
HAL Id: hal-00622389
https://hal.science/hal-00622389

Submitted on 22 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Accelerated Stereoscopic Rendering using GPU
François de Sorbier, Vincent Nozick, Venceslas Biri

To cite this version:
François de Sorbier, Vincent Nozick, Venceslas Biri. Accelerated Stereoscopic Rendering using GPU.
16th International Conference in Central Europe on Computer Graphics, Visualization and Computer
Vision’2008 (WSCG’08), Feb 2008, France. pp.239–244. �hal-00622389�

https://hal.science/hal-00622389
https://hal.archives-ouvertes.fr

Accelerated Stereoscopic Rendering using GPU

François de Sorbier
Université ParisEst

LABINFOIGM

UMR CNRS 8049

fdesorbi@univmlv.fr

Vincent Nozick
Graduate School of Science and

Technology,

Keio University, Japan

nozick@ozawa.ics.keio.ac.jp

Venceslas Biri
Université ParisEst

LABINFOIGM

UMR CNRS 8049

biri@univmlv.fr

ABSTRACT
This paper presents a new method to create a pair of stereoscopic images in one pass. Our algorithm takes
advantage of the latest version of GPUs, including geometry shaders. Given the left viewpoint of a scene,
primitives are duplicated and transformed to compute the right image. Hence this method saves the extra-time
required to recompute attributes of the vertices for the second view in the traditional rendering pipeline. Even
for very complex scenes, our method provides stereoscopic pair roughly twice faster than a traditional method
and involves few additional implementations.

Keywords
Stereovision, GPU, Geometry Shaders, real-time computing.

1.INTRODUCTION
The unceasing enhancement of GPU (Graphics
Processor Unit) is usually leaded by well defined
real-time improvements. However, it is common to
notice that such new capabilities are also used for
unexpected applications, as shown in numerous
articles [Eng06a, Fer04a]. This paper, dealing with
stereoscopic rendering acceleration, belongs to this
category. Indeed, stereovision techniques which
significantly increase the immersion feeling, involve
that they involve to render the scene twice, i.e. once
for each eye. Therefore, the rendering process
becomes nearly twice longer. Nevertheless, the
emergence of commercial autostereoscopic displays
[Dod05a] tends to proof that stereovision is a hot
research topic.

This article presents a new method to create a
stereoscopic pair by rendering the scene geometry
only once. Our method is based on geometry shaders
and can reduce the two traditional drawing passes to
one. Indeed, the one and only difference between two

stereoscopic images is the viewpoint: geometry,
object colours computation, and sometimes
illumination, remains the same. The main purpose of
geometry shaders is to clone input primitives without
requiring any additional process on the vertex
attributes.

Our goal is to design an algorithm able to render the
scene only once for any stereovision technique. Our
method takes full profit of new technologies of
graphic cards – vertex, fragment and geometry
shaders, multiple render target and frame buffer
object – but with few instructions on the vertex and
fragment programs.

In the following parts, we introduce a brief reminder
about how to generate stereoscopic images and also
provide a survey about existing methods for
stereoscopic rendering. Next, we describe our
method and explain how this technique takes
advantage of the latest GPU capabilities. Then we
detail the implementation step by step. Finally, we
present our experimental results showing that
compared to traditional techniques, our method
achieves nearly twice faster performances for
equivalent visual results.

2.STEREOVISION
This section introduces the rudiments of stereoscopic
pair computation and describes previous work related
to stereovision rendering.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Copyright UNION Agency – Science Press, Plzen, Czech
Republic.

Rudiments of stereovision

A stereovision system generates two images of a
scene from two slightly different viewpoints
associated to the left and right eyes. The most used
and proper method to create stereo pairs is called
“off-axis” [Bou99a]. This method induces that both
viewpoints share the same image plane and use an
asymmetric projection volume as depicted on Figure
1.

The projection parameters are computed as follows :

min=
near

focallenght
W−dc

2
max=

near
focallenght

W+dc
2

where W is the width of the focus plane and focal
length – improperly - denotes the distance from the
camera centre to the focus plane. The dc variable
corresponds to the distance between left and right
camera.

This method can be used with various restitution
techniques such as anaglyph (red/cyan glasses),
polarized glasses, active stereo displays, HMD, etc.

Related work
A great effort has been provided concerning stereo
pair compression, comfort of stereoscopic perception
and stereoscopic device enhancement but few
research has been done on stereoscopic rendering
acceleration. Indeed, traditional stereoscopic
rendering methods always require two passes to
render a scene from both left and right viewpoints.

Adelson et al.[Ade92a] propose a stereoscopic ray-
tracing algorithm that takes advantage of the
coherence between the two viewpoints. This
approach saves about 75% of computational time for
the second view. However this method belong to the
ray-tracer family and hence is not suited for real-time
applications.

Nvidia has developed a stereoscopic driver [Nvi03a]
that gives the capability to intercept programming
instructions from DirectX or OpenGL and convert
them into stereoscopic informations. In theory, this
driver should work with any 3D application but some
problems and incompatibilities still exist:
applications must respect some developing rules to
be compliant with the driver [Nvi06a]. Moreover this
method implicitly performs two rendering passes
and so provides no special optimisation.

3.PROPOSED METHOD
This section presents the geometry shader and shows
how these new capabilities can be used to speed up
stereoscopic rendering. We also explain how this
method can be inserted in a classic rendering
pipeline.

Geometry shaders capabilities
In recent years, vertex and pixel shaders have been
widely used to speed up or improve rendering quality
compared to CPU or older GPU.

The fourth version of shader model introduces a new
kind of shader called geometry shaders [Lich07a].
The geometry-shader stage is inserted in OpenGL
pipeline just after the vertex-shader stage and before
the clipping transformations (Figure 2). The main
purpose of geometry shaders is to generate new
primitives. Indeed, geometry shaders' input is a
single fixed primitive (point, line or triangle). Then,
according to this input data, geometry shaders can
generate multiple fixed primitives (point, line strip or
triangle strip).

A vertex belonging to a new primitive is generated
using EmitVertex function and finally emited with the
EndPrimitive function.

Figure 2: OpenGL programmable pipeline

Figure 1: projection volume computation

Our rendering method
The fundamental point of our method is to use the
duplication property provided by the geometry
shader. Each primitive used for a single view is
duplicated and transformed according to the new
viewpoint. Moreover, using geometry shaders
involves that only input vertices are processed by
vertex shaders. Hence this method saves computation
time for the duplicated primitives.

Our algorithm can be described as follows:

● compute left and right modelview and
projection matrices

● render the scene from the left viewpoint

● perform vertices processing

● receive primitives in geometry shader from
vertex shader

○ clone primitives

○ perform modelview and projection
transformations to the left an right
viewpoints

○ emit new primitive to fragment shader

● render results into two separate buffers
using Multiple Render Target

● display stereo pair according to the
stereoscopic restitution method

Of course, the two output images can be displayed
using any stereoscopy restitution method.

The product of modelview and projection matrices
are precomputed only once according to the user's
eyes separation and the scene focal length. If these
stereoscopic parameters change, new modelview and
projection matrices should be computed
consequently. Note that the product of the projection
matrix by the current modelview matrix plus the eye
separation translation vector for each primitive
would consume extra-computing time since the same
instruction would be repeated for every primitive.

4.IMPLEMENTATION

This part describes the three implementation stages
required by our method. The first section explains
the cloning stage performed by the geometry shaders.
The next section describes the rendering process and
the last section presents a brief description about how
to display the stereo pair.

Cloning the geometry
As mentioned above, the key point of this method is
the duplication stage performed by the geometry
shader. Indeed, the geometry shader clones the
primitives designated for the left viewpoint to the
right viewpoint. The duplicated vertices are then
transformed and projected on the right buffer while
the initial vertices are projected on the left buffer.

The following GLSL [Ros06a] code describes this
process:

#version 120
#extension GL_EXT_geometry_shader4 : enable
#extension GL_EXT_gpu_shader4 : enable

varying float flag;
uniform mat4 matrix;

void main(void)
{
 flag = 0.0;
 for(int i =0; i < 3; ++i){
 gl_Position =
 gl_ModelViewProjectionMatrix *
 gl_PositionIn[i];
 EmitVertex();
 }
 EndPrimitive();

 flag = 1.0;
 for(int i =0; i < 3; ++i){
 gl_Position = matrix * gl_PositionIn[i];
 EmitVertex();
 }
 EndPrimitive();
}

In this program, the uniform variable matrix
corresponds to the right image transformation matrix,
product of the modelview matrix and the projection
matrix of the right viewpoint. The left transformation
matrix can be directly read as a built-in uniform
variable set in the main program as the product of the
modelview matrix with the projection matrix. The
variable flag indicates whether the created vertex
belongs to the left or to the right view. Note that the
product of the projection matrix by the current
modelview matrix plus the eye separation translation
vector for each primitive would consume extra-
computing time since the same instruction would be
repeated for every primitive.

Rendering process
In the fragment shader stage, the incoming fragments
should be sorted out depending on the variable flag
set in the geometry shader. This flag is set to zero if
the fragment belongs to the left viewpoint and
different of zero otherwise.

#version 110
#extension GL_ARB_draw_buffers : enable

varying float flag;

void main()
{
 vec4 color = (1.0);
 if(flag==0.0){
 gl_FragData[0] = color;

 gl_FragData[1] = vec4(0.0);
 }else{

 gl_FragData[0] = vec4(0.0);
 gl_FragData[1] = color;
 }
}

This sample program corresponds to the fragment
shader operations for right and left image. To
perform this stage, we use both Multiple Render
Targets (MRT) and FrameBuffer Object (FBO). MRT
can render a scene in multiple buffers while the FBO
can directly render the result in a texture.

Unfortunately that using MRT and FBO involves
some constraints:

1. FBO and MRT share a common buffer for
rendering tests such as depth and alpha tests
even if there are multiple colour buffer
targets.

2. MRT involves that every fragment is
rendered in the two buffers. Otherwise, the
result would be undefined.

Sharing the depth buffer for the right and left
viewpoints rendering, which is a consequence of the
first constraint, means that some fragments could be
discarded when they should not. Our approach to
solve this problem is to disable the depth test. We are
then force to use the painter's algorithm as a
substitute to the depth test to solve the visibility
problem.

The second remark induces that the two primitives
created by the geometry shader are independent.
Using MRT involves that every fragment must be
drawn on the two buffers (Figure 4). Hence a
fragment that does not belong to the proper buffer
indicated by the flag should be discarded. The
elimination of an undesirable fragment can be
performed by setting its colour to black and its alpha
value to zero. The blending function should be
enabled and depth test disabled in the main software
program, thus the fragment will not be displayed.
The function used for blending is:

Displaying a stereo pair

The rendering process generates two separate
textures corresponding to the left and the right
viewpoints. According to the stereoscopic device
used, the user should eventually modify the stereo
pair.

For example, using anaglyph glasses involves to mix
red/cyan filtered images (figure 3) as describes in the
following pseudo-code:

● disable depth test

● enable blending with additive function

● set colour mask to red

● render left texture on a fullscreen quad

● set colour mask to cyan

● render right texture to fullscreen quad

Polarized or active stereo systems do not require
such process, each image should be send to the
appropriate video output.

5.EXPERIMENTAL RESULTS

This section presents our experimental results. Then
we analyse our system limitations and propose
solutions to solve them.

Results
We tested our method on PC Intel core 2 duo
2,40GHz with a Nvidia GeForce 8800 GTX graphic
card.

We performed our tests on a test scene displaying
numerous Stanford bunny models [Sta93a] and using
various graphical effects such as lighting. We set the
screen resolution to 1024x768.

Figure 3: On the left the traditional stereo pair
result. On the right the same scene rendered with our

method.

Red=Rsrc×Asrc+Rdest×1−Asrc
Green=G

src
×A

src
+G

dest
×1−A

src
Blue=Bsrc×Asrc +Bdest×1−Asrc
Alpha=A

src
× A

src
+A

dest
×1−A

src

Figure 4: Errors due to the obligation to render a
fragment in the two buffers

Traditional
stereoscopy

[Bou99a] (fps)

Our method

(fps)

Number of
triangles 70000 210000 70000 210000

Flat rendering 163 55 304 108

Vertex lighting 83 28 158 54

Shader lighting 82 27 156 54

Number of
triangles 350000 630000 350000 630000

Flat rendering 33 18 65 36

Vertex lighting 16 9 33 19

Shader lighting 16 9 33 18

Table 1: Comparative statement

Table 1 shows that our method is more effective in
every situation. Our method is especially effective
when the rendering method requires a large amount
of processing operations on vertices. The tests also
show that for a scene containing an important
number of vertices, our method achieves a 95 to
100% gain with a shader lighting method.

Limits and solution

Even if this method is effective to render stereo pairs
in real time based on complex geometry, this system
presents some limitations, especially those
mentioned on section 4.2.

Waiting for a separate depth-buffer for each
rendering buffer of the MRT, we propose to use the
painter's algorithm as a substitution of the depth test.
All objects should be sorted and drawn in a back-to-
front order according to the “camera” position in the
scene. This solution will provide a correct rendering
except for some well known particular cases relative
to the painter's algorithm. However, some depth

artefacts will occurred with concave objects (Figure
5).

These concave objects can be correctly displayed by
rendering the left viewpoint scene in a depth texture.
Then during the fragment shaders stage, the depth
values should be read from the depth texture to
decide whether a fragment should be discarded or
not. The right depth value computation is based on
the fact that the left and right cameras share the same
image plane. Thus, the object depth remains constant
between the two views.

The depth-map-based method can be summarized as
follows :

● in geometry shaders, transmit transformed
vertices coordinates of the left viewpoint
primitives to the fragment shaders

● if fragment belong to the right viewpoints

○ read coordinates value coming from the
geometry shader

○ apply viewport clipping
transformations

○ if coordinates exist in depth map

• compare the depth map value and
the fragment z-value

• according to this z-test, accept or
discard the fragment

○ else accept the incoming fragment

○

Nevertheless, for the right viewpoint, in some very
specific configurations depth values read from the
depth-map will not match with the z-value expected.
This could also display some artefacts on the right
view rendering.

Table 2 shows that even if the depth map
computation is time consuming, this method is still
faster or at least equivalent to the traditional
rendering method. Moreover, this technique
becomes especially effective for the methods
requiring high computation from the vertex shaders
(lighting shader used in figure 6 for example).

Figure 5: Artefacts due to
concave objects properties

Figure 6: On the left the traditional stereoscopy
algorithm. On the right our method including the

depth-map.

Figure 7: A result of our stereoscopic algorithm using GPU

Traditional
stereoscopy

(fps)

Our method

(fps)

Number of
triangles 70000 210000 70000 210000

Flat rendering 163 55 158 55

Vertex lighting 83 28 107 36

Shader lighting 82 27 105 35

Number of
triangles 350000 630000 350000 630000

Flat rendering 33 18 33 18

Vertex lighting 16 9 22 12

Shader lighting 16 9 22 12

Table 2: Results using depthmap

6.CONCLUSION
This article presents a stereoscopic GPU-based
method computing a stereo pair in one-pass. This
method takes advantage of the geometry shader to
duplicate and transform primitives from left to right
viewpoint. Rendering, done using Multiple Render
Target, can be used with any stereoscopic restitution
method. Contrary to traditional stereoscopic
methods, vertices attributes are not computed a
second time for the second view. Thus, our method
saves computational time and then can render stereo
pairs from scene containing a high level of detail
with a negligible frame rate decrease.

This system presents some limitations mainly due to
the Multiple Render Target depth buffer
management. However we propose an optimisation
of our method including a depth-map computation.
We hope that in the future, two separate depth
buffers will be available for MRT what will
definitively speed up our algorithm.

Concerning future works, we plane to experiment
our method on autostereoscopic displays. These kind
of screens require at least a half-dozen stereo images
of the same scene.

7.ACKNOWLEDGMENT
This work has been partly supported by “Foundation
of Technology Supporting theCreation of Digital
Media Contents” project (CREST, JST), Japan.

8.REFERENCES

[Ade92a] S. J. Adelson, L. F. Hodges.
Stereoscopic ray-tracing. The Visual
computer, vol.10, n. 3, pp.127-144,
1993.

[Bou99a] P. Bourke. Calculating Stereo Pairs.
http://local.wasp.uwa.edu.au/~pbourke
/projection/stereorender/, 1999.

[Dod05a] N. A. Dodgson. Autostereoscopic 3D
Displays. Computer, Volume 38, Issue
8, 2005.

[Eng06a] W. Engel. ShaderX5: Advanced
Rendering Techniques. Charles River
Media, ISBN-13 978-1584504993,
2006.

[Fer04a] R. Fernando, GPU Gems:
Programming Techniques, Tips, and
Tricks for Real-Time Graphics.
Addison-Wesley Professional, ISBN-
13 978-032122832, 2004.

[Lich07a] B. Lichtenbelt, P. Brown,
EXT_gpu_shader4 Extensions
Specifications. NVIDIA, 2007.

[Nvi03a] NVIDIA. Technical Brief : 3D Stereo.
TB-00252-001_v02, 2003.

[Nvi06a] NVIDIA. GPU Programming Guide
Version 2.5.0. pp. 69-75, 2006.

[Oko77a] T. Okoshi. Three-Dimensional
Imaging Techniques. Academic Press,
1977.

[Ros06a] R. J. Rost. OpenGL Shading
Language. Addison-Wesley
Professional, ISBN 0-321-33489-2,
2006.

[Sta93a] The Stanford 3D Scanning Repositry.
http://graphics.stanford.edu/data/3Dsca
nrep/, 1993.

	1.INTRODUCTION
	2.STEREOVISION
	3.PROPOSED METHOD
	4.IMPLEMENTATION
	5.EXPERIMENTAL RESULTS
	6.CONCLUSION
	7.ACKNOWLEDGMENT
	8.REFERENCES

