the complex defined byAtt(Y,X) = Y∩ (X ⊘ Y).
Proposition 3. Let X� F

3, let f ∈ X+. The facet f is
simple for X if and only iff̂ collapses onto Att( f̂ ,X).

In Fig. 2, we can check from the very definition of
a simple face, that the 3-facef is indeed simple. As an
illustration of Prop. 3, we can verify that the 3-facex
of the complex depicted in Fig. 1a cannot collapse onto
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its attachment, shown in Fig. 3; thusx is not simple.

5. The new property

In the image processing literature, a digital image
is often considered as a set of pixels in 2-D or voxels
in 3-D. A voxel is an elementary cube, thus an easy
correspondance can be made between this classical view
and the framework of cubical complexes. In the sequel
of the paper, we callvoxelany 3-cell. If a complexX �
F

3 is a union of voxels, we writeX ⊑ F
3. If X,Y ⊑ F

3

andY � X, then we writeY ⊑ X. From now on, we
consider only complexes that are unions of voxels.

Notice that, ifX ⊑ F
3 and if f̂ is a voxel ofX, then

X ⊘ f̂ ⊑ F
3. There is indeed an equivalence between

the operation on complexes that consists of removing
(by detachment) a simple voxel, and the removal of a
26-simple voxel in the framework of digital topology
(see [8,3]).

Let us quote a characterization of 3-D simple vox-
els proposed by Kong in [9], which is equivalent to the
following theorem for subcomplexes ofF

3; this charac-
terization will be used in the proof of our main theorem.
Theorem 4 (Adapted from Kong [9]). Let X⊑ F

3. Let
f ∈ X+. Then f̂ is a simple voxel for X if and only if
Att( f̂ ,X) is connected andχ(Att( f̂ ,X)) = 1.
Definition 5. Let X,Y ⊑ F

3. We say that X and Y are
simple-equivalentif X = Y or if there exists a sequence
of complexes〈X0, . . . ,Xℓ〉 such that X0 = X, Xℓ =Y, and
for any i∈ {1, . . . , ℓ}, we have either
Xi = Xi−1 ⊘ xi , where xi is a voxel that is simple for
Xi−1 ; or
Xi−1 = Xi ⊘ xi , where xi is a voxel that is simple for Xi .
We say that X iscontractibleif X is simple-equivalent
to a single voxel.

Remark that, ifX andY are simple-equivalent then
they are collapse-equivalent; hence they have the same
Euler characteristics and their fundamental groups are
isomorphic. We can now define the notion of lump
evoked in the introduction.
Definition 6. Let Y⊑ X ⊑ F

3, such that X and Y are
simple-equivalent. If X6=Y and X does not contain any
simple voxel, then we say that X is alump relative to
Y, or simply alump.

The following proposition will be used for the
proof of Th. 8.
Proposition 7. Let X ⊑ F

3 be a connected complex,
let x be a voxel of X such that X⊘ x is connected and
Att(x,X) is not connected. Then there exists a loop in
X that is not homotopic in X to a trivial loop.

In other words, under the conditions of Prop. 7 the

complexX has a tunnel, more precisely it is not simply
connected. A proof is given in the appendix, which fol-
lows the same main lines as the proof of Prop. 3 in [1].
Finally, let us state and prove our main result.
Theorem 8. Let X ⊑ F

3, such that X is simply con-
nected. Let x be a voxel of X. Then x is simple for X if
and only if X ⊘ x is simple-equivalent to X.
Proof. The forward implication is obvious, let us prove
the converse.
Suppose thatX ⊘ x is simple-equivalent toX andx is
not simple forX. Remark that, sinceX is simply con-
nected andX ⊘ x is simple-equivalent toX, X ⊘ x is also
simply connected (for collapse preserves the fundamen-
tal group). From the very definition of the attachment,
we haveχ(X) = χ([X ⊘ x]∪ x) = χ(X ⊘ x) + χ(x)−
χ(Att(x,X)). SinceX andX ⊘ x are simple-equivalent
we haveχ(X) = χ(X ⊘ x), furthermoreχ(x) = 1 sincex
is a cell. From this we deduceχ(Att(x,X)) = 1, hence
Att(x,X) is non-empty, and from Th. 4,Att(x,X) can-
not be connected. From Prop. 7, there exists a loop in
X that is not homotopic to a trivial loop, thus the fun-
damental group ofX is not trivial, a contradiction with
the fact thatX is simply connected.�

Since any contractible set is obviously simply con-
nected, we have the following corollary.
Corollary 9. Let X⊑ F

3, such that X is contractible.
Let x be a voxel of X. Then x is simple for X if and only
if X ⊘ x is simple-equivalent to X.

6. Conclusion

We proved a new property about the notion of 3-
D simple point, which has been extensively studied for
fourty years and proved useful in many applications.
The interest of this result is not only theoretical, since
configurations of the same nature as the lump of Fig. 1a
are likely to appear in practical image processing pro-
cedures (see [11]).
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Appendix: proof of Prop. 7

Proof. Let C1 andC2 be two distinct components of
Att(x,X). Remark thatC1 andC2 are subcomplexes of
X ⊘ x. SinceX ⊘ x is connected, there must exist a path
γ1 in X ⊘ x that links a pointp1 ∈C1 to a pointp2 ∈C2.
Let γ2 be a path fromp2 to p1 in x; γ= γ1 �γ2 constitutes
a loop inX. We have seen that, in order to define the
fundamental group, the base point can be arbitrarily
chosen; the choice of a loop havingp1 as its extremities
may thus be made without loss of generality.

For any pathπ, let us define the number #(π,C1)
of pairs of consecutive points ofπ that are of the type
(u,v) with u in C1 andv not inx, or inversely. Obviously
#(γ2,C1) = 0, and sinceγ1 lies inX ⊘ x and connectsC1

to C2, it can be seen that #(γ1,C1) must be odd, hence
#(γ,C1) must also be odd.

Let us consider a loopγ′ directly homotopic in
X to γ. We will prove in the following that #(γ′,C1)
is odd. By induction, this property will extend to any
loop homotopic inX to γ. By definition, we haveγ =
P1 � Q � P2 andγ′ = P1 � R� P2, with Q andR having the
same extremities and being contained in a same facef
of X. Observe that, by Prop. 1, we may suppose that
f is a 1- or a 2-face. Iff̂ � x or if f̂ ∩C1 = /0, then
obviously #(γ′,C1) = #(γ,C1). Suppose now that̂f 6� x
and f̂ ∩C1 6= /0.

Without loss of generality, we can writeQ andR
in the formQ = Q1Q′

1Q2Q′
2 . . . QkQ′

k, k > 0, andR=
R1R′

1R2R′
2 . . . RℓR′

ℓ, ℓ > 0, with all subsequencesQi and

Ri being composed by points insideC1, all subsequences
Q′

i andR′
i being composed by points outsideC1, and all

these subsequences being non-empty except possibly
Q1, R1, Q′

k, andR′
ℓ.

Since f̂ ∩C1 6= /0 we havef̂ ∩x 6= /0, and sincef̂ 6� x
and f̂ � X, we havef̂ ∩x� Att(x,X). Hence, sinceC1

is a connected component ofAtt(x,X), we must have
f̂ ∩x�C1. From this, we deduce that in̂f , all the points
that are not inC1 are outsidex, thus all the points in the
subsequencesQ′

i andR′
i are outsidex.

Thus, the pairsQ′
1Q2, Q2Q′

2,. . .,Q′
k−1Qk each

bring a contribution of one unit to #(γ,C1). We
have indeed: #(γ,C1) = #(P1,C1) + δ(Q1) + 2k− 3+
δ(Q′

k) + #(P2,C1), where δ(π) = 0 whenever the
path π is empty, andδ(π) = 1 otherwise. Remark
that δ(Q1) = 1 iff the first point of Q is in C1, and
δ(Q′

k) = 1 iff the last point ofQ is not inC1. Remark
also that if k = 1, then necessarilyδ(Q1) = δ(Q′

k) =
1. By the same reasonning, we have #(γ′,C1) =
#(P1,C1)+ δ(R1)+ 2ℓ−3+ δ(R′

ℓ)+ #(P2,C1), further-
moreδ(Q1) = δ(R1) andδ(Q′

k) = δ(R′
ℓ) becauseQ and

R have the same extremities. Since #(γ,C1) is odd, we
see that #(γ′,C1) is also odd.

Hence the result, since for any trivial loopπ we
have #(π,C1) = 0. �
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