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Abstract

A point of a discrete object is called simple if it can be
deleted from this object without altering topology. In this
article, we present new characterizations of simple points
which hold in dimensions 2, 3 and 4, and which lead to effi-
cient algorithms for detecting such points. In order to prove
these characterizations, we establish two confluence prop-
erties of the collapse operation which hold in the neighbor-
hood of a point in spaces of low dimension. This work is set-
tled in the framework of cubical complexes, which provides
a sound topological basis for image analysis, and allows to
retrieve the main notions and results of digital topology, in
particular the notion of simple point.

Key Words: Cubical complex, topology preservation, col-
lapse, simple point, confluence, 4D space.

Introduction

Topology-preserving operators, like homotopic skele-
tonization, are used in many applications of image analysis
to transform an object while leaving unchanged its topolog-
ical characteristics. Applications in 2D and 3D are already
widely spread, and with the emergence of fast 3D image ac-
quisition devices, such as medical X-ray and MRI scanners,
there is a growing interest in considering a time sequence
of 3D objects as a coherent 4D structure. For example, the
segmentation of a moving heart muscle can be facilitated in
this way [12].

In discrete grids (Z2, Z
3, Z

4), a topology-preserving
transformation can be defined thanks to the notion of simple
point [20]: intuitively, a point of an object is called simple if
it can be deleted from this object without altering topology.
This notion, pionneered by Duda, Hart, Munson [14], Go-
lay [17] and Rosenfeld [27], has since been the subject of
an abundant literature. In particular, local characterizations
of simple points have been proposed, which allow efficient
implementation of thinning procedures.

Let us illustrate informally the notion of simple point
through some examples, first in 2D, then in 3D. In Fig. 1,
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Figure 1. Illustration of 2D simple pixels. The
set X is made of the pixels in gray, a,b,c are
simple while x,y,z,t are not simple.

the points (or pixels)x,y,z,t are not simple: the removal ofx
from the setX of pixels would create a new connected com-
ponent of the complementX of X ; the removal ofy would
merge two connected components ofX ; the removal ofz
would split a connected component ofX ; and the removal
of t would delete a connected component ofX. On the other
hand, the pixelsa,b andc are simple pixels. We see that, in
2D, the notion of connectedness (for bothX andX) suffices
to characterize simple pixels.
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Figure 2. A set X of voxels. The voxels x and
y are not simple.

Things are more difficult in 3D. Consider the example
of the setX depicted in Fig. 2, removing the voxelx or the
voxel y from X would not split, merge, create or suppress



any component ofX nor any component ofX. However
neitherxnory is simple, for the deletion ofx (resp.y) causes
the suppression (resp. creation) of a tunnel. Surprisingly, it
is still possible to characterize 3D simple points by local
conditions which are only based on connectedness (see [1,
9, 28]), but this is no longer true in 4D.

In this article, we use a definition of simple points ([4],
see also [8]) based on the collapse operation. Collapse is an
elementary topology-preserving transformation which has
been introduced by Whitehead [29] and plays an important
role in combinatorial topology, it can be seen as a discrete
analogue of a continuous deformation (a homotopy). No-
tice that this definition of simple points makes sense in any
dimension.

We present new characterizations of 2D, 3D and 4D sim-
ple points based on the collapse (Th. 13, Th. 14), which
lead to simple, greedy linear-time algorithms for simplicity
checking. We also retrieve in our framework, a character-
ization of 4D simple points established by T.Y. Kong [19],
and some previously proposed characterizations of 3D sim-
ple points [19, 1, 9, 28].

In order to prove these characterizations, we establish
someconfluence propertiesof the collapse (Th. 11, Th. 12).
These properties do not hold in general due to the existence
of “topological monsters” such as the Bing’s house ([10],
see also [25]) and the dunce hat [30]; we show that they
are indeed true in the neighborhood of a point, when the
dimension of the space is such that this neighborhood is not
large enough to contain such counter-examples.

This work is settled in the framework of cubical com-
plexes. Abstract (cubical) complexes have been promoted
in particular by V. Kovalevsky [22] in order to provide a
sound topological basis for image analysis. For instance, in
this framework, we retrieve the main notions and results of
digital topology, such as the notion of simple point.

1 Cubical Complexes

Intuitively, a cubical complex may be thought of as a set
of elements having various dimensions (e.g.cubes, squares,
edges, vertices) glued together according to certain rules.
In this section, we recall briefly some basic definitions on
complexes, see also [7, 5, 6] for more details. We consider
hered−dimensional complexes, mainly with 0≤ d ≤ 4.

Let Sbe a set. IfT is a subset ofS, we writeT ⊆ S. We
denote by|S| the number of elements ofS.

Let Z be the set of integers. We consider the families
of setsF1

0, F
1
1, such thatF1

0 = {{a} | a∈ Z}, F
1
1 = {{a,a+

1} | a∈ Z}. A subsetf of Z
d, d ≥ 2, which is the Cartesian

product of exactlym elements ofF1
1 and(d−m) elements

of F
1
0 is called afaceor anm−faceof Z

d, m is thedimension
of f , we write dim( f ) = m.

Observe that any non-empty intersection of faces is a
face. For example, the intersection of two 2−facesA and
B may be either a 2−face (ifA= B), a 1−face, a 0−face, or
the empty set.

(a) (b) (c) (d) (e)

Figure 3. Graphical representations of: (a)
a 0−face, (b) a 1−face, (c) a 2−face, (d) a
3−face, (e) a 4−face.

We denote byFd the set composed of allm−faces ofZd,
with 0≤m≤ d. An m−face ofZd is called apoint if m= 0,
a (unit) edgeif m= 1, a(unit) squareif m= 2, a(unit) cube
if m= 3, a(unit) hypercubeif m= 4 (see Fig. 3).

Let f be a face inFd. We set f̂ = {g∈ F
d | g⊆ f} and

f̂ ∗ = f̂ \ { f}.
Any g∈ f̂ is a face of f, and anyg∈ f̂ ∗ is aproper face of
f .
If X is a finite set of faces inFd, we writeX− = ∪{ f̂ | f ∈
X}, X− is theclosure of X(see Fig. 4).
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(a) (b) (c)

(d) (e)

Figure 4. (a): Four points x,y,z,t. (b): A
graphical representation of the set of faces
{{x,y,z,t},{x,y},{z}}. (c): A set of faces X,
which is not a complex. (d): The set X+, com-
posed by all facets of X. (e): The set X−, i.e.
the closure of X, which is a complex.

A set X of faces inF
d is a cell or an m−cell if there

exists anm−face f ∈ X, such thatX = f̂ . Theboundary of
a cell f̂ is the setf̂ ∗. For example, a 3−cell is composed of
27 faces: a cube, six squares, twelve edges and eight points.
Its boundary is composed of all these faces but the cube.

A finite setX of faces inF
d is acomplex (inF

d) if X =
X−. Any subsetY of a complexX which is also a complex
is asubcomplex of X. If Y is a subcomplex ofX, we write
Y � X. If X is a complex inF

d, we also writeX � F
d.
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See in Fig. 4e an example of a complex, and in Fig. 4b,c,d
examples of sets of faces which are not complexes. Also in
Fig. 2 and Fig. 5, some complexes are represented. Notice
that any cell is a complex.

Let X ⊆ F
d, let f ∈ X andm= dim( f ). We say thatf

is a facet of Xor anm−facet of Xif there is nog∈ X such
that f ∈ ĝ∗. We denote byX+ the set composed of all facets
of X (see Fig. 4).
If X is a complex, observe that in general,X+ is not a com-
plex, and that[X+]− = X.

Let X � F
d, X 6= /0, the number dim(X) = max{dim( f )

| f ∈ X+} is the dimension of X. We say thatX is an
m−complex if dim(X) = m.
We say thatX is pureif, for each f ∈X+, we have dim( f ) =
dim(X).
In Fig. 5, the complexes (a) and (f) are pure, while (b,c,d,e)
are not.

Let X ⊆ F
d be a set of faces. A sequenceπ = 〈 f0, . . . , fℓ〉

of faces ofX is apath in X (from f0 to fℓ) if either fi is a
face of fi+1 or fi+1 is a face offi , for eachi ∈ {0, . . . , ℓ−1}.

Let X ⊆ F
d. We say thatX is connectedif, for any two

facesf ,g in X, there is a path fromf to g in X; otherwise we
say thatX is disconnected. We say thatY is a (connected)
component of Xif Y 6= /0, Y ⊆ X, Y is connected and ifY is
maximal for these properties (i.e., we haveZ = Y whenever
Y ⊆ Z ⊆ X andZ is connected). Notice that the empty set is
connected but has no connected component.

If X is anm−complex withm≤ 1, thenX is also called a
graph(see [16]). Examples of graphs can be seen in Fig. 12
and Fig. 13. LetX be a graph, and letπ = 〈 f0, . . . , fℓ〉 be
a path inX such that dim( f0) = dim( fℓ) = 0. The pathπ
is said to beclosedwheneverf0 = fℓ, it is a trivial path
wheneverℓ = 0, it is said to beelementaryif its faces are
all distinct except that possiblyf0 = fℓ. A graph which is
constituted by the faces of a non-trivial elementary closed
path is called acycle. The graphX is acyclic if none of its
subcomplexes is a cycle. A connected and acyclic graph is
a tree.

2 Collapse and simple sets

Intuitively a subcomplex of a complexX is simple if its
removal fromX “does not change the topology ofX”. In
this section we recall a definition of a simple subcomplex
based on the operation of collapse [29, 16], which is a dis-
crete analogue of a continuous deformation (a homotopy).

Let X be a complex inFd and let f ∈ X. If there exists
one faceg ∈ f̂ ∗ such thatf is the only face ofX which
strictly includesg, theng is said to befree for X and the
pair ( f ,g) is said to be afree pair for X. The complex,
which is the closure of the set of all free faces forX, is
called theboundary of Xand is denoted byBd(X). Notice

that, if ( f ,g) is a free pair, then we have necessarilyf ∈ X+

and dim(g) = dim( f )−1.
Let X be a complex, and let( f ,g) be a free pair forX.

Let m= dim( f ). The complexX \ { f ,g} is anelementary
collapse of X, or anelementary m−collapse of X.
Let X, Y be two complexes. We say thatX collapses onto Y
if Y = X or if there exists acollapse sequence from X to Y,
i.e., a sequence of complexes〈X0, ...,Xℓ〉 such thatX0 = X,
Xℓ = Y, andXi is an elementary collapse ofXi−1, for each
i ∈ {1, . . . , ℓ}. If X collapses ontoY andY is a complex
made of a single point, we say thatX is collapsible.

Fig. 5 illustrates a collapse sequence. Observe that, if
X is a cell of any dimension, thenX is collapsible. Also,
a graph is a tree if and only if it is collapsible ([16]). Fur-
thermore, it may easily be seen that the collapse operation
preserves the number of connected components.

(a)

f

(b)

(c) (d)

(e) (f)

Figure 5. (a): a pure 3−complex X � F
3, and

a 3−face f ∈ X+. (f): a complex Y which is
the detachment of f̂ from X. (a-f): a collapse
sequence from X to Y.

We say that the collapse sequence〈X0, ...,Xℓ〉 is decreas-
ing if for any i ∈ {1, ..., ℓ−1}, we havem≥ m′ wheneverXi

is an elementarym−collapse ofXi−1 andXi+1 is an elemen-
tary m′−collapse ofXi . For example in Fig. 5, the collapse
sequence〈a,b,c,d,e〉 is decreasing, but〈a,b,c,d,e, f 〉 is
not decreasing.

Let 〈X0, ...,Xℓ〉 be a collapse sequence. If there exists
i ∈ {1, . . . , ℓ−1} such thatXi is an elementarym−collapse
of Xi−1 andXi+1 is an elementarym′−collapse ofXi , with
m′ > m, then it may be seen that the sequence obtained by
exchanging these two elementary collapse operations is still
a collapse sequence fromX0 to Xℓ. By induction, this proves
the following property, which will be used later.
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Proposition 1. Let X,Y be two complexes. If X collapses
onto Y, then there exists a decreasing collapse sequence
from X to Y .

Let X,Y be two complexes. LetZ be such thatX∩Y �
Z � Y, and let f ,g ∈ Z \X. The pair( f ,g) is a free pair
for X∪Z if and only if ( f ,g) is a free pair forZ. Thus, by
induction, we have the following property.

Proposition 2 ([3, 4]). Let X,Y � F
d. The complex X∪Y

collapses onto X if and only if Y collapses onto X∩Y.

The operation of detachment allows to remove a subset
from a complex, while guaranteeing that the result is still a
complex.

Definition 3 ([3, 4]). Let Y⊆X �F
d. We set X ⊘ Y =(X+\

Y+)−. The set X ⊘ Y is a complex which is thedetachment
of Y from X.

In the following, we will be interested in the case where
Y is a single cell. For example in Fig. 5, we see a complex
X (a) containing a 3−cell f̂ , andX ⊘ f̂ is depicted in (f).

Let us now recall here a definition of simplicity based
on the collapse operation, which can be seen as a discrete
counterpart of the one given by T.Y. Kong [19].

Definition 4 ([3, 4]). Let Y⊆X; we say that Y issimple for
X if X collapses onto X ⊘ Y.

The collapse sequence displayed in Fig. 5 (a-f) shows
that the cell f̂ (and the facef ) is simple for the complex
depicted in (a).

The notion of attachment, as introduced by T.Y. Kong
[18, 19], leads to a local characterization of simple sets,
which follows easily from Prop. 2.

Let Y � X � F
d. Theattachmentof Y for X is the com-

plex defined byAtt(Y,X) = Y∩ (X ⊘ Y).

Proposition 5 ([3, 4]). Let Y� X � F
d. The complex Y is

simple for X if and only if Y collapses onto Att(Y,X).

Fig. 6 shows the attachments of simple pixelsa,b,c and
non-simple pixelsx,y,z, t of Fig. 1. We invite the reader to
use these examples to illustrate Prop. 5.

a b c x y z t

Figure 6. Attachments (in black) of simple
pixels a,b,c and non-simple pixels x,y,z,t of
Fig. 1.

Let us introduce informally theSchlegel diagramsas a
graphical representation for visualizing the attachment of a
cell. In Fig. 7a, the boundary of a 3−cell f̂ and its Schlegel

diagram are depicted. The interest of this representation lies
in the fact that a structure likêf ∗ lying in the 3D space may
be represented in the 2D plane. Notice that one 2−face of
the boundary, here the square{e, f ,h,g}, is not represented
like the other ones in the schlegel diagram, but we may con-
sider that it is represented by the ouside space.

As an illustration of Prop. 5, Fig. 7b shows (both directly
and by its Schlegel diagram) the attachment off̂ for the
complexX of Fig. 5a, and we can easily verify thatf̂ col-
lapses ontoAtt( f̂ ,X). Also, Fig. 7c showsAtt(x̂,X) (see
Fig. 2) and we can verify by Prop. 5 thatx is not simple.

(a)

a b

c d

e f

g h

e

g h

f

a

c d

b

(b)

(c)

Figure 7. (a): The boundary of a 3−cell and
its Schlegel diagram. (b): The attachment of
f̂ for X (see Fig. 5a). (c): The attachment of x̂
for X (see Fig. 2).

Representing 4D objects is not easy. To start with, let us
consider Fig. 8a where a representation of the 3D complex
X of Fig. 5a is given under the form of two horizontal cross-
sections, each black dot representing a 3−cell.

In a similar way, we may represent a 4D object by its “3D
sections”, as the objectY in Fig. 8b. Such an object may be
thought of as a “time series of 3D objects”. In Fig. 8b, each
black dot represents a 4−cell of the whole 4D complexY.

Schlegel diagrams are particularly useful for represent-
ing the attachment of a 4D cell̂f , whenever this attachment
if not equal tof̂ ∗. Fig. 9a shows the Schlegel diagram of the
boundary of a 4−cell (see Fig. 3e), where one of the eight
3−faces is represented by the ouside space. Fig. 9b shows
the Schlegel diagram of the attachment of the 4−cell g in Y
(see Fig. 8b). For example, the 3−cell H represented in the
center of the diagram is the intersection between the 4−cell
g and the 4−cell h. Also, the 2−cell I (resp. the 1−cell
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(a) (b)

Figure 8. (a): An alternative representation of
the 3D complex X of Fig. 5a. (b): A similar
representation of a 4D complex Y.

J, the 1−cell K, the 0−cell L) is g∩ i (resp. g∩ j, g∩ k,
g∩ l ). The two 2−cells which are the intersections ofg
with, respectively,m andn, are both included in the 3−cell
H. Observe that the cellg is not simple (its attachment is
not connected).

H

JI

K

L
(a) (b)

Figure 9. (a): The Schlegel diagram of the
boundary of a 4−cell. (b): The Schlegel di-
agram of the attachment of the 4−cell g of
Fig. 8b, which is not simple.

The following property easily follows from the definition
of the boundary of a face, and may be checked on Fig. 9a.

Proposition 6. Let f be a4−face. Then,
i) any 2−face of f̂ ∗ is included in exactly two3−faces of
f̂ ∗; and
ii) any 1−face of f̂ ∗ is included in exactly three3−faces of
f̂ ∗; and
iii) any 1−face of f̂ ∗ is included in exactly three2−faces of
f̂ ∗.

3 Confluences

Let X � F
d. If f is a facet ofX, then by Def. 4,f̂ is

simple if and only ifX collapses ontoX ⊘ f̂ . From Prop. 5,
we see that checking the simplicity of a cellf̂ reduces to the
search for a collapse sequence fromf̂ to Att( f̂ ,X). We will
show in Sec. 4 that the huge number (especially in 4D) of
possible such collapse sequences need not be exhaustively
explored, thanks to the confluence properties (Th. 11 and
Th. 12) introduced in this section.

Consider three complexesA,B,C. If A collapses ontoC
andA collapses ontoB, then we know thatA,B andC “have
the same topology”. If furthermore we haveC � B � A, it
is tempting to conjecture thatB collapses ontoC.

In the two-dimensional discrete planeF
2, the above con-

jecture is true, for example any complex obtained by a col-
lapse sequence from a full rectangle, collapses onto a point.
We call it a confluence property. But quite surprisingly it
does not hold inF3 (more generally inFd,d ≥ 3), and this
fact constitutes indeed one of the principal difficulties when
dealing with certain global topological properties, such as
the Poincaré conjecture. Classical counter-examples to this
assertion are the Bing’s house ([10], see also [25]) and the
dunce hat ([30]).

In Fig. 10a, we see a classical (informal) representation
of the Bing’s house. The house has two rooms separated by
a floor ; one can enter the lower room of the house by the
chimney passing through the upper room, and vice-versa.

In Fig. 10b, we depict a Bing’s houseB which is a
2−complex. For readability of the figure, only some of the
1−faces and 2−faces are displayed. This 2−complex may
be obtained by collapse from the 3−complex depicted in
Fig. 10c, which is composed of twenty-four 3−cells. The
dotted arrow suggests one half of a possible sequence of
collapse operations, the other half being symmetrical to this
one. The 2−complexB contains no free face: we can verify
that each 1−face is contained in two or three 2−faces.

From any 2−complex, we may extract the graph com-
posed by all the 1−cells which are included in three or more
2−cells. We call this graph thesignature of the2−complex.
In Fig. 10b, the signature of the Bing’s houseB is high-
lighted by a bold black line: it is composed of three con-
nected cycles.

Fig. 11a depicts a triangulation of the dunce hat. Notice
that the three sides of the biggest triangle (in bold) are iden-
tified, and that the different occurences of the pointa are
indeed representations of the same point (this remark also
holds for pointsb andc). Notice also that only segments
ab, bc andca are included in three triangles, furthermore
they form a cycle, which is the signature of the dunce hat.

In Fig. 11b, we show a realization of the dunce hat
as a 2−complex, which is very likely to be the smallest
one which may be built inF3. For readability, only some
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(a)

(b)

(c)

Figure 10. (a) The Bing’s house with
two rooms (classical representation). (b)
A realization of a Bing’s house as a
2−complex B. (c) A 3−complex made of 24
cubes. The arrows symbolize the order in
which 3−collapse operations can be made in
order to “carve” the lower room of the house.
By performing a symmetrical operation for
the upper room, we obtain the 2−complex in
(b).

(a)

aa

a a

b b

b c

c cd e

f

g
h

(b)

Figure 11. Dunce hats (see text).

1−faces and three 2−faces are displayed. The collapse se-
quence from a 3−complex to this 2−complex, composed
of 12 elementary 3−collapse operations, is suggested by
the dotted arrow. We may verify that the signature of this
2−complex is composed of the 1−cells highlighted by a
bold black line: it is a cycle.

In this section we show that, in the boundary of ad−face
with d ≤ 4, there is “not enough room” to build such
counter-examples, and thus some kinds of confluence prop-
erties hold.

We emphasize that for our purpose, it is sufficient to
make a combinatorial proof for only one lemma (Lemma 7).
Due to the high number of cases in dimension 4, we used
a computer program for this proof. Notice that, however, it
would not be possible to establish direcly, by exhaustive ex-
ploration of all possible configurations, the main properties
proved in this paper (confluence properties and simple point
characterizations): the number of possible configurationsin
the boundary of a four-dimensional face is 280.

Lemma 7. Let f be a d−face with d∈ {3,4}, and let X
be a non-empty subcomplex off̂ ∗. Let us denote byX the
complementary of X in̂f ∗. Suppose thatdim(X) = d− 2
and thatX is connected, then the two following statements
hold:
i) The complex X has at least one free(d−3)−face.
ii) If d = 4 and if X is pure, then the graph Bd(X) is not
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acyclic.

Proof. With the help of a computer program, we generated
all the possible such subcomplexes off̂ ∗, and checked the
property exhaustively. In the cased = 4, notice that 0− and
1−facets ofX play no role in the connectedness ofX, thus
without loss of generality for proving statement i), we can
suppose, as for ii), thatX is a pure 2−complex. The number
of such complexes is 224. �

Suppose thatf is a 4−face, thenf̂ ∗ is a 3−complex. We
observe that statements i) and ii) of Lemma 7 do not hold if,
instead of being a subcomplex of the 3−complex f̂ ∗, X is a
subcomplex ofF3, due to the existence of counter-examples
such as the Bing’s house. LetB be a Bing’s house which is
a pure 2−complex, we can see thatB has no free 1−face
andB is connected, furthermore sinceBd(B) = /0, the graph
Bd(B) is acyclic.

We will also need the following result for the proofs of
Prop. 9, Lemma 21 and Th. 15. We prove it here for the
case of the boundary of a cell, but a more general property
could be established in the framework of discrete manifolds
(see [13]).

Proposition 8. Let f be a d−face with d∈ {2,3,4}, and
let Y � X � f̂ ∗ such that X collapses onto Y. Then, the
setsX = f̂ ∗ \X andY = f̂ ∗ \Y have the same number of
connected components.

Proof. It is sufficient to prove the proposition whenever
Y = X \{h,g}, with (h,g) being a free pair forX. We make
the proof ford = 4, the other cases are similar and simpler.
Let us call anm−path, a path in which each face has a di-
mension greater or equal tom. It may be seen that a subset
Z of X is connected if and only if any two 3−faces ofZ are
linked by a 2−path. Let us denote by|C (Z)| the number of
connected components ofZ, thus we have|C (Y)| 6= |C (X)|
only if eitherh or g is a 2−face.
Case 1: dim(g) = 2. Hence, dim(h) = 3. Since(h,g)
is a free pair forX, henceh ∈ X, from Prop. 6i we de-
duce thatg is included in exactly one 3−face of X, thus
|C (Y)| = |C (X)|.
Case 2: dim(h) = 2. Hence, dim(g) = 1. Let A,B,C be
the three 3−faces of f̂ ∗ which containg (see Prop. 6ii),
with A∩B = h. Sinceg is free, these 3−faces all belong
to X. FurthermoreA andB are connected by the 2−path
〈A,A∩C,C,C∩B,B〉 in X. Thus,A andB are in the same
connected component ofX, and|C (Y)| = |C (X)|. �

We are now ready to introduce the confluence properties.

Proposition 9 (Downstream confluence). Let f be a
d−face with d∈ {2,3,4}, and let A,B� f̂ ∗ such that B�A,
A collapses onto B, and A is collapsible. Then, B is collapsi-
ble.

Proof. We make the proof ford = 4, the other cases are
similar and simpler. We only have to prove thatB either

is a point, or has a free face. If the latter is true, then by
collapsing this face we obtain a subcomplexB′ of A strictly
included inB, which is such thatA collapses ontoB′ (by
transitivity). The result follows by induction on the size of
B.
Let us consider the following (mutually exclusive) cases.
• dim(B) = 3 : SinceA is collapsible, we haveA 6= f̂ ∗ and
B 6= f̂ ∗. SinceB has at least one 3−face, it can be easily
seen that there exists a 2−face ofB which is a free face:
since there are only eight 3−faces in f̂ ∗, this fact may be
checked by enumeration (this property may also be derived
from general properties of manifolds, see [13]).
• dim(B) = 2 : From Prop. 8 and our hypotheses,B is con-
nected, thus by Lemma 7i,B has at least one free 1−face.
• dim(B) = 1 : In other words,B is a graph. The hypotheses
imply thatB is indeed a connected and acyclic graph,i.e., a
tree. Since dim(B) = 1, B cannot be a point, then it has at
least one free 0−face ([16]).
• dim(B) = 0 : In other words,B is a set of points. The
hypotheses, and the fact that collapse preserves the number
of connected components, imply thatB is indeed a single
point.�

Prop. 20, Lemma 21 and Lemma 22, which may be
found in the appendix, are needed in addition to Prop. 9
for the proof of Prop. 10.

Proposition 10(Upstream confluence). Let f be a d−face
with d ∈ {2,3,4}, and let A,B � f̂ ∗ such that B� A, A is
collapsible, and B is collapsible. Then, A collapses onto B.

Proof. Letk = |A|, the property is trivially true whenk = 1.
Suppose now thatk> 1, and suppose that the property holds
for any complexesA′,B′ verifying the hypotheses of the the-
orem, wheneverk′ < k (with k′ = |A′|). From Lemma 21 and
Lemma 22, there exists a pair of faces(h,g) such that(h,g)
is free forA and either(h,g) is free forB or {h,g}∩B= /0.
Case 1:{h,g}∩B= /0. We setA′ = A\ {h,g}, we have ob-
viously B � A′. By Prop. 9,A′ is collapsible, furthermore
k′ < k. By the recurrence hypothesis, we deduce thatA′ col-
lapses ontoB, thusA collapses ontoB.
Case 2: (h,g) is free for B. We setA′ = A\ {h,g}, and
B′ = B\{h,g}, we have obviouslyB′ �A′. By Prop. 9, both
A′ andB′ are collapsible, furthermorek′ < k. By the recur-
rence hypothesis, we deduce thatA′ collapses ontoB′. Fur-
thermore, it can easily be seen that any collapse sequence
from A′ to B′ induces a collapse sequence fromA to B (by
removing the same pairs in the same order).�

Th. 11 summarizes Prop. 9 and Prop. 10.

Theorem 11. Let f be a d−face with d∈ {2,3,4}, let
A,B � f̂ ∗ such that B� A, and A is collapsible. Then, B
is collapsible if and only if A collapses onto B.

The following theorem may be easily derived from
Th. 11 and the fact that̂f is collapsible, its proof is left
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to the reader.

Theorem 12. Let f be a d−face with d∈ {2,3,4}, and let
C,D � f̂ ∗ such that D� C, and f̂ collapses onto D. Then,
f̂ collapses onto C if and only if C collapses onto D.

4 New characterizations of simple cells

In the image processing literature, a (binary) digital im-
age is often considered as a set of pixels in 2D or voxels in
3D. A pixel is an elementary square and a voxel is an el-
ementary cube, thus an easy correspondance can be made
between this classical view and the framework of cubical
complexes.

If X � F
d and if X is a pured−complex, then we write

X ⊑ F
d. In other words,X ⊑ F

d means thatX+ is a set
composed ofd−faces (e.g., pixels in 2D or voxels in 3D).

Notice that, ifX ⊑ F
d and if f̂ is a d−cell of X, then

X ⊘ f̂ ⊑ F
d. There is indeed an equivalence between the

operation on complexes which consists of removing (by de-
tachment) a simpled−cell, and the removal of a 8-simple
(resp. 26-simple, 80-simple) point in the framework of 2D
(resp. 3D, 4D) digital topology (see [18, 19, 7, 5]).

From Prop. 5 and Th. 12, we have the following charac-
terization of a simple cell, which does only depend on the
status of the faces which are in the cell.

Theorem 13. Let X ⊑ F
d, with d∈ {2,3,4}. Let f be a

facet of X, and let A= Att( f̂ ,X). The two following state-
ments hold:
i) The cell f̂ is simple for X if and only if̂f collapses onto A.
ii) If there exists a complex Z such that A� Z � f̂ , f̂ col-
lapses onto Z and Z does not collapse onto A, thenf̂ is not
simple for X.

Now, thanks to Th. 13, if we want to check whether a
cell f̂ is simple or not, it is sufficient to apply the following
greedy algorithm.

Algorithm A1: Set Z= f̂ ; Do
Select any free pair(h,g) in Z\A; set Z to Z\ {h,g} ;
Continue until either Z= A (answer yes) or no such pair is
found (answer no).

If this algorithm returns “yes”, then obviouslŷf col-
lapses ontoA and by Th. 13i,f̂ is simple. In the other case,
by Th. 13ii, f̂ is not simple.

By Th. 13 and Th. 11, we derive a second characteriza-
tion which leads straightforwardly to a second greedy algo-
rithmA2 for checking simplicity.

Theorem 14. Let X ⊑ F
d, with d∈ {2,3,4}. Let f be a

facet of X, and let A= Att( f̂ ,X). The two following state-
ments hold:
i) The cell f̂ is simple for X if and only if A is collapsible.

ii) If there exists a complex Z such that A collapses onto Z
and Z is not collapsible, then̂f is not simple for X.

Both algorithms may be implemented to run in linear
time with respect to the number of elements in the attach-
ment of a cell (Remark 16 will give some elements which
support this claim).

Thanks to Th. 14 and the previous properties, we can
also retrieve a characterization of simple cells proved by
T.Y. Kong in [19], where arguments based on the continuous
framework and several combinatorial lemmas were used. In
contrast, our new proof is purely discrete and its combina-
torial part is reduced to Lemma 7.

Let X be a complex inF4, and let us denote byni the
number ofi−faces ofX, i = 0, . . . ,4. TheEuler character-
istic of X, writtenχ(X), is defined byχ(X) = n0−n1+n2−
n3 +n4. The Euler characteristic is a well-known topologi-
cal invariant; in particular, it can be easily seen that collapse
preserves it.

Theorem 15(adapted from [19], theorem 9). Let X⊑ F
d,

with d∈ {2,3,4}, let f be a facet of X, and let A= Att( f̂ ,X).
The facet f is simple for X if and only if the three following
statements are true:
i) A has exactly one connected component, and
ii) f̂ ∗ \A has exactly one connected component, and
iii) χ(A) = 1.

Proof. Suppose thatf is simple forX. By Th. 14,A is col-
lapsible. Since collapse preserves the number of connected
components we deduce i), and by Prop. 8 we deduce ii).
Furthermore the Euler characteristic of a point is equal to 1,
and collapse preserves the Euler characteristic, hence iii).
Conversely, suppose thatf verifies i), ii) and iii). One and
only one among the following cases occurs.
• dim(A) ≤ 1 : In other words,A is a graph. From i) and
iii), we deduce thatA is a connected and acyclic graph,i.e.,
a tree, and thusA is collapsible ([16]).
• dim(A) = 2 andd = 4 : If d = 4, by Lemma 7i, condi-
tion ii) implies thatA has at least one free pair(h,g) and
thusA collapses ontoA′ = A\ {h,g}. From the properties
of collapse, we see thatA′ also verifies i), ii) and iii). If
dim(A′) < 2, we deduce the result from the preceding case,
otherwise the result comes by induction on the number of
2−faces.
• dim(A) = 3 andd = 4 (resp. dim(A) = 2 andd = 3) : We
know from ii) thatA 6= f̂ ∗. SinceA has at least one 3−face
(resp. 2−face), it can be easily seen thatA has at least a free
2−face (resp. 1−face), see the proof of Prop. 9. Thus, sim-
ilarly to the previous case, the result follows by induction.
�

Remark 16. This characterization also induces a linear-
time algorithm for simplicity checking. Nevertheless, ob-
serve that this algorithm (let us call itB) is composed of
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three steps: one for computing the Euler characteristic of
the attachment, and two for extracting connected compo-
nents. To extract connected components in linear time, one
may classically apply a breadth-first exploration strategy.
The same strategy may also be used to implement algo-
rithmsA1 andA2, thus in terms of number of operations,
bothA1 andA2 are comparable to one of the steps ofB .

Let us also mention another definition of simple points
based on homology ([24], see also [21]). In this context,
checking whether a pointp is simple or not amounts to ver-
ify that all the homology groups of the neighborhood (or
attachment) ofp are trivial. However, computing homol-
ogy groups requires a computational effort which is much
greater than the one needed by algorithmsA1 andA2.

In the cased = 3, we retrieve well-known characteriza-
tions of simple points (see [18, 1, 9, 28]), using only two
conditions among the three ones of Th. 15. Of course, these
characterizations also hold for dimension 2.

Theorem 17. Let X⊑ F
3, let f be a facet of X, and let A=

Att( f̂ ,X). The facet f is simple for X if and only if statement
i) and either statement ii) or statement iii) of Th. 15 hold.

Proof. If i) and iii) hold, then since ii) is not used in the
proof of Th. 15 for the 3D case, we are done. Suppose now
that i) and ii) hold. The case dim(A) = 2 is treated in the
proof of Th. 15, suppose that dim(A) = 1. From ii) and
Lemma 7i, we deduce thatA has at least a free pair(h,g).
Let A′ = A\{h,g}, we can see that̂f ∗ \A′ is also connected.
Thus by induction on the number of 1−faces,A collapses
onto a 0−complex. By i), this 0−complex is necessarily
reduced to a single point.�

5 Higher dimensions

Indeed, the results of this paper hold for any dimension
strictly lower than a certain dimensionD, which is the low-
est dimension such that a counter-example like the Bing’s
house or the dunce hat may be built inside the boundary of
a D−face. From Th. 11 and Th. 12, we know thatD > 4.
The notion of lump defined below helps us to formalize the
problem that we study in this section.

Definition 18. Let f be a d−face, with d∈ N, and let X�
f̂ . The complex X is alump (by collapse)if f̂ collapses
onto X and X is not collapsible.
We say that f islump-freeif no subcomplex of̂f is a lump.

Realizations of the Bing’s house or the dunce hat as
2−complexes (see Fig. 10b and Fig. 11b) are examples of
complexes which are not collapsible and which may be ob-
tained by collapse from a cuboid inF3, thus the existence
of lumps in a face of dimension 4 and higher may be con-
jectured. On the other hand, from Prop. 9, we know that
2−faces, 3−faces and 4−faces are lump-free.

If a face of dimensionD is not lump-free, it may be seen
that the main theorems of this paper cannot be extended
to dimensionD. Let us consider for example the case of
Th. 13, and takeX ⊑ F

D and a simpleD−facex of X such
that Att(x,X) is a point. The existence of a lump contra-
dicts the extension of Th. 13ii. Consider now the case of
Th. 14, and takeX ⊑ F

D and a simpleD−facex of X such
thatAtt(x,X) is a lump. By definition, the facex is simple
but its attachment is not collapsible, a contradiction withthe
extension of Th. 14i.

The aim of this section is to answer the question: what is
the highest dimensiond such that ad−face is lump-free ?

Dimensions 6 and higher

It is in fact possible to build a Bing’s house in̂f ∗, with f
being a 6−face (or a face of higher dimension). We give an
informal description of this construction.

Let us consider the 1−subcomplex of the boundary of a
4−face, which is depicted in Fig. 12a.

(a) (b)

Figure 12. (a): A 1−subcomplex of the bound-
ary of a 4−face. (b): Another view of this
complex.

A (d + 1)−face is obtained by the product of ad−face
and a 1−face (an operation on complexes directly derived
from the Cartesian product operation). Letf be ad−face,
let g be a(d +1)−face and leth be a(d +2)−face, if X is
a subcomplex of̂f then in ĝ we can embed two “indepen-
dent copies” ofX, and inĥ we can embed four independent
copies ofX (see Fig. 13 an example withd = 2).

Starting from the 4−face of Fig. 12a, we can thus ob-
tain by two product operations a 6−face containing four in-
dependent copies of the 1−complex depicted in Fig. 12b.
Keeping only three of these copies, we can add them
2−faces in order to obtain the 2−complex sketched in
Fig. 14 (a Bing’s house).

Dimension 5

Such a construction is not feasible in 5D, thus we tried
another strategy in order to find out whether there exists a
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Figure 13. Illustration of the product opera-
tion.

Figure 14. Sketch of a Bing’s house in the
boundary of a 6−face (the two chimneys and
the two walls are highlighted).

lump or not in the boundary of a 5−face f .
We made a computer program which generates random

collapse sequences starting from̂f and ending when no free
face can be found, with the hope that one of these sequences
will eventually terminate with a complex which is not re-
duced to a point. Such a complex must be a lump.

Surprisingly, this happens rather often (about one time
every 50,000 trials, to compare with the gigantic number of
possible collapse sequences, which is far beyond the possi-
bility of an exhaustive exploration).

The shortest such collapse sequence that we found is
made of 43 elementary collapse operations, and results in a
pure 2−complex having 47 facets (squares). This collapse
sequence has then been checked “by hand”.

The smallest lump that we found by this way is a pure
2−complexX105having 29 squares, 52 edges and 24 points.
Unfortunately, it is very difficult to visualize such a com-
plex object which lies in a 5−dimensional space. Nev-
ertheless, we can easily visualize its signature, which is
depicted in Fig. 15a. Remarkably, the signature ofX105

has the same structure (a cycle connected to a 1−cell)
as the signature of a variant of the dunce hat, displayed
in Fig. 15b. It may be seen that there exists a sequence
of one inverse elementary collapse and three elementary
collapses from this variant to the dunce hat (Fig. 11a):
〈+(dae f,dae),−(dae f, f de),−(da f,d f),−(ea f,e f)〉.

(a)

(b)

a a

b b

b c

c cd e

g
h

a a

f

f

Figure 15. (a): The signature of X105. (b): A
variant of the dunce hat (triangulated).

Thanks to Th. 11 and from the preceding observations,
we can conclude this section by the following theorem.

Theorem 19. A face if lump-free if and only if its dimension
is not strictly greater than4.

Conclusion

The new characterizations of simple points that we
proved in this paper lead to simple and efficient algorithms
for checking simplicity. In 2D and 3D, configurations of
simple and non-simple points may be stored in a look-up
table, but in 4D this is clearly impossible (there are 280

possible configurations), thus such algorithms may be of
practical interest. On the theoretical point of view, we
proved these characterizations on the basis of new conflu-
ence properties, which turn out to be also keystones of a
set of new results linking minimal non-simple sets [26], P-
simple points [2] and critical kernels [3, 4], to appear in an-
other article [11]. We also proved (Th. 19) that these char-
acterizations and confluence properties do not hold beyond
dimension 4.
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Appendix

Proposition 20. Let f be a 4−face. If X is a pure
3−dimensional subcomplex off̂ ∗, then the complex Bd(X)
has no free1−face.

Proof. Letk = |X+|, if k = 1 then the property is obvious.
Suppose now thatk > 1, and that the property holds for any
3−subcomplexY of f̂ ∗ such that|Y+| < k. Let x ∈ |X+|,
and letY = X ⊘ x. By the recurrence hypothesis,Bd(Y) has
no free 1−face. If dim(Y∩ x̂) < 2 then it may be easily seen
thatBd(X) has no free 1−face. Suppose now that dim(Y∩
x̂) = 2 and leth be a 2−face inY∩ x̂. From Prop. 6i, we can
see thath is free forY. We also see thath is not free forX
since it belongs to two 3−cells ofX, namely ˆx and a 3−cell
ŷ in Y. Any 1−face ofBd(Y) which is not inĥ is obviously
not free forBd(X), let us consider a 1−faceg in ĥ. From
Prop. 6ii and Prop. 6iii,g belongs to ˆx, ŷ and ẑ wherez is
a 3−face of f̂ ∗ distinct fromx andy, andg also belongs to
ĥ = x̂∩ ŷ, ĥ′ = ŷ∩ ẑ, andĥ′′ = ẑ∩ x̂. If z /∈ X then bothh′

andh′′ are free forX, and ifz∈ X then neitherh, h′ nor h′′

is free forX, thus in all cases,g is not free forBd(X). �

Lemma 21. Let f be a d−face with d∈ {2,3,4}, and let
A,B� f̂ ∗ such that B� A, B is collapsible, A is collapsible
anddim(B) < dim(A). Then, there exists h,g∈ A\B such
thatdim(h) = dim(A) and(h,g) is free for A.

Proof. We make the proof ford = 4, the other cases are
similar and simpler. Letm = dim(A), we havem < d. If
dim(B) < m− 1 then by Prop. 1 the proof is immediate,
suppose from now that dim(B) = m−1. The casem= 1 is
trivial.
Casem = 2: hence dim(B) = 1, which means thatB is a
graph. The hypotheses imply thatB is indeed a connected
and acyclic graph,i.e., a tree. LetA2 be the subcomplex of
A such thatA+

2 is the set of all the 2−faces ofA. Obviously
A2 is a pure 2−dimensional subcomplex of̂f ∗, and since
A is collapsible,A is connected (by Prop. 8), henceA2 is
connected. From Lemma 7ii, we deduce thatBd(A2) is not
acyclic. Thus, sinceB is a tree,B cannot containBd(A2),
and there must exist a 1−faceg in Bd(A2)\B and a 2−face
h in A (and not inB, since dim(B) < 2) such that(h,g) is
free forA.
Casem = 3. Let A3 be the subcomplex ofA such that
A+

3 is the set of all the 3−faces ofA. From Prop. 20 and
Lemma 7i, we deduce thatBd(A3) is disconnected. Thus,
sinceB is collapsible,B is connected (by Prop. 8), andB
cannot containBd(A3) (because dim(B) = 2 and the num-
ber of connected components ofBd(A3) does not change if
k−faces (withk ≤ 2) are added toBd(A3)). We conclude
that there must exist a 2−faceg in Bd(A3)\B and a 3−face
h in A such that(h,g) is free forA. �

Lemma 22. Let f be a d−face with d∈ {2,3,4}, and let

A,B� f̂ ∗ such that B� A, B is collapsible, A is collapsible
anddim(B) = dim(A). Then, there exists h,g in A such that
(h,g) is free for A, and either(h,g) is free for B or{h,g}∩
B = /0.

Proof. Letm= dim(B) = dim(A). SinceB is collapsible, by
Prop. 1 we can deduce thatB collapses onto a complexB′,
where dim(B′) = m−1, B′ contains all the(m−1)−facets
of B, and B′ is collapsible. Knowing thatB′ � A, B′

is collapsible,A is collapsible and dim(B′) < dim(A), by
Lemma 21 we deduce thatA has a free pair(h,g) such that
h /∈ B′, g /∈ B′ and dim(h) = dim(A). Sinceg /∈ B′, g is not
a (m− 1)−facet ofB. If h ∈ B (henceg ∈ B) then, since
(h,g) is free forA, we can see that(h,g) is also free forB,
and we are done. Now ifh /∈ B, sinceh is the onlym−face
of A which strictly includesg, we see that ifg ∈ B theng
would be a(m− 1)−facet of B: a contradiction. Hence,
{h,g}∩B= /0. �
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