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A point of a discrete object is called simple if it can be
deleted from this object without altering topology. In this X b
article, we present new characterizations of simple points C
which hold in dimensions 2, 3 and 4, and which lead to effi-
cient algorithms for detecting such points. In order to @ov t
these characterizations, we establish two confluence prop-
erties of the collapse operation which hold in the neighbor-
hood of a point in spaces of low dimension. This work is set-
tled in the framework of cubical complexes, which provides
a sound topological basis for image analysis, and allows to
retrieve the main notions and results of digital topology, i
particular the notion of simple point.

Figure 1. lllustration of 2D simple pixels. The
set X is made of the pixels in gray, a,b,c are
simple while x,y,zt are not simple.

Key Words: Cubical complex, topology preservation, col- the points (or pixelsy,y, z,t are not simple: the removal &f

lapse, simple point, confluence, 4D space. from the se of pixels would create a new connected com-
ponent of the complemedt of X ; the removal ofy would
Introduction merge two connected components)of the removal ofz

would split a connected componentXf;, and the removal
of t would delete a connected componenkofOn the other
hand, the pixels, b andc are simple pixels. We see that, in
2D, the notion of connectedness (for battandX) suffices
to characterize simple pixels.

Topology-preserving operators, like homotopic skele-
tonization, are used in many applications of image analysis
to transform an object while leaving unchanged its topolog-
ical characteristics. Applications in 2D and 3D are already
widely spread, and with the emergence of fast 3D image ac-
quisition devices, such as medical X-ray and MRI scanners,
there is a growing interest in considering a time sequence
of 3D objects as a coherent 4D structure. For example, the
segmentation of a moving heart muscle can be facilitated in
this way [12].

In discrete grids Z?, Z3, Z*), a topology-preserving
transformation can be defined thanks to the notion of simple
point [20]: intuitively, a point of an object is called singqf
it can be deleted from this object without altering topology
This notion, pionneered by Duda, Hart, Munson [14], Go-  Figure 2. A set X of voxels. The voxels x and
lay [17] and Rosenfeld [27], has since been the subject of y are not simple.
an abundant literature. In particular, local characteidre
of simple points have been proposed, which allow efficient
implementation of thinning procedures. Things are more difficult in 3D. Consider the example

Let us illustrate informally the notion of simple point of the setX depicted in Fig. 2, removing the voxelor the
through some examples, first in 2D, then in 3D. In Fig. 1, voxely from X would not split, merge, create or suppress




any component oK nor any component oK. However Observe that any non-empty intersection of faces is a
neitherxnoryis simple, for the deletion of(resp.y) causes  face. For example, the intersection of twefacesA and

the suppression (resp. creation) of a tunnel. Surprisjrigly B may be either a2face (if A= B), a 1—face, a 6-face, or

is still possible to characterize 3D simple points by local the empty set.
conditions which are only based on connectedness (see [1,

9, 28]), but this is no longer true in 4D.

In this article, we use a definition of simple points ([4], . —
see also [8]) based on the collapse operation. Collapse is an B
elementary topology-preserving transformation which has (a) (b) (c) (d) (e)

been introduced by Whitehead [29] and plays an important
role in combinatorial topology, it can be seen as a discrete  Figure 3. Graphical representations of: (a)
analogue of a continuous deformation (a homotopy). No- 5 0—face, (b) a 1-face, (c) a 2—face, (d) a
tice that this definition of simple points makes sense inany  3_face, (e) a 4—face.
dimension.

We present new characterizations of 2D, 3D and 4D sim-
ple points based on the collapse (Th. 13, Th. 14), which We denote by the set composed of afi—faces ofz¢,
lead to simple, greedy linear-time algorithms for simpifici ~ with 0 < m< d. An m—face ofZ¢ is called gointif m=0,
checking. We also retrieve in our framework, a character- a(unit) edgaf m= 1, a(unit) squardf m= 2, a(unit) cube
ization of 4D simple points established by T.Y. Kong [19], if m= 3, a(unit) hypercubéf m= 4 (see Fig. 3).
and some previously proposed characterizations of 3D sim-  Let f be a face i, We setf = {geFd|gC f} and
ple points [19, 1, 9, 28]. fr="1\{f}. A

In order to prove these characterizations, we establishAny g € f is aface of f and anyg € f* is aproper face of
someconfluence propertiesf the collapse (Th. 11, Th. 12).  f. R
These properties do not hold in general due to the existencdf X is a finite set of faces iti¢, we write X~ = U{f | f €
of “topological monsters” such as the Bing’s house ([10], X}, X~ is theclosure of X(see Fig. 4).
see also [25]) and the dunce hat [30]; we show that they

are indeed true in the neighborhood of a point, when the °
dimension of the space is such that this neighborhood is not Y, —_
large enough to contain such counter-examples. z t
This work is settled in the framework of cubical com- ©° °
plexes. Abstract (cubical) complexes have been promoted @ (b) ©
in particular by V. Kovalevsky [22] in order to provide a
sound topological basis for image analysis. For instamce, i J

this framework, we retrieve the main notions and results of
digital topology, such as the notion of simple point. I

(d) (e)
1 Cubical Complexes Figure 4. (a): Four points Xxyzt. (b): A
graphical representation of the set of faces
{{xy,zt},{xvy}.{z}}. (c): A set of faces X,
which is not a complex. (d): The set X, com-
posed by all facets of X. (e): The set X, i.e.
the closure of X, which is a complex.

Intuitively, a cubical complex may be thought of as a set
of elements having various dimensioesy.cubes, squares,
edges, vertices) glued together according to certain rules
In this section, we recall briefly some basic definitions on
complexes, see also [7, 5, 6] for more details. We consider

hered—dimensional complexes, mainly with<0d < 4. A set X of faces inF? is acell or an m—cell if there

Let Sbe a set. IfT is a subset 0§, we writeT C S. We exists atm—face f € X, such thaiX = f. Theboundary of
denote by S| the number of elements & a cell f is the setf*. For example, a-3cell is composed of

Let Z be the set of integers. We consider the families 27 faces: a cube, six squares, twelve edges and eight points.
of setsF3, F1, such thatfy = {{a} |a€ Z}, F} = {{a,a+ Its boundary is composed of all these faces but the cube.
1} |a€ Z}. A subsetf of Z9, d > 2, which is the Cartesian A finite setX of faces inF¢ is acomplex (infY) if X =

product of exactlym elements otF% and(d —m) elements  X~. Any subset’ of a complexX which is also a complex
of IF(l) is called &aceor anm—faceof Z9, mis thedimension is asubcomplex of XIf Y is a subcomplex oK, we write
of f, we write dim(f) =m. Y < X. If X is a complex inF¢, we also writeX < F9.



See in Fig. 4e an example of a complex, and in Fig. 4b,c,dthat, if (f,g) is a free pair, then we have necessafilg X
examples of sets of faces which are not complexes. Also inand dim(g) = dim(f) — 1.
Fig. 2 and Fig. 5, some complexes are represented. Notice Let X be a complex, and letf,g) be a free pair foiX.

that any cell is a complex.

Let X C F9, let f € X andm= dim(f). We say thatf
is afacet of Xor anm—facet of Xif there is nog € X such
thatf € §*. We denote byX* the set composed of all facets
of X (see Fig. 4).
If X is a complex, observe that in genefél; is not a com-
plex, and thafX ]~ = X.

Let X < F9, X # 0, the number dirtX) = max{dim(f)
| f € XT} is thedimension of X We say thatX is an
m—complex if dimX) = m.
We say thaX is pureif, for eachf € X, we have dinif) =
dim(X).
In Fig. 5, the complexes (a) and (f) are pure, while (b,c,d,e)
are not.

LetX C IF9 be a set of faces. A sequerce- (fo, ..., f/)
of faces ofX is apath in X (from § to f,) if either f; is a
face offi 1 or fi1 is a face off;, foreach € {0,...,¢—1}.

Let X C F9. We say thaK is connectedf, for any two
facesf,gin X, there is a path fronfi to g in X; otherwise we
say thatX is disconnectedWe say thal is a(connected)
componentof Xf Y £ 0,Y C X, Y is connected and I is
maximal for these properties€., we haveZ =Y whenever
Y C Z C X andZ is connected). Notice that the empty set is
connected but has no connected component.

If X is anm—complex withm< 1, thenX is also called a

graph(see [16]). Examples of graphs can be seen in Fig. 12

and Fig. 13. LefX be a graph, and let = (fo,..., f;) be

a path inX such that dinifp) = dim(f;) = 0. The pathrt

is said to beclosedwheneverfy = f;, it is atrivial path
whenever/ = 0, it is said to beslementanyif its faces are

all distinct except that possiblip = f,. A graph which is
constituted by the faces of a non-trivial elementary closed
path is called &ycle The graphX is acyclicif none of its

subcomplexes is a cycle. A connected and acyclic graph is

atree

2 Collapse and simple sets

Intuitively a subcomplex of a complex is simple if its
removal fromX “does not change the topology #f'. In
this section we recall a definition of a simple subcomplex
based on the operation of collapse [29, 16], which is a dis-
crete analogue of a continuous deformation (a homotopy).

Let X be a complex irf® and letf € X. If there exists
one faceg € f* such thatf is the only face ofX which
strictly includesg, theng is said to befree for X and the
pair (f,g) is said to be dree pair for X. The complex,
which is the closure of the set of all free faces ¥r is
called theboundary of Xand is denoted bfd(X). Notice

Letm=dim(f). The complexX\ {f,g} is anelementary
collapse of X or anelementary mcollapse of X
Let X, Y be two complexes. We say thétcollapses onto Y
if Y = X or if there exists &ollapse sequence from X tq Y
i.e., a sequence of complex€xy, ..., X;) such thaXp = X,
X, =Y, andX; is an elementary collapse of_1, for each
i€{1,...,4}. If X collapses ontd¥ andY is a complex
made of a single point, we say thatis collapsible

Fig. 5 illustrates a collapse sequence. Observe that, if
X is a cell of any dimension, theX is collapsible. Also,
a graph is a tree if and only if it is collapsible ([16]). Fur-
thermore, it may easily be seen that the collapse operation
preserves the number of connected components.

(d)

42l

(f)

Figure 5. (a): a pure 3—complex X <3, and
a 3—face f € X*. (f): a complex Y which is
the detachment of f from X. (a-f): a collapse
sequence from Xto Y.

We say that the collapse sequeri®g, ..., X,) is decreas-
ingifforanyi € {1,...,/— 1}, we havem> n’ wheneveiX;
is an elementargn—collapse ofX;_1 andX, 1 is an elemen-
tary m' —collapse ofX;. For example in Fig. 5, the collapse
sequenc€a,b,c,d,e) is decreasing, buta,b,c,d,e f) is
not decreasing.

Let (Xo,...,X;) be a collapse sequence. If there exists
i €{1,...,£—1} such thatX; is an elementarym—collapse
of Xi_1 andX;1 is an elementaryn —collapse ofX;, with
m' > m, then it may be seen that the sequence obtained by
exchanging these two elementary collapse operationdlis sti
a collapse sequence fra to X,. By induction, this proves
the following property, which will be used later.



Proposition 1. Let XY be two complexes. If X collapses diagram are depicted. The interest of this representagsn |
onto Y, then there exists a decreasing collapse sequencén the fact that a structure lik&" lying in the 3D space may
fromXtoY. be represented in the 2D plane. Notice that orda2Ze of
the boundary, here the squdre f,h,g}, is not represented
like the other ones in the schlegel diagram, but we may con-
sider that it is represented by the ouside space.

As anillustration of Prop. 5, Fig. 7b shows (both directly
and by its Schlegel diagram) the attachmentfdbj the
Proposition 2 ([3, 4]). Let X,Y < F9. The complex X)Y complexX of Fig. 5a, and we can easily verify thétcol-
collapses onto X if and only if Y collapses ontoiX. lapses ontadAtt(f,X). Also, Fig. 7c showsAtt(X, X) (see
Fig. 2) and we can verify by Prop. 5 thats not simple.

Let X,Y be two complexes. Lef be such thak NY <
Z =Y, and letf,g € Z\ X. The pair(f,qg) is a free pair
for XUZ if and only if (f,g) is a free pair foiZ. Thus, by
induction, we have the following property.

The operation of detachment allows to remove a subset

from a complex, while guaranteeing that the result is still a . e

complex. a L
A Jj

Definition 3 ([3, 4]). LetYC X <F9. We setXOY = (X+\

Y*)~. The set XOY is a complex which is thdetachment g c

of Y from X. c

(a)

g
In the following, we will be interested in the case where
Y is a single cell. For example in Fig. 5, we see a complex
X (a) containing a 3-cell f, andX © f is depicted in (f).
Let us now recall here a definition of simplicity based
on the collapse operation, which can be seen as a discrete
counterpart of the one given by T.Y. Kong [19]. (b)

Definition 4 ([3, 4]). LetY C X; we say thatY isimple for
X if X collapses onto XY .

The collapse sequence displayed in Fig. 5 (a-f) shows

that the cellf (and the facef) is simple for the complex

depicted in (a). (©
The notion of attachment, as introduced by T.Y. Kong

[18, 19], leads to a local characterization of simple sets, Figure 7. (a): The boundary of a 3—cell and

which follows easily from Prop. 2. its Schlegel diagram. (b): The attachment of
LetY < X < F4. Theattachmenbf Y for X is the com- f for X (see Fig. 5a). (c): The attachment of X
plex defined byAtt(Y, X) =Y N (XQY). for X (see Fig. 2).

Proposition 5 ([3, 4]). LetY < X < F9. The complex Y is

simple for X if and only if Y collapses onto tX). Representing 4D objects is not easy. To start with, let us

Fig. 6 shows the attachments of simple pix&lb, c and consider Fig. 8a where a representation of the 3D complex
non_simp|e pixe|s(’ Y,z t of F|g 1. We invite the reader to X of Flg Bais given under the form of two horizontal cross-

use these examples to illustrate Prop. 5. sections, each black dot representing-ac8ll.
In a similar way, we may represent a 4D object by its “3D
—e sections”, as the objedtin Fig. 8b. Such an object may be
I_I ._I I I I I thought of as a “time series of 3D objects”. In Fig. 8b, each
a b c X y z t black dot represents a-4ell of the whole 4D compleX.
Schlegel diagrams are particularly useful for represent-
Figure 6. Attachments (in black) of simple ing the attachment of a 4D cefil whenever this attachment
pixels a,b,c and non-simple pixels x,y,zt of if not equal tof *. Fig. 9a shows the Schlegel diagram of the
Fig. 1. boundary of a 4-cell (see Fig. 3e), where one of the eight

3—faces is represented by the ouside space. Fig. 9b shows
the Schlegel diagram of the attachment of thecéllgin Y
Let us introduce informally th&chlegel diagramas a (see Fig. 8b). For example, the-8ell H represented in the
graphical representation for visualizing the attachmémt o center of the diagram is the intersection between theell
cell. In Fig. 7a, the boundary of a-3ell f and its Schlegel g and the 4-cell h. Also, the 2-cell | (resp. the i-cell
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Figure 8. (a): An alternative representation of
the 3D complex X of Fig. 5a. (b): A similar
representation of a 4D complex Y.

J, the 1-cell K, the O-cell L) isgni (resp. gNj, gnk,
gNnl). The two 2-cells which are the intersections gf
with, respectivelym andn, are both included in the-3cell
H. Observe that the cef is not simple (its attachment is
not connected).

—

@) (b)

Figure 9. (a): The Schlegel diagram of the
boundary of a 4—cell. (b): The Schlegel di-
agram of the attachment of the 4—cell g of
Fig. 8b, which is not simple.

The following property easily follows from the definition
of the boundary of a face, and may be checked on Fig. 9a.

Proposition 6. Let f be ad—face. Then,

i) any 2—face of f* is included in exactly tw@—faces of
f*: and i

i) any 1—face of f* is included in exactly thre8—faces of
f*; and

iii) any 1—face off* is included in exactly three—faces of
f*.

3 Confluences

Let X < F9. If f is a facet ofX, then by Def. 4,f is
simple if and only ifX collapses ontX © f. From Prop. 5,
we see that checking the simplicity of a célleduces to the
search for a collapse sequence fréro Att(f, X). We will
show in Sec. 4 that the huge number (especially in 4D) of
possible such collapse sequences need not be exhaustively
explored, thanks to the confluence properties (Th. 11 and
Th. 12) introduced in this section.

Consider three complexésB,C. If A collapses ont&€
andA collapses ont®, then we know tha#, B andC “have
the same topology”. If furthermore we ha@e< B < A, it
is tempting to conjecture th& collapses ont€.

In the two-dimensional discrete plafié, the above con-
jecture is true, for example any complex obtained by a col-
lapse sequence from a full rectangle, collapses onto a.point
We call it a confluence property. But quite surprisingly it
does not hold irf® (more generally iff9,d > 3), and this
fact constitutes indeed one of the principal difficultiesanh
dealing with certain global topological properties, sush a
the Poincaré conjecture. Classical counter-examplesgo th
assertion are the Bing’s house ([10], see also [25]) and the
dunce hat ([30]).

In Fig. 10a, we see a classical (informal) representation
of the Bing’s house. The house has two rooms separated by
a floor ; one can enter the lower room of the house by the
chimney passing through the upper room, and vice-versa.

In Fig. 10b, we depict a Bing’s houd® which is a
2—complex. For readability of the figure, only some of the
1—faces and 2faces are displayed. This-Zomplex may
be obtained by collapse from the-Bomplex depicted in
Fig. 10c, which is composed of twenty-four-8ells. The
dotted arrow suggests one half of a possible sequence of
collapse operations, the other half being symmetricalit th
one. The 2complexB contains no free face: we can verify
that each %-face is contained in two or three-?aces.

From any 2-complex, we may extract the graph com-
posed by all the X cells which are included in three or more
2—cells. We call this graph theignature of th—complex
In Fig. 10b, the signature of the Bing’s houBeis high-
lighted by a bold black line: it is composed of three con-
nected cycles.

Fig. 11a depicts a triangulation of the dunce hat. Notice
that the three sides of the biggest triangle (in bold) ara4ide
tified, and that the different occurences of the pairdre
indeed representations of the same point (this remark also
holds for pointsb andc). Notice also that only segments
ab, bc andca are included in three triangles, furthermore
they form a cycle, which is the signature of the dunce hat.

In Fig. 11b, we show a realization of the dunce hat
as a 2-complex, which is very likely to be the smallest
one which may be built iff®. For readability, only some
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Figure 10. (a) The Bing’s house with
two rooms (classical representation). (b)
A realization of a Bing’s house as a
2—complex B. (c) A 3—complex made of 24
cubes. The arrows symbolize the order in
which 3—collapse operations can be made in
order to “carve” the lower room of the house.
By performing a symmetrical operation for
the upper room, we obtain the 2—complex in

(b).
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Figure 11. Dunce hats (see text).

1—faces and three-2faces are displayed. The collapse se-
guence from a 3complex to this 2 complex, composed
of 12 elementary 3collapse operations, is suggested by
the dotted arrow. We may verify that the signature of this
2—complex is composed of the—Tells highlighted by a
bold black line: it is a cycle.

In this section we show that, in the boundary of-aface
with d < 4, there is “not enough room” to build such
counter-examples, and thus some kinds of confluence prop-
erties hold.

We emphasize that for our purpose, it is sufficient to
make a combinatorial proof for only one lemma (Lemma 7).
Due to the high number of cases in dimension 4, we used
a computer program for this proof. Notice that, however, it
would not be possible to establish direcly, by exhaustive ex
ploration of all possible configurations, the main propeesti
proved in this paper (confluence properties and simple point
characterizations): the number of possible configurations
the boundary of a four-dimensional face f§2

Lemma 7. Let f be a d-face with de {3,4}, and let X

be a non-empty subcomplex Of. Let us denote b¥ the
complementary of X irf*. Suppose thadim(X) =d -2
and thatX is connected, then the two following statements
hold:

i) The complex X has at least one frige— 3)—face.

i) Ifd =4 and if X is pure, then the graph BY) is not



acyclic.

Proof. With the help of a computer program, we generated
all the possible such subcomplexesféf and checked the
property exhaustively. In the cade= 4, notice that 8- and
1—facets ofX play no role in the connectednessXafthus
without loss of generality for proving statement i), we can
suppose, as forii), that is a pure 2-complex. The number
of such complexes is?2. (]

Suppose that is a 4-face, thenf* is a 3-complex. We
observe that statements i) and ii) of Lemma 7 do not hold if,
instead of being a subcomplex of the omplexf*, X'is a
subcomplex of3, due to the existence of counter-examples
such as the Bing’s house. LBtbe a Bing’s house which is
a pure 2-complex, we can see th&has no free 1face
andB is connected, furthermore sinBel(B) = 0, the graph
Bd(B) is acyclic.

We will also need the following result for the proofs of
Prop. 9, Lemma 21 and Th. 15. We prove it here for the

case of the boundary of a cell, but a more general property

could be established in the framework of discrete manifolds
(see [13]).

Proposition 8. Let f be a d-face with de {2,3,4}, and

let Y < X < f* such that X collapses onto Y. Then, the
setsX = f*\ X andY = f*\ Y have the same number of
connected components.

Proof. It is sufficient to prove the proposition whenever
Y = X\ {h,g}, with (h,g) being a free pair fokK. We make
the proof ford = 4, the other cases are similar and simpler.
Let us call a€m—path, a path in which each face has a di-
mension greater or equal to. It may be seen that a subset
Z of X is connected if and only if any two-Faces ofZ are
linked by a 2-path. Let us denote by"(Z)| the number of
connected components 8f thus we haveC(Y)| # | C(X)|
only if eitherh or g is a 2—face.

Case 1: dinig) = 2. Hence, dinth) = 3. Since(h,g)

is a free pair forX, henceh € X, from Prop. 6i we de-
duce thatg is included in exactly one-3face ofX, thus
ICOV)| = |C(X).

Case 2: dinth) = 2. Hence, dinig) = 1. LetA B,C be
the three 3-faces of f* which containg (see Prop. 6ii),
with ANB = h. Sinceg is free, these 3faces all belong
to X. FurthermoreA andB are connected by the-2ath
(A, ANC,C,CNB,B) in X. Thus,A andB are in the same
connected component &, and|C(Y)| = |C(X)]. O

We are now ready to introduce the confluence properties.

Proposition 9 (Downstream confluence)et f be a
d—face with de {2,3,4}, and let AB < f* such that BX A,

A collapses onto B, and A is collapsible. Then, B is collapsi-
ble.

Proof. We make the proof fall = 4, the other cases are
similar and simpler. We only have to prove tHateither

is a point, or has a free face. If the latter is true, then by
collapsing this face we obtain a subcompRof A strictly

included inB, which is such thaf collapses ontd®’ (by
transitivity). The result follows by induction on the siz€ o

Let us consider the following (mutually exclusive) cases.
e dim(B) = 3: SinceA s collapsible, we havA # f* and

B # f*. SinceB has at least one-ace, it can be easily
seen that there exists a-face of B which is a free face:
since there are only eight-JFaces inf*, this fact may be
checked by enumeration (this property may also be derived
from general properties of manifolds, see [13]).

e dim(B) = 2 : From Prop. 8 and our hypothesBss con-
nected, thus by Lemma M has at least one free-face.

e dim(B) =1: In other wordsB is a graph. The hypotheses
imply thatB is indeed a connected and acyclic graipd, a
tree. Since dirtB) = 1, B cannot be a point, then it has at
least one free ©face ([16]).

dim(B) = 0 : In other wordsB is a set of points. The
hypotheses, and the fact that collapse preserves the number
of connected components, imply tHatis indeed a single
point. O

Prop. 20, Lemma 21 and Lemma 22, which may be
found in the appendix, are needed in addition to Prop. 9
for the proof of Prop. 10.

Proposition 10 (Upstream confluence) et f be a d-face
with d € {2,3,4}, and let AB < f* such that BXx A, Ais
collapsible, and B is collapsible. Then, A collapses onto B.

Proof. Letk = |A|, the property is trivially true whek = 1.
Suppose now th&t> 1, and suppose that the property holds
for any complexe#', B verifying the hypotheses of the the-
orem, whenevek’ < k (with k' = |A’|). From Lemma 21 and
Lemma 22, there exists a pair of fadésg) such thath,g)
is free forA and either(h, g) is free forB or {h,g} NB= 0.
Case 1:{h,g} NB=0. We sethA’ = A\ {h,g}, we have ob-
viously B < A'. By Prop. 9,A’ is collapsible, furthermore
k' < k. By the recurrence hypothesis, we deduce #iaol-
lapses ont®, thusA collapses ont®.
Case 2:(h,qg) is free forB. We setA’ = A\ {h,g}, and
B' =B\ {h,g}, we have obviousl$3’ < A". By Prop. 9, both
A andB’ are collapsible, furthermoié < k. By the recur-
rence hypothesis, we deduce tatollapses ont®'. Fur-
thermore, it can easily be seen that any collapse sequence
from A’ to B induces a collapse sequence fréno B (by
removing the same pairs in the same order).

Th. 11 summarizes Prop. 9 and Prop. 10.

Theorem 11.Let f be a d-face with de {2 3,4}, let
A, B =< f* such that BX A, and A is collapsible. Then, B
is collapsible if and only if A collapses onto B.

The following theorem may be easily derived from
Th. 11 and the fact that is collapsible, its proof is left



to the reader. ii) If there exists a complex Z such that A collapses onto Z

Theorem 12. Let f be a d-face with de {2,3,4}, and let and Z is not collapsible, thehis not simple for X.
C,D = f* such that D= C, andf collapses onto D. Then, Both algorithms may be implemented to run in linear
f collapses onto C if and only if C collapses onto D. time with respect to the number of elements in the attach-
ment of a cell (Remark 16 will give some elements which
support this claim).
Thanks to Th. 14 and the previous properties, we can
also retrieve a characterization of simple cells proved by
In the image processing literature, a (binary) digital im- T Y. Kong in [19], where arguments based on the continuous
age is often considered as a set of pixels in 2D or voxels in framework and several combinatorial lemmas were used. In

3D. A pixel is an elementary square and a voxel is an el- contrast, our new proof is purely discrete and its combina-
ementary cube, thus an easy correspondance can be madgrial part is reduced to Lemma 7.

between this classical view and the framework of cubical Let X be a complex iff4, and let us denote by; the

complexesa o _ number ofi—faces ofX, i = 0,...,4. TheEuler character-
If xdj F®andifX is a puredd—complex, theﬂ we write istic of X, writteny (X), is defined by (X) = no—ng 4 np —
X CF% In other words X C ¥ means thaX™ is a set ;4 n,. The Euler characteristic is a well-known topologi-

composed oti—faces €.g, pixels in 2D or voxels in 3D). cal invariant; in particular, it can be easily seen thatajosie
Notice that, ifX = F9 and if f is ad—cell of X, then preserves it.

X © f CF9. There is indeed an equivalence between the
operation on complexes which consists of removing (by de- Theéorem 15(adapted from [19], theorem 9) et X T FY,
tachment) a simple—cell, and the removal of a 8-simple  With d€ {2,3,4},let f be afacetof X, and letA Att( f, X).
(resp. 26-simple, 80-simple) point in the framework of 2D The facet f is simple for X if and only if the three following
(resp. 3D, 4D) digital topology (see [18, 19, 7, 5]). statements are true:

From Prop. 5 and Th. 12, we have the following charac- ') A has exactly one connected component, and
terization of a simple cell, which does only depend on the i) f*\A has exactly one connected component, and
status of the faces which are in the cell. i) X(A) =1

Theorem 13. Let X C F¢, with d € {2,3,4}. Let f be a Proof. Suppose thdtis simple forX. By Th. 14,Ais col-
facet of X, and let A= Att(f,X). The two following state- lapsible. Since collapse preserves the number of connected

4 New characterizations of simple cells

ments hold. components we deduce i), and by Prop. 8 we deduce ii).
i) The cellf is simple for X if and only if collapses onto A. Furthermore the Euler characteristic of a pointis equal to 1
ii) If there exists a complex Z such thatAZ < f f col- and collapse preserves the Euler characteristic, hence iii
lapses onto Z and Z does not collapse onto A, thisnot Conversely, suppose thétverifies i), ii) and iii). One and
simple for X. only one among the following cases occurs.

e dim(A) < 1: In other wordsA is a graph. From i) and
Now, thanks to Th. 13, if we want to check whether a ijii), we deduce thaf is a connected and acyclic graple,,
cell f is simple or not, it is sufficient to apply the following 3 tree, and thua is collapsible ([16]).

greedy algorithm. e dim(A) =2 andd = 4 : If d = 4, by Lemma 7i, condi-
Algorithm 4;: Set Z— f ; Do tir:)n ii) im”plies thatA h/as at Ieﬁlst one freehpaﬁh,g) anld
Select any free paith,g) in Z\ A; set Z to 2, {h,g} ; thusA collapses ont@\' = A\ {h,g}. From the properties

of collapse, we see th&' also verifies i), ii) and iii). If
dim(A’) < 2, we deduce the result from the preceding case,
otherwise the result comes by induction on the number of

Continue until either Z= A (answer yes) or no such pair is
found (answer no).

If this algorithm returns “yes”, then obviously col- 2—faces.
lapses ontd\ and by Th. 13if is simple. In the other case, e dim(A) =3 andd = 4 (resp. dinfA) = 2 andd = 3) : We
by Th. 13ii, f is not simple. know from ii) thatA # f*. SinceA has at least one-3ace

By Th. 13 and Th. 11, we derive a second characteriza- (resp. 2-face), it can be easily seen tifahas at least a free
tion which leads straightforwardly to a second greedy algo- 2—face (resp. +face), see the proof of Prop. 9. Thus, sim-
rithm 4, for checking simplicity. ilarly to the previous case, the result follows by induction

Theorem 14. Let X C 9, with d € {2,3,4}. Let f be a -

facet of X, and let A= Att(f,X). The two following state- Remark 16. This characterization also induces a linear-
ments hold: time algorithm for simplicity checking. Nevertheless, ob-
i) The cell f is simple for X if and only if A is collapsible. serve that this algorithm (let us call B) is composed of



three steps: one for computing the Euler characteristic of  If a face of dimensiom is not lump-free, it may be seen
the attachment, and two for extracting connected compo-that the main theorems of this paper cannot be extended
nents. To extract connected components in linear time, oneto dimensionD. Let us consider for example the case of
may classically apply a breadth-first exploration strategy Th. 13, and také& C FP and a simpldd—facex of X such
The same strategy may also be used to implement algothat Att(x,X) is a point. The existence of a lump contra-
rithms 4; and 4y, thus in terms of number of operations, dicts the extension of Th. 13ii. Consider now the case of
both 4; and 4, are comparable to one of the stepskf Th. 14, and tak& C FP and a simpléD—facex of X such
thatAtt(x,X) is a lump. By definition, the faceis simple
but its attachment is not collapsible, a contradiction vl
extension of Th. 14i.

The aim of this section is to answer the question: what is
the highest dimensiodh such that al—face is lump-free ?

Let us also mention another definition of simple points
based on homology ([24], see also [21]). In this context,
checking whether a poirg is simple or not amounts to ver-
ify that all the homology groups of the neighborhood (or
attachment) ofp are trivial. However, computing homol-
ogy groups requires a computational effort which is much
greater than the one needed by algorithiasand 4.
tiorlg Tfes(i:r?ls[’)ﬁ :pcﬁhr\s/e(srgglalg V\llelg kgcs)}/;/nucsf;séag;elgi\?\;o Itis in fact possible to build a Bing’s house fri, with f
conditions among the three ones of Th. 15. Of course, thesebemg a 6-face (or aface of higher dimension). We give an

characterizations also hold for dimension 2 informal description of this construction.
' Let us consider the-2subcomplex of the boundary of a

Theorem 17. Let XC IF3, let f be a facet of X, and let A 4—face, which is depicted in Fig. 12a.
Att(f,X). The facet f is simple for X if and only if statement
i) and either statement ii) or statement iii) of Th. 15 hold.

Dimensions 6 and higher

Proof. If i) and iii) hold, then since ii) is not used in the
proof of Th. 15 for the 3D case, we are done. Suppose how
that i) and ii) hold. The case difA) = 2 is treated in the
proof of Th. 15, suppose that di@) = 1. From ii) and
Lemma 7i, we deduce th#t has at least a free paih,g).
LetA' = A\ {h,g}, we can see that*\ A’ is also connected.
Thus by induction on the number of-faces,A collapses (@) (b)
onto a O-complex. By i), this 8-complex is necessarily
reduced to a single poinil

Figure 12. (a): A 1—subcomplex of the bound-
ary of a 4—face. (b): Another view of this

5 Higher dimensions complex.

Indeed, the results of this paper hold for any dimension
strictly lower than a certain dimensid» which is the low- A (d+1)—face is obtained by the product ofda-face
est dimension such that a counter-example like the Bing’sand a 1-face (an operation on complexes directly derived
house or the dunce hat may be built inside the boundary offrom the Cartesian product operation). Lfebe ad—face,

aD—face. From Th. 11 and Th. 12, we know tHat> 4. let g be a(d + 1)—face and leh be a(d +2)—face, if X is
The notion of lump defined below helps us to formalize the a subcomplex of then ing'we can embed two “indepen-
problem that we study in this section. dent copies” o, and inh we can embed four independent

— . copies ofX (see Fig. 13 an example with= 2).
. = ) .
Definition 18. Let f be a d-face, with de I, and let X< Starting from the 4-face of Fig. 12a, we can thus ob-

f. The compliex X'is dump (by collapse)f T collapses tain by two product operations a6ace containing four in-

onto X and X is not collapsible. A q dent . f thet lex depicted in Fia. 12b

We say that f isump-freeif no subcomplex of is a lump. ependent copies of the-tomplex depicted in Fig. ’

Keeping only three of these copies, we can add them

Realizations of the Bing’s house or the dunce hat as2—faces in order to obtain the-Zomplex sketched in

2—complexes (see Fig. 10b and Fig. 11b) are examples ofFig. 14 (a Bing’s house).

complexes which are not collapsible and which may be ob-

tained by collapse from a cuboid if?, thus the existence Dimension 5

of lumps in a face of dimension 4 and higher may be con-

jectured. On the other hand, from Prop. 9, we know that = Such a construction is not feasible in 5D, thus we tried

2—faces, 3-faces and 4 faces are lump-free. another strategy in order to find out whether there exists a



has the same structure (a cycle connected to-aell)

as the signature of a variant of the dunce hat, displayed
in Fig. 15b. It may be seen that there exists a sequence
of one inverse elementary collapse and three elementary
collapses from this variant to the dunce hat (Fig. 11a):

(+(daef.dae),—(daef, fde),—(daf,df),—(eaf ef)).

Figure 13. lllustration of the product opera- —e p
tion.

(b)

Figure 15. (a): The signature of Xigps. (b): A
variant of the dunce hat (triangulated).

Figure 14. Sketch of a Bing’s house in the

boundary of a 6—face (the two chimneys and

the two walls are highlighted). Thanks to Th. 11 and from the preceding observations,
we can conclude this section by the following theorem.

Theorem 19. A face if lump-free if and only if its dimension
lump or not in the boundary of aHacef. is not strictly greater thard.
We made a computer program which generates random
collapse sequences starting frdrand ending when no free
face can be found, with the hope that one of these sequence€onclusion
will eventually terminate with a complex which is not re-
duced to a point. Such a complex must be a lump.

Surprisingly, this happens rather often (about one time  The new characterizations of simple points that we
every 50,000 trials, to compare with the gigantic number of proved in this paper lead to simple and efficient algorithms
possible collapse sequences, which is far beyond the possifor checking simplicity. In 2D and 3D, configurations of
bility of an exhaustive exploration). simple and non-simple points may be stored in a look-up

The shortest such collapse sequence that we found isable, but in 4D this is clearly impossible (there a® 2
made of 43 elementary collapse operations, and results in gossible configurations), thus such algorithms may be of
pure 2-complex having 47 facets (squares). This collapse practical interest. On the theoretical point of view, we
sequence has then been checked "by hand”. proved these characterizations on the basis of new conflu-

The smallest lump that we found by this way is a pure ence properties, which turn out to be also keystones of a
2—complexXips having 29 squares, 52 edges and 24 points. set of new results linking minimal non-simple sets [26], P-
Unfortunately, it is very difficult to visualize such a com- simple points [2] and critical kernels [3, 4], to appear in an
plex object which lies in a 5dimensional space. Nev- other article [11]. We also proved (Th. 19) that these char-
ertheless, we can easily visualize its signature, which is acterizations and confluence properties do not hold beyond
depicted in Fig. 15a. Remarkably, the signatureXgs dimension 4.
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Appendix

Proposition 20. Let f be a4—face. If X is a pure
3—dimensional subcomplex ¢f, then the complex BX)
has no freel—face.

Proof. Letk = |X*|, if k=1 then the property is obvious.
Suppose now thdt > 1, and that the property holds for any
3—subcomplexy of f* such thatY*| < k. Letx e [X*],
and letY = X © x. By the recurrence hypothesBd(Y) has
no free I-face. If dim’Y NX) < 2 then it may be easily seen
thatBd(X) has no free face. Suppose now that diivin

X) = 2 and leth be a 2-face inY NX. From Prop. 6i, we can
see thahis free forY. We also see thdtis not free forX
since it belongs to two-3cells of X, namelyx’and a 3-cell
yin Y. Any 1—face ofBd(Y) which is not inh is obviously
not free forBd(X), let us consider a-tfaceg in h. From
Prop. 6ii and Prop. 6iiig belongs tox;'y andZwherez is

a 3-face off distinct fromx andy, andg also belongs to
h=x%ny, W =yn2 andh’ = 2n%. If z ¢ X then bothh
andh” are free forX, and ifz € X then neitheh, h’ norh”

is free forX, thus in all casegy is not free forBd(X). O

Lemma 21. Let f be a d-face with de {2,3,4}, and let
A,B < f* such that B< A, B is collapsible, A is collapsible
anddim(B) < dim(A). Then, there exists,j € A\ B such
thatdim(h) = dim(A) and(h, g) is free for A.

Proof. We make the proof fall = 4, the other cases are
similar and simpler. Letn = dim(A), we havem < d. If
dim(B) < m—1 then by Prop. 1 the proof is immediate,
suppose from now that difB) = m— 1. The casen=1is
trivial.

Casem = 2: hence dinB) = 1, which means thaB is a
graph. The hypotheses imply thatis indeed a connected
and acyclic graph,e., a tree. LetA; be the subcomplex of
Asuch thaWr is the set of all the 2faces ofA. Obviously
Az is a pure 2—d|men3|onal subcomplex df*, and since
Ais collapsible,A is connected (by Prop. 8), henée is
connected. From Lemma 7ii, we deduce tBdfA,) is not
acyclic. Thus, sincé is a tree,B cannot contairBd(Az),
and there must exist a-faceg in Bd(Ay) \ Band a 2-face
hin A (and not inB, since diniB) < 2) such thath,g) is
free forA.

Casem = 3. Let A3 be the subcomplex of such that
A] is the set of all the 3faces ofA. From Prop. 20 and
Lemma 7i, we deduce th&d(Az) is disconnected. Thus,
sinceB is collapsible,B is connected (by Prop. 8), aril
cannot contairBd(Asz) (because difB) = 2 and the num-
ber of connected components®d(Az) does not change if
k—faces (withk < 2) are added t®d(Az)). We conclude
that there must exist aXaceg in Bd(Az) \ B and a 3-face
hin A such thath,g) is free forA. O

Lemma 22. Let f be a d-face with de {2,3,4}, and let

11

A,B =< f* such that B< A, B is collapsible, A is collapsible
anddim(B) = dim(A). Then, there exists, j in A such that
(h,g) is free for A, and eitheth,g) is free for B or{h,g} N
B=0.

Proof. Letm=dim(B) = dim(A). SinceB is collapsible, by
Prop. 1 we can deduce thitcollapses onto a comple,
where din{B’) = m— 1, B’ contains all thém— 1)—facets
of B, and B’ is collapsible. Knowing thaB’ < A, B
is collapsible,A is collapsible and dirfB') < dim(A), by
Lemma 21 we deduce thathas a free paith,g) such that
h¢ B, g¢ B and dinth) = dim(A). Sinceg ¢ B', g is not
a (m—1)—facet ofB. If h € B (henceg € B) then, since
(h,g) is free forA, we can see thdh,qg) is also free foB,
and we are done. Now i ¢ B, sinceh is the onlym—face
of A which strictly includesy, we see that ify € B theng
would be a(m— 1)—facet of B: a contradiction. Hence,
{h,g}NnB=0.0
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