
HAL Id: hal-00622365
https://hal.science/hal-00622365

Submitted on 12 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

GPU rendering for autostereoscopic displays
François de Sorbier, Vincent Nozick, Venceslas Biri

To cite this version:
François de Sorbier, Vincent Nozick, Venceslas Biri. GPU rendering for autostereoscopic displays. 4th
International Symposium on 3D Data Processing, Visualization and Transmission (3DPVT’08), Jun
2008, France. 10pp. �hal-00622365�

https://hal.science/hal-00622365
https://hal.archives-ouvertes.fr

GPU rendering for autostereoscopic displays

François de Sorbier
LABINFO-IGM

UMR CNRS 8049
Université Paris-Est, France

fdesorbi@univ-mlv.fr

Vincent Nozick
Graduate School of Science

and Technology
Keio University, Japan

nozick@ozawa.ics.keio.ac.jp

Venceslas Biri
LABINFO-IGM

UMR CNRS 8049
Université Paris-Est, France

biri@univ-mlv.fr

Abstract

In recent years, stereoscopic technology has advanced
from stereoscopic to autostereoscopic displays. These latter
family involves to display several views of a scene. In the
case of real-time computer graphics images, the standard
approach consists in rendering every view independently.
This paper presents an alternative method to generate mul-
tiple views for autostereoscopic displays in a single render-
ing pass. Our algorithm is based on the fact that vertices
properties remain the same from different viewpoints. Tak-
ing advantage of the latest generation of GPUs including
geometry shaders, we propose a method that significantly
speeds up the rendering process by duplicating and trans-
forming incoming primitives for a defined set of views. Our
method involves very few modifications to be used with a
standard stereo device.

1. Introduction

Stereovision is a well known technique to enhance vir-
tual reality devices involved in human immersion. In com-
parison to standard display, stereoscopic devices increase
the visual immersion feeling. In recent years, stereoscopic
technology has advanced from stereoscopic to autostereo-
scopic displays. The latter family does not requires to wear
any glasses or specific device for the user. Moreover, cur-
rent autostereoscopic screens can display much more than
two images to provide an adequate rendering in several di-
rections and to be adapted for multi-user purposes. This
new technology introduces new challenges like data acqui-
sition, rendering and data transfer. Concerning the data ac-
quisition, two cases should be considered: the input images
are captured from video cameras or generated by computer
graphics methods. We will focus on the second case where
the scene should be rendered several times. This multiple
rendering usually implies redundancies and can sometimes
prevents rendering in real-time.

This article presents a new method for generating com-
puter graphics that renders the scene from multiple view-
points through geometry shaders. The only difference be-
tween the rendered images from a same scene being the
viewpoints, the following properties are preserved: geome-
try, object colour computations, and part of the illumination
computations. Thereby we take advantage of GPU capabil-
ities to compute vertex attributes only once and then clones
the result to render the multiple views dedicated to the au-
tostereoscopic display. The goal of our method is to signifi-
cantly enhance the rendering frame rate with few additional
operations by generating multiple views of a scene in a sin-
gle rendering pass.

2. Autostereoscopic rendering

This section presents a brief survey of autostereoscopic
displays and some existing solutions to generate multiple
view images.

2.1. Multi-view generation methods

The goal of a stereovision system is to produce two im-
ages of a same scene from two slightly different viewpoints
and to associate them to the right and left eyes. Anaglyph,
polarisation or shutter [10] are popular methods used to
achieve stereovision but involve using glasses that impairs
the feeling of immersion. Nevertheless, recent research
works on autostereoscopy added the following benefits to
the former stereoscopy idea:

• stereo displays allow multi-user applications;

• users do not have to wear glasses;

• users receive adequate stereo images according to their
position.

Dodgson [2] presents a variety of autostereoscopic dis-
plays. But among them only two major techniques pro-

Proceedings of 3DPVT'08 - the Fourth International Symposium on 3D Data Processing, Visualization and Transmission

June 18 - 20, 2008, Georgia Institute of Technology, Atlanta, GA, USA

viding multiple view displays are available from several fa-
mous companies such as Philips [12] or Sharp [1].

The technique proposed by [5] uses the parallax barrier
to feed both eyes strips of images lighted according to a
barrier mask. The second technique presented by [14] relies
on lenticular sheets. Vertical lenses are set over a group
of pixels and emit light from each ”sub-pixel” in different
directions (up to 64 as presented by Takaki [15]). Unlike
the parallax barrier technology which induces a luminosity
loss because of opaque areas, lenticular sheets preserve the
wholeness of luminosity.

2.2. Multi-view generation methods

As mentioned above, the 3D data can come from video
camera acquisition or computer graphics rendering, but in
both cases, the data generation can become a problem. In
the case of video camera acquisition, plugging several cam-
eras on a computer leads to video-stream saturation. This
problem can be solved using online video-based rendering
method as proposed by Nozick and Saito [9].

In the computer graphics case, the scene should be ren-
dered for every different viewpoint which dramatically de-
creases the rendering frame rate and may prevent render-
ing in real-time. Several methods have been proposed to
overcome the multi-pass rendering limitation for multi-view
rendering of 3D information. A point-based rendering solu-
tion was proposed by Hübneret al. [4] using GPU to com-
pute multi-view splatting, parametrised splat intersections
and per-pixel ray-disk intersections in a single-pass. This
method reaches 10 fps for 137k points in a 8-view con-
figuration. To increase multi-view rendering performance,
Hübner and Pajarola [3] present a direct volume rendering
method based on 3D textures with GPU computations to
generate multiple views in a single pass. These two solu-
tions significantly decrease the computation time but are not
suited for polygon based graphics.

An alternative solution has been proposed by Morvanet
al. [8]: a single 2D image plus a depth map which are inter-
related to display multiple views. Although the algorithm
saves the bandwidth of data emitted to the system, it does
an assessment over available data to fill the area’s missing
information of the new views and then reduces the content’s
truthfulness.

3. Algorithm outline

This section presents the geometry shader and shows
how these new capabilities can be used to speed up stereo-
scopic rendering. We also explain how this method can be
inserted in a classic rendering pipeline.

3.1. Geometry shaders

In recent years, vertex and pixel shaders have been
widely used to speed up or improve rendering quality com-
pared to CPU or older GPU.

Figure 1. OpenGL pipeline with the fourth ver-
sion of shader model.

The fourth version of shader model introduces a new
kind of shader called geometry shaders [7]. The geome-
try shader stage is inserted in OpenGL pipeline just after
the vertex shader stage and before the clipping transforma-
tions as depicted in Fig. 1. The main purpose of geometry
shaders is to manipulate incoming single fixed primitives
like points, lines or triangles. Thus operations on geome-
try such as duplication, transformations or adding vertices
are now available on GPU. According to the input data, ge-
ometry shaders can generate multiple fixed primitives like
points, line strip or triangle strip.

A vertex belonging to a new primitive is generated us-
ing EmitVertex function and finally emitted with the
EndPrimitive function.

3.2. Our algorithm

The main purpose of our method is to speed up the multi-
ple view rendering of a scene considering that vertex prop-
erties remain the same from a viewpoint to another. The
new geometry shader stage takes place between the vertex

Proceedings of 3DPVT'08 - the Fourth International Symposium on 3D Data Processing, Visualization and Transmission

June 18 - 20, 2008, Georgia Institute of Technology, Atlanta, GA, USA

shader and fragment shader stages. An incoming primitive
in the geometry shader stage can be manipulated and used
to produce new primitives, thus saving extra-time required
for vertex attribute computation in a basic multi-view pro-
cess.

Our algorithm duplicates and transforms every rendered
triangle according to the corresponding viewpoint. The re-
sulting primitives are rasterized and transmitted to the frag-
ment shader. GivenN render-buffers associated to each of
the N views, every received fragment is rendered into the
correct buffer.

Rendering is performed into several textures to allow
to create the correct textures’ combining according to the
autostereoscopic screen used. FrameBuffer Object (FBO)
and Multiple Render Target (MRT) extensions are used to
achieve this process. However since OpenGL implementa-
tion of FBO and MRT share a single depth buffer tied to
the first draw buffer, it is not possible to use the common
depth test to perform hidden-surface removal. So we need
to apply our own depth test in fragment shader to discard
undesirable fragments.
Our algorithm (Fig. 2) can be described as follows:

• compute modelview and projection matrices related to
theN viewpoints

• set the middle viewpoint as the default viewpoint

• render the scene

– process vertices

– for each received primitive in the geometry
shader

∗ clone the primitive

∗ perform modelview and projection transfor-
mations for theN-1extra viewpoints

∗ emit new primitives to fragment shader

– according to the viewpoint, render results intoN
separate textures using MRT

• compose theN textures according to the multi-view
autostereoscopic display

Currently the painter’s algorithm is used to perform the
depth test even if results are well known to be not optimal. It
exists two others solutions that could be applied to perform
an efficient depth test.

The first one is to use one single texture that is shared
between the multiple viewpoints that allow to use a single
depth buffer. It takes advantage of the geometry shader to
clip the triangles to the bounds of the area defined for a
viewpoint and such a way there is no overlapping between
the different renderings. However, using a single texture for

every view strongly limits the number of generated images
and their resolution. Moreover, this method may cause tri-
angles to pop in and out because of the clipping.

The second solution will be available with next genera-
tion of graphic cards. The incoming specifications will al-
low to read and write into an active texture. The alpha value
can be used in such a way as to store and read back depth
values to perform our own depth test.

Figure 2. Outline of our method.

4. Implementation

This section describes the three main stages implement-
ing our method.

4.1. Geometry duplication

As mentioned above, the duplication stage performed by
the geometry shader is the key point of our method.N new
primitives are generated according to the incoming primi-
tive and the corresponding transformation matrices.
The following GLSL [13] code describes this process:

Proceedings of 3DPVT'08 - the Fourth International Symposium on 3D Data Processing, Visualization and Transmission

June 18 - 20, 2008, Georgia Institute of Technology, Atlanta, GA, USA

v e r s i o n 120
e x t e n s i o n GLEXT geometry shader4 : e n a b l e
e x t e n s i o n GLEXT gpu shader4 : e n a b l e

/ / maximum number of v iews
c o n s t i n t MAXVIEW = 8 ;
/ / i d t r a n s m i t t e d t o t h e f ragment program
f l a t v a r y i n g ou t f l o a t f l a g ;

/ / number of r e n d e r e d view
uni form i n t nview ;
/ / r e f e r e n c e view i d
un i form i n t r e f ;
/ / views ’ p r o j e c t i o n m a t r i c e s
un i form mat4 m a t r i x [MAXVIEW] ;

vo id main (vo id)
{

/ / r e f e r e n c e view p r o c e s s i n g
f l a g = f l o a t (r e f) ;
/ / f o r each v e r t e x of t h e t r i a n g l e
f o r (i n t i =0; i < 3 ; ++ i){

g l P o s i t i o n =
g l Mode lV iewP ro je c t i o nM a t r i x ∗
g l P o s i t i o n I n [i] ;

Emi tVer tex () ;
}
E n d P r i m i t i v e () ;

/ / a d d i t i o n a l v iews p r o c e s s i n g
f o r (i n t v =0; v<nview ; ++v){

i f (v != r e f) {
f l a g = f l o a t (v) ;
f o r (i n t i =0; i <3; ++ i){

g l P o s i t i o n = m a t r i x [v] ∗
g l P o s i t i o n I n [i] ;

Emi tVer tex () ;
}
E n d P r i m i t i v e () ;

}
}

}

The matrix array transmitted from the main program to
the geometry shader contains for each viewpoint the pre-
computed projection matrix multiplied by this viewpoint’s
modelview matrix. The variableflag is set with a different
fixed value for each primitive. Then, in the next stage, frag-
ments are rendered in the correct draw buffer according to
this value.

4.2. Multi-view rendering

According to the value of the received variableflag, the
fragment is rendered into the corresponding draw buffer.

MRT constrains to render the fragment into each defined
render buffer otherwise the result could be undefined. Thus
if a fragment have to be written into a wrong buffer, its al-
pha value is set to zero and an alpha test is applied to discard
these undesirable fragments.

Of course, since this operation arise at the end of the
fragment program, this method is absolutely compatible
with a normal use of the transparency with the alpha chan-
nel.

v e r s i o n 120
e x t e n s i o n GLARB draw buf fers : e n a b l e

f l a t v a r y i n g i n f l o a t f l a g ;
un i fo rm i n t nview ;

vo id main ()
{

/ / Any f ragment s h a d e r s o u r c e code
/ / l i k e i l l u m i n a t i o n , t e x t u r e . . .

f o r (i n t i =0; i<nview ;++ i){
i f (f l o a t (i)== f l a g)
g l F r a g D a t a [i]= vec4 (c o l o r f r a g . rgb , 1 . 0) ;

e l s e
g l F r a g D a t a [i]= vec4 (0 . 0) ;

}
}

Results are rendered in textures linked to theN colour
buffers using the framebuffer objects extension. However,
at the present time, FBO limits the number of useable ren-
der buffers to eight which also limits the number of views
per pass to eight. Waiting for an increase of the available
buffers, a simple solution to render more than eight views
is to perform several passes using multiple framebuffer ob-
jects. Such a way we are able to render up to 12 views in
real time. A 8-image generation result is depicted on Fig-
ure 3

4.3. Final image generation

The rendering process generatesN textures tied to the
N viewpoints. According to the stereoscopic device used,
these textures have to be composed to produce the correct
final image. Figure 4 depicts two existing pixel arrange-
ments for lenticular sheet-based system. To speed up the
computational time of this stage, the GPU is once again re-
quired. More information can be found in [6]. Figure 5
presents a ready-to-use image.

5. Results and discussions

We tested our method on PC Intel core2 duo 2,40GHz
with a Nvidia GeForce 8800 GTS graphic card under Linux

Proceedings of 3DPVT'08 - the Fourth International Symposium on 3D Data Processing, Visualization and Transmission

June 18 - 20, 2008, Georgia Institute of Technology, Atlanta, GA, USA

Figure 3. The 8-generated views.

system. Usually autostereoscopic screens using lenticular
sheets technology have a1920 × 1080 resolution. for our
tests we choose to use the maximum of available images
in one single pass i.e. 8 images related to different view-
points. Consequently the resolution of each generated im-
age is240 × 180 (keeping a 4:3 ratio). Of course, our
method is also well suited for much higher resolution. Ta-
ble 1 presents our results obtained with our method and
compares it to the traditional multi-pass process.

Number of views 1 2 4 8
Multi-pass method (fps) 157 80 38 19
Our method (fps) 157 141 70 24

Table 1. Frame rates obtained while rendering
a scene with about 80.000 triangles.

These results show that our method speeds up the ren-
dering process especially for a small number of additional

Figure 4. Examples of pixel arrangements
with normal lenticular system and slanted
lenticular system for 6 viewpoints. Each
number denotes an image corresponding to
a specific viewpoint and each RGB triplet is a
pixel.

views. Since the geometry shader implementation is not ef-
fective yet, we notice that performance deviation result for
higher number of images is not as high as expected. Indeed,
we have observed that adding just one varying variable be-
tween the geometry and the fragment shader can induce a
severe drop of performance (for instance, switching from
13 to 14 floats doubles the rendering time in the 4-view
case). According to the opinion of the computer graphic
community, bad performances of the first geometry shaders
release with high amount of vertices seem to be well known
[11]. However forthcoming generation of graphic cards will
probably improve geometry shaders efficiency.

Our method was also tested with different kinds of ren-
dering process to evaluate their impact on performances.
Table 2 depicts the results.

Number of views 2 4 6 8
No illumination (fps) 326 168 80 60
Texture (fps) 326 167 80 60
Per-vertex illumination (fps) 160 83 28 24
Per-pixel illumination (fps) 160 83 28 23

Table 2. Results presenting our method with
different kinds of rendering with 80.000 trian-
gles.

We can notice that results of per-vertex illumination and
per-pixel illumination are similar. This is due to the ca-
pability of latest GPU to distribute resources between the
fragment shader and the vertex shader.

Proceedings of 3DPVT'08 - the Fourth International Symposium on 3D Data Processing, Visualization and Transmission

June 18 - 20, 2008, Georgia Institute of Technology, Atlanta, GA, USA

The goal of the last test was to increase the number of
rendered views (more than 8) and to check results with vary-
ing number of passes including more or less views to render.

Number of passes 1 2 3 4 6
Views per pass 12 6 4 3 2
Results (fps) N/A 14 15 23 21

Table 3. Results outlined by our method for
12 views using varying number of passes.
In this configuration, the traditional method
reaches 14 fps.

Table 3 shows that currently, a mix between multi-pass
and geometry shader provides the best results, with a signif-
icant enhancement compared to the traditional multi-view
generation method. We can especially notice good perfor-
mance when rendering three views per pass. Indeed, the
current version of geometry shader is efficient with a low
number of primitives to generate and balance the passes
needed to render the multiple views.
In addition to require only few changes according to a tra-
ditional rendering process, benefits of our method under 8
views can be summed up as follows :

• nview− 1× nb primitives× nb vertex shader op

operations saved on vertex attribute computation;

• data are rendered only once;

• less data exchange between CPU and GPU;

Finally to resolve the single shared depth-buffer limita-
tion, we expect that a separate depth-buffer for each render-
ing buffer of the MRT will be available on the next graphic
cards generation or that reading and writing in a active tex-
ture will be possible.

6. Conclusion

This article presents a GPU-based method to generate
multiple views designed for autostereoscopic displays. This
method takes advantage of the geometry shaders to dupli-
cate and transform primitives to the desired viewpoints. Our
method significantly speeds up the rendering despite the
constraints due to the limited number of views and a sin-
gle shared depth buffer. With very few modifications on
this method, future specification of the MRT and FBO in-
cluding separate depth buffer would enhance the rendering
frame rate and make the implementation trivial. Contrary
to traditional multi-pass methods, vertex attributes are com-
puted only once. Thus, our method saves computational
time and then can speed up the multiple view rendering. Fi-
nally our method is easy to adapt on existing stereoscopic
system.

As a future work, we intend to merge multiple-view ren-
dering with the composition process described on chap-
ter 4.3.

7. Acknowledgement

This work has been partly supported by ”Foundation of
Technology Supporting the Creation of Digital Media Con-
tents” project (CREST, JST), Japan.

References

[1] 3d lcds. http://sharp-
world.com/products/device/about/technology/lcd-03.html,
2006.

[2] N. A. Dodgson. Autostereoscopic 3d displays. 38(8):31–36,
2005.

[3] T. Hübner and R. Pajarola. Single-pass multi-view volume
rendering. InIADIS, 2007.

[4] T. Hübner, Y. Zhang, and R. Pajarola. Multi-view point
splatting. InGRAPHITE, pages 285–294, 2006.

[5] H. E. Ives. A camera for making parallax panoramagrams.
In Journal of the Optical Society of America, number 17,
pages 435–439, 1928.

[6] R. Kooima, T. Peterka, J. Girado, G. Jinghua, D. Sandin, and
T. DeFanti. A gpu sub-pixel algorithm for autostereoscopic
virtual reality. InIEEE Virtual Reality 2007, pages 131–138,
2007.

[7] B. Lichtenbelt and P. Brown.EXT gpu shader4 Extensions
Specifications. NVIDIA, 2007.

[8] Y. Morvan, D. Farin, and P. H. N. de With. Joint depth/-
texture bit-allocation for multi-view video compression.In
Picture Coding Symposium (PCS), to appear, 2007.

[9] V. Nozick and H. Saito. Multiple view computation for
multi-stereoscopic display. InIEEE Pacific-Rim Sympo-
sium on image amd video Technology (PSIVT 2007), volume
4872, pages 399–412, 2007.

[10] T. Okoshi. Three-dimensional imaging techniques. Aca-
demic Press, 1977.

[11] S. Patidar, S. Bhattacharjee, J. M. Singh, and P. J.
Narayanan. Exploiting the shader model 4.0 architecture.
Technical Report IIIT Hyderabad, 2006.

[12] Philips. Wowvx for amazing viewing experiences.Philips
3D solutions, 2006.

[13] R. J. Rost. OpenGL Shading Language. Addison-Wesley
Professional, 2006.

[14] G. Saitoh, T. Suzuki, T. Abe, and K. Ebina. Lenticular sheet,
rear-projection screen or tv using the same, and fabrication
method for said lenticualr sheet.U.S. Patent 5870224, 1999.

[15] Y. Takaki. High-density directional display for generating
natural three-dimensional images. InProceedings of the
IEEE, volume 94, pages 654–663, 2006.

Proceedings of 3DPVT'08 - the Fourth International Symposium on 3D Data Processing, Visualization and Transmission

June 18 - 20, 2008, Georgia Institute of Technology, Atlanta, GA, USA

Figure 5. A 4-images composition for a lenticular sheet syst em with focus on the Stanford Bunny
model.

Proceedings of 3DPVT'08 - the Fourth International Symposium on 3D Data Processing, Visualization and Transmission

June 18 - 20, 2008, Georgia Institute of Technology, Atlanta, GA, USA

