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Abstract

In this work we propose a comprehensive study of Digital Stent Enhancement (DSE), from the analysis of requirements to the

validation of the proposed solution. First, we derive the stent visualization requirements in the context of the clinical application

and workflow. Then, we propose a DSE algorithm combining automatic detection, tracking, registration and contrast enhancement.

The most original parts of our solution: landmark segmentation and non-linear image registration are detailed. Finally, we validate

the algorithm on a large number of synthetic and clinical cases. Performance is characterized in terms of image quality, automation,

and execution time. This work is, to the best of our knowledge, the first comprehensive article on DSE, covering problem statement,

proposed solution, and validation strategies.
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Coronary artery disease is the most common cause of sudden

death, and the most common reason for death of men and

women over the age of 20 (Rosamond et al., 2007). This

disease tends to narrow the lumen of coronary arteries by the

accumulation of atheromatous plaques within their walls. The

narrowing of the artery lumen due to plaque progression, or

plaque rupture can be cured by the expansion of a fine metallic

mesh called a stent that is implanted in an artery wall acting

as a scaffolding to open the lumen thereby restoring blood

flow. Stent placement is performed as part of a percutaneous

coronary interventional procedure. The procedure is typically

performed under the guidance of X-ray fluoroscopy delivering

real time video of the clinical tools and devices in the patient’s

anatomy, (Fig. 1 (a)), typically at 15 frames per second.

The clinician first introduces a metallic guide-wire inside

the artery that serves as support for sliding an angioplasty

balloon equipped with a stent. The angioplasty balloon is used

to expand the stent opening the lumen and simultaneously

expands the stent and embeds it into the vessel wall. In

order to visually assess the location of the balloon/stent on

the guidewire, the guidewire is equipped with two highly

radio-opaque marker-balls delimiting the position and extent

of the devices. Fig. 1 (b) depicts a part of an X-ray image,

with a guide-wire, the deflated balloon (invisible), its two

marker-balls and the deployed stent. Proper positioning of the

stent and apposition onto the vessel wall are key to the success

of the procedure and patient safety (Garg and Serruys, 2010;

Alfonso et al., 2007; Fujii et al., 2005; Bertrand et al., 2004).
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Figure 1: (a) An image from a clinical image sequence with the clinician’s tools

positioned in the patient’s vasculature; (b) the region in (a) delimited by the gray

square with annotation of tools/devices; (c) the region in (b) by the gray square

with a deployed stent; (d) demonstration of the improved stent visualization

through application of DSE to (a).

However visualizing stents with conventional X-ray images

Preprint submitted to Medical Image Analysis April 14, 2011



is extremely challenging. Indeed coronary stents are charac-

terized by their low radio-opacity and their fast motion. The

recommended solution to assess stent deployment and apposi-

tion is to perform Intra-Vascular Ultra-Sound imaging (IVUS).

This modality, considered as the gold standard, provides cross

sectional images of the vessel, depicting the stent, the vessel

wall and enables quantitative length and area measurements.

Unfortunately systematic use of IVUS is impractical since it

would add significant time and cost to the procedure. It is only

used in 4.5% of the cases in Europe, 14% in the USA and 60%

in Japan where it is reimbursed. In this paper, we consider

techniques enabling stent visualization that are consistent with

the normal workflow of an angioplasty procedure. Although

they cannot bring direct information on the apposition of the

stent onto the vessel wall, they can provide relevant images

for assessing deployment irregularities, lesion treatment and

potentially measuring stent expansion.

Since 2000, an image processing technique called digital

stent enhancement (DSE) has emerged to produce an enhanced

image of a stent from an X-ray image sequence (Close et al.,

2000; Florent et al., 2008; Bismuth and Vaillant, 2008). It has

gained interest from clinicians over the past years, leading

imaging system manufacturers to collaborate with them to

study this topic (Koolen, 2005; Ross et al., 2005; Conway et al.,

2005; Mishell et al., 2007; Ohanessian et al., 2008; Bismuth

and Vaillant, 2008; Córdova et al., 2009; Funck et al., 2009).

To perform DSE, the clinician first shoots an X-ray sequence

of the deployed stent while keeping the delivery balloon in

place. It is typically a short X-ray sequence showing the stent

at 15 frames per second where the stent motion is induced

by the heartbeat and the breathing of the patient. As in any

regular X-ray sequence, the visibility of the stent is limited.

The motion of the stent is inferred by the DSE algorithm based

on the motion of balloon marker-balls that serve as landmarks.

Motion compensated image integration is the corner stone of

DSE and enables a significant reduction of the noise while

preserving the details of the motion compensated components

of the image (Fig. 1 (c) and (d)). Studies show that stent

visibility is significantly improved by this technique (Koolen,

2005; Ohanessian et al., 2008; Funck et al., 2009). More-

over this image quality improvement improves the ability of

an observer to detect stent under deployment (Ross et al., 2005).

DSE techniques have emerged independently from two

different viewpoints. Close et al. (2000) were interested in

the representation of an X-ray image as a superimposition

of transparent layers and proposed a general framework to

estimate the layers present in a sequence of images. They

considered that if the motion of a given layer was known,

its intensities could be estimated by averaging the value of

each pixel along its trajectory in the image sequence. They

relied on the assumption that different layers have independent

motions. They proposed an application of their method to stent

enhancement, inferring the motion of the layer of the stent by

the motion of the balloon marker-balls. In this case, the layer

decomposition method boiled down to detecting the successive

positions of the marker-balls in the sequence and integrating

the images along the resulting trajectory. Independently and

simultaneously, Florent et al. (2008) were interested in motion

compensated noise reduction and filed a patent describing

a method to enhance the visibility of stents. Similarly they

proposed to detect and track the balloon marker-balls, to use

them to infer the motion of the stent and to average the values

of the pixels along their trajectories. They were the first ones to

describe an algorithm aimed at detecting the marker-balls with

limited user interaction.

Both Close and Florent used only the marker-balls to

estimate the motion of the stent, neglecting the non-linear

deformations of the vessel that occur along the cardiac cycle.

In our previous work (Bismuth and Vaillant, 2008) we have

demonstrated that significant improvement in sharpness can be

achieved by employing the guide-wire joining the markers in

a stent deformation model to compute a non-linear motion field.

In this paper, we report on new contributions from both

application and technical perspectives. Within the DSE

application domain, we note that the following ideas are

presented for the first time (i) a complete analysis of DSE from

clinical problem statement to performance assessment, (ii) the

description of a fully automated algorithm, (iii) an exhaustive

validation of this DSE algorithm. From an image processing

perspective, the first novelty stands in the guide-wire segmen-

tation techniques that are thoroughly described in the paper.

It consists in spanning a set of parametric curves satisfying

the physical constraints of our application and integrating

profiles along the curve. This integration step is what makes

the technique very robust to noise (as demonstrated in the

validation section 2.2.2). Image noise, a result of minimiz-

ing patient and clinician dose, is a significant obstacle for

guidewire detection. This technique has several nice properties

that are demonstrated in the paper : the segmented guide-wire

is smooth, the execution time is reasonable, and it is robust to

a large amount of noise. The second novelty in medical image

processing is the registration technique. Our analysis of the

problem of DSE led us to propose a non-linear registration

in a domain where linear registration has previously been

considered sufficient. The superiority of our registration is

demonstrated on a large number of clinical sequences. This

technique fulfills the requirements that make it suitable to

register not only stents but also any medical device inserted

inside a vessel, or vessels themselves and can thus have various

applications.

The paper is organized as follows: In section 1 we define

user requirements and flow them down to quantifiable metrics.

We show how the main characteristics of a successful DSE al-

gorithm can be deduced by the analysis of the problem. Then

we describe a fully automated algorithm to perform DSE that

segments the marker-balls and the guide-wire and registers im-

ages in a non-linear manner to take into account vessel and stent

deformations. In section 2, we validate the fulfillment of the

user needs on a large number of cases, addressing the perfor-
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mance of the segmentation of the landmarks, the image quality

improvements and comparing non-linear to linear registration.

In section 3, we discuss the results and expose the challenges

that are still not met by DSE. Conclusions are drawn in the last

section.

1. Method

1.1. Clinical needs

From the clinician’s standpoint, the value of a DSE technique

depends upon three factors: improvement in image quality, lim-

ited user interaction and reasonable execution time. For each

factor, we defined a metric and set goals that capture clinical

needs. The first factor, image quality, is the most subjective and

therefore the most difficult to measure. For our application we

defined a 5-grade image quality scale quantifying the visibility

of stents:

1. the stent is hardly visible

2. the stent border can be guessed

3. the stent border is clearly visible

4. the stent border is clearly visible and some struts are visi-

ble

5. the stent is perfectly visible

In order to quantify improvement in image quality, two clini-

cians rated images before and after the application of the DSE

technique. They considered that a statistically meaningful im-

provement of one grade is necessary for the method to be

adopted. Regarding user interaction, clinical feedback sug-

gested that a DSE technique that is successful in 80% of the

cases in a fully automatic manner, and in 90% when the user

selects a region of interest (ROI), was sufficient to be regularly

employed in practice. In terms of execution time, one has to

keep in mind that an angioplasty procedure typically lasts be-

tween 20 minutes and 2 hours. During an interventional cardiac

procedure, clinicians do not need to have DSE images in real-

time, but in a ”reasonable” time after the deployment of the

stent. The delay induced by the computation of the DSE image

should not disturb the regular work-flow of the procedure. Clin-

ical feedback suggests that a DSE technique should not exceed

30s execution time.

1.2. From problem statement to algorithm design

The main characteristics of a DSE algorithm that will ful-

fill the clinicians’ requirements can be deduced from a detailed

analysis of the DSE problem. In this section we study how im-

age quality can be improved. In the case of stents, it can be split

into four factors : noise, contrast, zoom and sharpness.

1.2.1. Noise

The major source of noise in X-ray fluoroscopy is quantum

noise. It follows a Poisson distribution and it is spatially

correlated but temporally white (Spekowius et al., 1995; Aach

et al., 1999). There are two sources of information redundancy

in the image sequences that can be used to reduce noise: the

spatial content of each image, and the temporal content of the

Figure 2: Illustration of a deployed stent in an x-ray image processed with

standard contrast enhancement techniques, which may be considered a form of

DSE. The resulting stent visualization is substantially inferior to that produced

in a dedicated technique, as shwon in Fig. 1 (d).

image sequence. The temporal redundancy is advantageously

utilized by integrating the values of each pixel of the stent

along its trajectory. Therefore it requires the estimation of the

trajectory of each pixel of the stent. Noise being uncorrelated

from one image to another, integrating n nimages decreases

the noise by
√

n. DSE sequences typically contain 30 frames,

that corresponds to a short acquisition of 1 to 2 seconds. The

potential noise reduction factor is thus approximately 5. It is

usually enough to make a major difference in image quality.

The spatial content of a stent image being very complex, intra

image denoising could result in stent detail degradation. There-

fore a DSE algorithm will preferentially restrict denoising to

the temporal domain.

1.2.2. Contrast

DES seeks to emphasize the subtle contrast variations

induced by the presence of the stent. However, traditional

processing and display strategies are generally optimized for

the visualization of large structures like coronary vessels while

concurrently suppressing noise, and not for the fine stent

details. Consequently, contrast and windowing of traditional

processing approaches are suboptimal for stent visualiza-

tion(Fig. 2). Dedicated image processing, like unsharp

masking, must be set in place to enhance the fine details of the

images.

1.2.3. Zoom

The stent only represents a small portion of the original

images. Typically a 1002 area in a 10242 image. DSE can

directly improve stent visualization by zooming on the region

of interest and masking un-necessary image parts. The com-

parison of Fig. 1 (a) and (c) illustrates this.

1.2.4. Sharpness

The sharpness of the enhanced image intrinsically depends

upon the precision of the registration. Any misregistration

errors result in blurring of the stent. Registration is crucial,

considering the stent geometry relative to the optical magnifica-

tion and detector pixel pitch. Stent struts are typically 0.16 mm
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wide, less than 0.2 mm pitch (Ross et al., 2005). Taking into

account a typical magnification factor of 1.4 for cardiac inter-

ventions, the projection of the stent struts onto the detector are

on the order of one pixel. Finally the stent structure is blurred

by the system Mean Transfer Function (MTF) that tends to

spread the stent strut over the neighbor pixels. Determining the

required precision of the registration and its implications for

the design of a stent enhancement algorithm was the subject

of dedicated studies. Ross et al. (2005) determined that DSE

is robust to some degree of error in the registration process.

They centered their approach on a task oriented framework,

evaluating the ability of an observer to detect stent under

deployment. They concluded that it was improved by DSE up

to a registration error of 2 pixels but that the benefit exhibited

a significant fall off beyond 1.25 pixels of error. On our side,

we attempted to quantify the effect of the registration error

directly on the image quality regardless of a specific task. We

imaged several still stents with an X-ray angiographic system.

We averaged these images with various simulated registration

error (Fig. 3). It turned out that stent struts were visible up

to an error below 1 pixel. An error between 1 and 2 pixels

would preserve the but make delineation of stent struts very

difficult. Any error above 2 pixels would impair the visibility

of the stents. These two experiments confirmed that given

stent geometry and acquisition resolution, registration errors

less than a pixel are tolerable, whereas registration error in

excess of 2 pixels severely degrades performance rendering

the algorithms benefit to be questionable. In order to minimize

this error we analyzed its origins. We identified two primary

root causes for misregistration: landmark segmentation error;

and the error in inferring stent motion relative to that of the

landmarks. Stent and landmark motion is complex due to

projection of 3D motion onto a 2D plane, and stent motion

that is independent of the landmarks(see section 3.4). We con-

cluded that, in order to maximize stent visualization, we need

to minimize landmark segmentation error (ideally sub-pixel).

Additionally, to minimize the stent motion estimation error,

we have added the guidewire supporting the markers balls to

the set of landmarks. We show that by considering guide-wire

and marker ball motion, we have improved the accuracy and

robustness of stent motion estimation (Fig. 4).

To conclude this section, our analysis of the DSE problem

resulted in the determination that a successful DSE algorithm

must automatically process the images with a high success rate

(> 80%) and enable a computation time (< 30s) to fit within the

interventional work-flow. Moreover, in order to attain optimal

image quality, it shall perform noise reduction preferentially by

temporal techniques, include a background removal and adap-

tive zoom for visualization. Last but not least it shall detect the

marker-balls, the guide-wire and register the stents with a high

precision, ideally sub-pixel.

1.3. DSE algorithm

In this section, we describe a DSE algorithm derived from

the objectives and constraints previously listed. We first give

a general overview of the method, then we detail the parts that

(0) (1.5)

(0.5) (2)

(1) (2.5)

Figure 3: Impact of the misregistration error. Resulting DSE image subject to

varying misregistration error. The images were produced by registering thirty

frames with a registration error following a uniform distribution and averaging

the frames. The misregistration error is indicated in pixel units below each

image.

are specific to our approach. Finally we explain our strategy to

find a relevant setting of the many parameters that are involved.

1.3.1. Algorithm overview

The DSE algorithm that we propose can be divided into four

main steps (Fig. 5) : landmark detection and tracking, image

registration, image combination, and display processing.

A bottoms-up approach is pursued in landmark detection and

tracking. First, in each image, we detect points representing

potential marker-balls, then we form pairs of points and build

tracks of pairs. The detection of the potential marker-balls is

close to the problem of detecting micro calcifications in mam-

mograms (Cihan et al., 2006; Grimaud, 1991). Similarly, we

pre-process images with a dark top hat (Soille, 1999). It en-

ables the removal of the background variations while retain-

ing dark objects of a given scale. In practice with a relevant

setting of the structuring element, the marker-balls, the guide-

wire and the stent are preserved (Fig. 6). Moreover efficient

implementations exist (van Herk, 1992). In the resulting im-

age the potential marker-balls can be characterized as being

local minima in a given range of intensity. Forming pairs of

potential markers and buildings tracks of pairs along the se-

quence (Fig. 7) is constrained by a priori knowledge of device

(stent/marker ball/guide wire) geometry, and the characteristics

of cardiac motion (see section 1.4). We assign a figure of merit

to each track based on its regularity and attenuation properties

of its candidate markers. Finally, we identify the most promis-

ing track and we segment the guide-wire supporting each pair

of markers.
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Figure 4: Illustration of the limitations of the linear, marker-ball based regis-

tration. The two top images depict a stent at different deformations during the

cardiac cycle. The bottom is the result of marker-ball based registration. Al-

though the two marker-balls are accurately registered, they do not capture the

non-linear deformation of the stent. The guide-wire that supports the marker-

balls undergoes a non-linear deformation similar to the stent. We use it as

additional landmark in our non-linear registration.

Top hat 
transform

Local minima 
selection Pairing Tracking

Track 
selection

Guidewire 
segmentation

Image registration

Landmark detection and tracking

Image 
combination

Contrast setting Zoom

Display processing

Input image sequence

Output image

Figure 5: Block diagram of our DSE technique.

Image registration of the stent relies on a model to infer stent

motion from the position of the landmarks. Each image is reg-

istered to a reference position in a non-linear fashion. Image

combination consists of averaging all the registered frames to-

gether to produce a denoised image. Then the contrast is set

to enhance stent details. It benefits from the dark top hat pre-

processing that removes background variations. Finally zoom-

ing is performed centering on the landmarks. The most chal-

lenging problems addressed by our algorithm are the segmenta-

tion of the guide-wire and the non-linear registration. We first

published them in the patent application Vaillant et al. (2006).

We detail them in the following sections.

1.3.2. guide-wire segmentation

Segmenting the guide-wire in an X-ray image is known to

be a difficult problem. Indeed, guide-wires are fine elongated

structures, typically 3 to 5 pixels wide, of low Contrast to Noise

Ratio (CNR). A typical CNR is around 3, but may fall below

1 in the most challenging cases. Previous research on guide-

wire segmentation falls into two categories. One category is

(a) (b)

Figure 6: (a) Original image, (b) top hat transform applied to (a).

1

23

4
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4
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45 5

Figure 7: Illustration of the ”‘detection and tracking”’ block of our DSE ap-

proach. Top row, from left to right: original image, candidate points, and can-

didate pairs. Bottom row, from left to right : detected candidate pairs in three

successive frames. The tracking built five relevant tracks from the candidate

pairs.
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based upon building a map of the probability that a guide-wire

is present(Bismuth et al., 2009), and the second category ex-

plicitly segments the guide-wire. The second category is of in-

terest for our application. On the one hand, Barbu et al. (2007)

presented a sophisticated approach to guide-wire segmentation

based upon a machine learning formalism. They attempted to

solve a problem that is more general than ours since they seg-

ment the whole guide-wire, whereas we are only interested in a

local segmentation at the close vicinity of the marker-balls. On

the other hand, Florent et al. (2008) addresses exactly our prob-

lem with a minimal cost path approach but does not guarantee

the continuity of the first derivative of the guide-wire curve that

is required for our application, detailed in section 1.3.4. There-

fore we developed a new guide-wire detection procedure de-

signed at producing a smooth curve, while being robust to high

level of noise and enabling fast computation. Our observation

of clinical sequences suggests that the guide-wire between the

markers may be modeled as a simple curve. Most of the time

it may approximated by a parabola. This observation is shared

by Florent et al. (2008). In a subset of cases, the guidewire pos-

sesses an inflexion point and may be accurately modeled by a

set of two parabolas or a third degree polynomial expression.

In the general case, a simple set of smooth parametric curves

will describe all the possible guide-wire configurations between

the markers, as well as in a short distance beyond the markers.

Based on these observations, we decided to specify a discrete

set of curves spanning a family of parametric curves (Fig. 8). A

figure of merit is assigned to each curve in the set quantifying

how well it represents the image content. We retain the para-

metric curve yielding the highest figure of merit. This approach

shares some similarities with one of Donoho et al. (2001) who

demonstrated that it is possible to detect and segment curves in

high noise images if they belong to a parametric set of curves

that can be efficiently spanned. The challenge lies in the de-

sign of the figure of merit which is robust to the low CNRs of

imaged guide-wires. In order to do so we averaged intensity

profiles line segments which are uniformly spaced between the

marker balls, perpendicular to the guidewire, and centered on

the guidewire (Fig. 8). The resulting average profile enables

robust contrast estimation due to the reduction in noise. Analy-

sis of the averaged profile is performed in two steps. First, a test

is performed on the shape of the profile to determine if it has a

significant minimum at its center (Fig. 8 (d)). Then contrast

is measured by computing the difference between the value at

the minimum and the values at the extremities. Evaluations on

clinical data have demonstrated that this method enables guide-

wire segmentation in extremely noise-corrupted images (Sec-

tion 2.2.2 and Fig. 13 (c) and (d)).

1.3.3. Constrained registration derived from a stent deforma-

tion model

Once the landmarks (marker-balls and guide-wire) have been

segmented, we must then estimate the motion field. Secondly,

we must define how to extend this motion field beyond the land-

marks encompassing the image area occupied by the stent. Fi-

nally, we utilize the motion field for each image to temporally

register the image sequence. We denote (It)1≤t≤n as the input

(a) (b)
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Figure 8: (a) A set of parametric curves used to direct gudie-wire segmentation

candidate between two markers. (b) In this clinical image, the dark line along

the guide-wire depicts a parametric curve to be evaluated. The set of dark short

line segments represent the perpendicular profiles that are computed for this

curve. (c) Illustration of the values along one of the profiles of image (b). We

see that the noise is high and there is no particular pattern in this curve. (d)

Averaged profile. We see that the curve follows the expected pattern: a smooth

curve with a significant minimum at its center.

image sequence of n images and we define It0 as the reference

frame over which all frames are temporally registered. The mo-

tion fields are computed with respect to this reference position.

The definition of a motion field on the landmarks is straightfor-

ward. We force the marker centers to match from one image to

another and the guide-wire to match according to the curvilin-

ear abscissa. We define a reference point, Ot, in each image that

is the point of the guide-wire between the markers that separates

it into two curves of equal length (Fig. 9.a). It is equidistant to

the two marker-balls on the guide-wire. We compute the signed

curvilinear abscissa from this point. We cope with global fore-

shortening by normalizing the curvilinear abscissa to the total

length of the guide-wire between the markers. The motion field

registers points relative to their normalized curvilinear abscissa

(Fig. 9.b).

In order to extend the motion field from the landmarks to the

stent we incorporated design constraints reflecting the physical

properties of stents. First, stents must be very rigid on their ra-

dial axis in order to maintain the desired artery diameter under

the pressure of the artery wall. Consequently, the radius of the

stent at a given point must be constant over the image sequence.

Second, stents must be flexible on their longitudinal axis in or-

der to bend with the vessels to follow the heart contractions and

expansions (Fig. 10). Therefore stents follow the deformations

of the major axis of the vessel. Finally, we assume that stents

do not shrink along the axis of the vessels. These motion as-
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sumptions were confirmed through observation and analysis of

clinical image sequences.

Although the major axis of the vessel is unknown, the guide-

wire can be used as a surrogate estimate. The first two con-

straints can be translated into constraints with respect to the po-

sition of the guide-wire. Imposing that the distance of any point

of the stent to the guide-wire is invariant along the sequence is

enough to fulfill the two first constraints. In order to satisfy

the stent length invariance constraint, we consider the orthog-

onal projection of each point of the stent onto the guide-wire

(Fp on Fig. 9.a) and impose that the curvilinear abscissa of this

point be invariant from one image to another. The constrained

registration proposed has been demonstrated to perform well in

practice (section 2.4), although alternate approaches are possi-

ble. In the following section, we detail the image registration

based on the aforementioned considerations. The design of this

image registration technique and its usage are new and partic-

ularly tailored to the application of DSE. Moreover, one can

observe that the constraints we listed and the solution that we

propose in the next section may be extended beyond this con-

text to register other medical tools traveling inside vessels and

potentially vessels themselves as summarized in our previous

work Bismuth and Vaillant (2008).

1.3.4. Non-linear Registration

We build a system of coordinates (Fig. 9.a) in each image It

such that for any point P, d1 is its distance to the curve defining

the guide-wire and FP the point of the guide-wire that actually

minimizes this distance. FP is unique outside of the cut locus

of the curve. Let us call d2 the curvilinear abscissa from Ot to

FP along the guide-wire curve divided by the total length of the

curve between the markers. We propose to use d1 and d2 as co-

ordinate system. In order to create a coordinate system without

ambiguities, let us give signs to d1 and d2. Let us call M1 and

M2 the centers of the two marker-balls in this frame. We define

the curvilinear abscissa d2 in the direction from Ot to M1 to be

positive and the direction from Ot to M2 to be negative. Noting

the curve defining the guide-wire is smooth, we can define a

tangent to the curve ~t(FP) at any point FP of the curve, pointing

in the direction of positive curvilinear abscissa. Finally, we also

define a normal vector ~n(FP) such that (~t(FP), ~n(FP)) is direct

and we assign d1 the sign of the scalar product ~t(FP). ~FPP. Out-

side of the cut locus of the curve defining the guide-wire, Tt,

that maps a point P of It to (d1, d2), is a continuous one to one

mapping but is not defined on the cut locus. On a database of

241 clinical cases, we observed that the stent is never overlap-

ping the cut locus. This can be explained by the rather high radii

of curvature of the guide-wires in the clinical images. Therefore

there is no artifact introduced by this transformation on clinical

images in the area of interest.

In order to perform registration, we need to define the inverse

transforms T−1
t that maps (d1, d2) to a point P. The definition of

T−1
t is straightforward. From the point Ot, we define the point

FP as the only point on the guide-wire having the signed curvi-

linear abscissa d2. Then we define the point P = T−1
t (d1, d2)

by moving away from FP perpendicularly to ~t(FP) by (signed

distance) d1. The registration of a point P of the image It0 on an

image It is the point P′t computed according to:

P′t = T−1
t (Tt0 (P)) (1)

Conversely any point P′t of an image It is registered to the point

P of It0 according to:

P = T−1
t0

(Tt(P
′
t)) (2)

Let Ĩt be the result of applying equation (2) to every point in It.

In any image Ĩt, the marker-balls and the guide-wire are exactly

at the same location as in It0 . This also defines the stent motion

provided its motion is subject to the constraints of 1.3.3. The

image combination simply consists in averaging all the images

Ĩt to produce the enhanced image Ienhanced:

Ienhanced =
1

n

n∑

t=1

Ĩt (3)

Ot

M1

M2

d2

d1

P

Fp

(a)

It0 It

(b)

Figure 9: (a) Notations for the curve based registration. (b) Illustration of the

motion field on the landmarks

Figure 10: Coronary stents are very rigid on their radial axis to handle the

pressure of the artery wall, but very flexible in the perpendicular direction to

conform to the curvature of the artery.

1.4. Parameter setting and algorithm validation

Detecting the marker-balls, forming pairs, tracking them, and

segmenting the guide-wire required setting a large number of

parameters. In order to determine optimal parameter settings,

we collected a large database of 241 clinical sequences, repre-

senting approximately 7000 markers pairs. An operator manu-

ally determined the position of each marker ball in each image,

7



and marked some guide-wire points in a subset of the images.

Over this database we have been able to estimate typical values

and variability of marker characteristics, marker motion, and

guide-wire curvature. Moreover it enabled testing the landmark

detection performances for a given set of algorithm parameters

by comparing the results given by the algorithm to the ground

truth. This process enabled parameter tuning for the detailed

DSE algorithm. We found that the optimal setting of some key

parameters is as follows: the size of the structuring element for

the subtraction must be set to 9 pixels, the maximum height

of the parabola describing the guide-wire must be set to 20%

of the distance between the markers, and the distance between

two markers does not vary more than 15% from one frame to

another. The results presented in the next section have been

obtained with the best parameter set that we tested.

2. Results

According to the clinical criteria defined in section 1.1, we

elaborate on the validation framework for our algorithm. We

have quantified its ability to automatically segment the land-

marks. Results regarding the precision and robustness of their

segmentation is also reported. Clinical interest of the technique

has been assessed by evaluating the improvement it brings in

image quality. Finally, in order to assess the performance of

this DSE algorithm to other existing methods, we compare the

performance of the linear marker-ball based registration to our

non-linear registration approach.

2.1. Landmark detection performance

We have separated the problem of estimating the landmark

detection/tracking performance into two sub-problems. The

first category is to quantify, on clinical sequences, how well the

automatic marker-ball segmentation is able to detect and track

the marker-balls. The main challenges are robustness to com-

plex image content (anatomical structures and medical tools) in

the detection algorithm, and to cardiac and respiratory motion

with respect to tracking. The second category addresses quanti-

tative accuracy of the segmentation, given the marker balls are

detected by the algorithm. We noted in the section 1.2.4 that we

would like to reach a sub-pixel precision to insure the sharpness

of the DSE image. Quantitative performance measurement of

the registration accuracy requires precise knowledge of (sub-

pixel) ground truth. This precision cannot be achieved by a

human operator on clinical sequences. Therefore we set up a

specific simulation to assess it and is the subject of the next

section 2.2. In the present section we deal with landmark detec-

tion and tracking performance. To this end, we had an operator

mark the position of the markers on clinical image sequences.

The position marked by the operator lies inside of the marker-

ball but is not precisely at its center since this exact position is

unknown. We compared the position of the detected markers

to this ground truth on every image, calculating the number of

false negatives, true positives and false positives (there are no

true negatives since the marker-balls are present in every frame

of the sequence). Marker ball being ellipses of large axis be-

tween 7 to 10 pixels, the tolerance was set to ±5 pixels. We

computed the number of cases where the markers that our DSE

algorithm output were closer than the tolerance to the ground

truth. On a database of 241 clinical sequences, illustrating 7230

pairs of markers, our algorithm exhibited a true positive rate of

91.5%, a false positive rate of 1.5% and a false negative rate of

7.5%. We studied the detection performance in more detail to

tell if some frames are regularly failed in every image sequence,

or if some images sequences completely failed whereas others

were completely successful. The histogram of the true posi-

tives, false positives and false negatives per image sequence are

reported in Fig. 11. We can observe that some frames are regu-

larly missed in each sequence as false negatives (2 to 3 frames).

This does not have a strong impact on the final image quality.

They often coincide with the small number of frames were the

markers are very blurry due to the heart acceleration at the end

of the rest phase. These images contain only very low infor-

mation for stent enhancement, since the stent is also blurred.

Regarding false positives, we can notice that in 98% of the se-

quence there are less than 5% of them. The overall performance

over the database is very satisfying, and far beyond the 80% ac-

ceptance criterion set in 1.1.

Figure 11: In dark, histogram of the percentage of the true positive per image

sequence. In gray, histogram of false positive per image sequence. In white,

histogram of false negative per image sequence.

2.2. Landmark segmentation precision and robustness

As explained in section 1.1 the precision of the detection of

the landmarks is crucial to the sharpness of the DSE image.

Since marking the position of the landmarks on clinical images

with a sub-pixelic precision is extremely challenging, we used

synthetic images to estimate the precision and the robustness of

our landmark segmentation techniques.

2.2.1. Marker ball segmentation precision

For this task, we simulated a marker ball on a guide-wire us-

ing a model of a sphere and of a cylinder corrupted by typical

noise and system point spread function (see Fig. 12). We set

the CNR of the synthetic marker-balls to values ranging from

5 to 10, since it is the range of values observed in clinical se-

quences. We applied our technique to the synthetic images and
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estimated for each input CNR the average distance between the

detected marker location and the real marker center. A marker

was considered detected if its center lied within the synthetic

marker ball. The marker detection rate was 98%. This excel-

lent result can be explained by the simplicity of our synthetic

sequences. A more meaningful success rate is the one of 91.5%

reported previously reported in 2.1 computed on the clinical

database. The synthetic sequences are however particularly in-

teresting to estimate the precision of the marker detection. We

found that the average error is less than 0.5 pixels both along the

guide-wire and perpendicularly to it. As one can expect from

the structure of the test images, the tests demonstrated that our

marker localization process is more precise perpendicular to the

guide-wire than parallel to it.

Figure 12: An image of a synthetic marker-ball and guide-wire used to quantify

the precision of the marker-ball segmentation.

2.2.2. guide-wire segmentation precision and robustness

Two main factors impact the success of guide-wire segmenta-

tion. On the one hand, the precise shape of the guide-wire, since

we assume that it can be modeled by a set of parametric curves.

On the other hand, the contrast to noise ratio of the guide-wire.

In order to address the topic of the shape of the guide-wire, we

have selected 10 clinical sequences out of 241 on the criteria of

very diversified guide-wire shapes and orientations, and rather

favorable image quality. We ran our segmentation algorithm on

each of these sequences and visually assessed the quality of the

result. All segmentations were visually perfect (Fig. 13 (a) and

(b)). This experiment validated that the set of selected para-

metric curves spans the natural variability of guide-wire con-

figurations. We then considered these segmentations to be the

ground truth for these images. Given the guide-wire width of

3 to 5 pixels and the difficulty to delineate precisely its center-

line, we considered that this segmentation was precise within a

range of plus or minus 1.5 pixel. Recognizing the challenge in

the segmentation of the guide-wire being attributed to the low

CNRs often encountered in clinical conditions, we degraded the

10 clinical images with noise to evaluate the robustness of the

segmentation (Fig. 13 (c) and (d)). We ran our algorithm on

each degraded image and computed the Hausdorff distance of

the segmentation to the ground truth (Fig. 13 (e) and (f)). We

generated 1400 degraded images adding noise of various stan-

dard deviations, up to producing images with 3 times the orig-

inal noise level, which is considered an extreme situation. The

CNR of the guide-wires ranged from 0.6 to 5.6 with an average

of 1.7 ± 0.9. Over all the degraded images the segmentation er-

ror was 0.8 ± 1.2 and was below 1.5 pixels in 93% of the cases.

This error increased with an increase in noise. For the cases

where the noise was less than twice the original noise its repar-

tition was 0.5 ± 1.0, below 1.5 in 97% of the cases. When the

noise was two to three times the original noise it was 0.9 ± 1.3,

again below 1.5 in 91% of the cases. An analysis of the his-

togram of the Hausdorff distances demonstrates that the over-

all 6% of failed segmentations fall equally into two categories

(Fig. 14). Half of them are the tail of a distribution centered

on the true segmentation. The other half are very large errors

(superior to 7 pixels) where the segmentation departed from the

guide-wire. In these cases, the algorithm waqs influenced by

the image content, for example the border of a stent. The over-

all results are very satisfying with the segmentation being ac-

curate in 97% of the cases portraying realistic conditions, and

in 91% in extremely difficult cases which are less commonly

encountered.

2.3. Image quality improvement

The image quality has been rated independently by two clini-

cians, before and after the application of the stent enhancement

software according to the 5-grade image quality scale presented

in section 1.1. This comparison on 80 clinical sequences was

the subject of a previous publication (Funck et al., 2009). A

paired T-test demonstrated that an improvement of 1.0 point out

of 5 is statistically significant (p ≤ 0.001). A larger study in-

cluding 100 patients and 196 sequences confirmed that our DSE

technique improves image quality by more than one point on

the same image quality scale on a large variety of imaging con-

ditions and stents (p ≤ 0.001). The histograms of the scores be-

fore and after application of DSE on the 196 images sequences

is presented in Fig. 15. We assessed inter-observer variability

by computing the linearly weighted kappa (Viera and Garrett,

2005). Since the unprocessed and processed images are differ-

ent in nature, we computed it separately on both. The kappa

measuring agreement between the two observers at rating un-

processed images is 0.34 demonstrating a ”fair agreement”. On

processed images, a higher kappa of 0.49 was observed, sug-

gesting ”moderate agreement”.

2.4. Non-linear versus linear registration

In this section we evaluate the impact of the method of the

registration on the enhanced image (see Bismuth and Vaillant

(2008)). We visually inspected the enhanced images with both

registration techniques on a database of 144 sequences. We

reported whether there was a significant difference in the stent

and if the stent was better visualized with one of the registration

techniques. The observed differences fell into two categories.

Category A groups the cases where the same details are visible

and one technique creates more blurring on the stent. Category

B groups the cases when one technique substantially outper-

forms the other such that more stent more are observed with it.

Table 1 summarizes the results which suggest that the proposed

non-linear curve-based technique performs significantly better
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(a) (b)

(c) (d)

(e) (f)

Figure 13: Figures illustrating the characterization of the guide-wire segmenta-

tion. (a) Input clinical image, (b) guide-wire segmented on image (a), (c) Image

(a) degraded up to three times the original noise, (d) guide-wire segmented on

image (c), (e) Another input clinical image, (f) Ground truth (in black) and

actual segmentation (in white) of the guide-wire in image (e) degraded. The

Hausdorff distance, of 12 pixels in this case, is illustrated by the dashed white

line.

than the linear marker-ball based registration. Indeed for 27.9%

of the cases, the non-linear registration produces a better image

than the linear one, whereas the opposite only happens in 3.4%

of the cases. Moreover in 11.6% of the cases the non-linear reg-

istration is superior and differs from the linear registration with

a difference of category B. Conversely, the occurrance of the

linear registration being superior was less than 1%. Fig. 16 de-

picts examples where the non-linear registration is better suited

than the linear one. Around the two markers, the enhanced im-

ages are very similar, but on the center of the stent the linear

registration produces a strong blurring and details were lost. On

the contrary, these details were enhanced with the curve-based

registration.

Figure 14: Histogram of the Hausdorff distances in pixels between the ground

truth guide-wires and the ones segmented on degraded images.

Figure 15: Image quality scores histograms. In gray the values before DSE and

in black after.

2.5. Execution time

Our DSE technique implemented on a PC with a 3.2 GHz

single-core processor performs on average in 16.6s over a

database of 40 cases with a standard deviation of 3.0s. The

maximum execution time was 30s and the minimum was 13s.

The algorithm is fast enough to fit seamlessly in the interven-

tional work flow. With a dedicated implementation, on a multi-

core Xeon X3450 processor with a 2.66 GHz clock speed, the

average time drops down to approximately 3s.

3. Discussion

3.1. The role of DSE in clinical practice

As a consequence of the growing interest of clinicians for

DSE, several studies have been conducted (Mishell et al., 2007;

Table 1: Influence of the transform

curve-based better = similarity better

B A A B

16.3% 11.6% 68.0% 2.7% 0.7%
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(a) (b)

(c) (d)

Figure 16: Comparison of the linear and the non-linear registration. (a) Se-

quence A processed with the linear registration, (b) Sequence A processed with

the non linear registration, (c) Sequence B processed with the linear registra-

tion, (d) Sequence B processed with the non linear registration.

Koolen, 2005; Conway et al., 2005; Kalpesh et al., 2005;

Ohanessian et al., 2008; Córdova et al., 2009; Choi, 2010;

Funck et al., 2009; Milouchi et al., 2010) that demonstrated that

DSE is bringing a significant improvement in image quality and

that it is deemed useful in clinical practice in a large propor-

tion of cases (≈ 70%). DSE can help evaluate the deployment

of the stent and detect some under-deployments or non opti-

mally treated lesions. In such cases, clinicians can post-dilate

the stents to improve their expansion. The rate of stent post-

dilatation using DSE ranges from 30% to 70% depending on

the study. Further studies are needed to better understand the

role and the impact of DSE on clinical practice, for instance

comparing post-dilatation rates with and without DSE. Only

one study (Choi, 2010) investigated the impact of DSE on the

main clinical endpoints such as the occurence of major adverse

cardiac events and target lesion re-vascularisation. Based on a

two arm set up involving nearly 900 patients, they demonstrated

significant improvement of the clinical endpoints at mid-term

follow-up. Moreover, various teams (Koolen, 2005; Conway

et al., 2005; Kalpesh et al., 2005; Mishell et al., 2007; Córdova

et al., 2009) studied the relationship between the stent expan-

sion quantification performed with this technique with respect

to IVUS as gold standard. The five studies led to the interesting

result that the relationship is linear with a rather good corre-

lation (r ≈ 0.7). It is a promising step towards quantitative

assessment of stent expansion using DSE. However DSE alone

cannot provide any information regarding the apposition of the

stent onto the vessel wall. The only recognized technique to

perform this remains intra-vascular imaging.

3.2. Non-linear versus linear registration

Although section 2.4 demonstrated that the non-linear reg-

istration outperformed performed linear registration, we must

keep in mind that it is more computationally intensive. Indeed,

the non-linear registration requires precise segmentation of the

guide-wire to compute the motion fields using curvilinear ab-

scissa and projections of points onto curves. Nevertheless, it

is noteworthy that the overall execution time of the non-linear

registration DSE is compliant with the clinicians needs. How-

ever some users may prefer an alternate trade-off between im-

age quality and latency within the application. An additional

performance comparison between marker-ball based and guide-

wire based registration may be made with respect to the accu-

racy of the stent diameter. Since clinicians can perform mea-

surements on the enhanced stent to assess if it is properly de-

ployed (Koolen, 2005; Córdova et al., 2009), a registration that

preserves the actual diameter of the stent is preferred. As far as

the stent follows the motion model described in 1.3.3, the guide-

wire based registration preserves the stent diameter. On the con-

trary, there is no such guarantee with the marker ball based reg-

istration. Indeed, the linear transform includes a scaling to cope

with the change of distance between the markers from frame to

frame. The change in distance between the marker-balls can

be the result of a change of curvature of the guide-wire due

to the heart beat. In such a case, scaling the whole image is

not adequate because it will modify the diameter of the stent.

Guide-wire based registration enables better image quality and

probably more accurate stent diameters, whereas marker ball

based registration results in faster processing.

3.3. Comparison with related work

The technique described here is the skeleton of the software

feature StentViz (Morris, 2009) commercialized on the Innova

systems (GE Healthcare). There exists in the literature two

teams that described similar techniques we can compare to.

The first one, Close et al. (2000, 2002); Close et al. (2003),

deals with transparent layer decomposition. These pioneer ar-

ticles do not aim at presenting an automatic DSE algorithm.

They demonstrated that motion compensated temporal denois-

ing based on the motion of the balloon can improve the visi-

bility of stents and help a typical user to position more accu-

rately its edges. The second team published a patent (Florent

et al., 2008) describing a method to perform motion compen-

sated noise reduction based on the detection of one or several

markers. They belong to the firm, Philips, that commercializes

the DSE software called StentBoost. They cite the application

to a pair of marker-balls for stent enhancement and describe a

method. Their method is semi automatic (it requires the user to

input a region of interest). It is similar to the one described here

from a structural standpoint: marker candidates are detected,

then pairs are formed in each image. The main difference of

their approach versus ours is that they choose the best pair of

markers independently on each frame without forcing the pairs

to have a smooth motion within the image sequence. We notice
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that they pay particular attention to designing a marker ball de-

tector that will not produce responses along uniform ridges and

that they segment the guide-wire between the markers. Addi-

tionally, although they segment the guide-wire, they do not use

it for registration. Because the patent only provides a descrip-

tion and no result or evaluation of the technique, comparison

is limited. They also published on the use of maker-ball detec-

tion and tracking for 3D stent reconstruction and compared it

to IVUS (Schoonenberg et al., 2009). In this publication they

briefly mention a marker-ball detection and tracking algorithm

that relies on the temporal smoothness of the marker motion (as

in the technique that we exposed in 1.3.1), but their main fo-

cus is the validation of the technique. Finally, two other DSE

products exist, one from Siemens called IC stent and one from

Paieon called StentOp. Comparisons were not possible as the

technical details are not publicly available.

3.4. Observed limitations of the technique

In 7% of the cases, stents do not appear clearly after stent

enhancement (IQ scores equal to 1). There are various explana-

tions that we can propose for this. The first one is that although

the registration was perfect, the input CNR was so small

that noise reduction was not efficient enough to make stent

struts visible. Our set of test sequences includes on purpose

approximately half of the sequences in challenging imaging

conditions. Although this is much more challenging than daily

clinical practice, we believe that it is not a good explanation

for every case. Some of the low scores have been obtained in

good imaging conditions. We do not have a final explanation,

however we suspect that in a significant proportion of the cases

there was registration error (Fig. 18 (a)). Since the landmarks

are almost always very accurately detected by our method, we

think that the registration errors is due to the fact that the stent

does not follow the expected motion. We identified two cases.

First, there can be motion between the stent and the landmarks

since they are not rigidly linked. A visual inspection of the

database indicates that in some critical cases this motion can

exceed 10 pixels. Our method does not behave well in these

cases. Secondly, the motion of the stent occurs in 3D and

may not be compensated by 2D image deformations. Fig. 17

shows a stent under two view points differing by a rotation

of a few degrees around the long axis of the stent. We can

observe that the appearance of the struts is completely different

and therefore cannot be compensated by a 2D registration. A

potential solution to theses cases where stent registration is not

perfect, could be to select a subset of images in the sequences

in which the motion of the stent is less significant. Ross (Ross

et al., 2005) noticed on one clinical case that using a subset of

frames restricted to a specific interval of the heartbeat yielded

a sharper stent image. This research direction needs further

studies to be confirmed.

The registration model we used is also challenged in the

case of multiple stents at a vessel bifurcation. In such a case

there is typically one stent in the main vessel and another one

in a side branch. The presence of the landmarks in one of the

vessels is not enough to predict the motion of the other vessel.

(a) (b)

Figure 17: Illustration of the variability of the appearance due to strut super-

impositions patterns. (a) and (b) depict a same stent under two view points

differing from few degrees.

Therefore the second stent is usually blurred as a consequence

of the incorrect registration. This clinical situation would

require extending the method to detect and register landmarks

in both vessels. Fig. 18 (b) shows an example of a result of

stent enhancement at a bifurcation.

(a) (b)

Figure 18: Illustration of imperfect registration in some cases (see text for de-

tails). (a) Although the landmarks are well registered and sharp, the stent struts

do not appear and the upper part of the stent is blurry. (b) Case of two stents

at a bifurcation. Only the marker-balls and the guide-wire supporting them are

used as registration landmarks. Therefore, the stent in the side branch is not

registered as accurately as the one in the main branch and is blurrier.

Another limitation to stent visualization is the presence of

structures are superimposed to the stent and hide it. The land-

marks for instance, and especially the guide-wire, impair the

visibility of some stent struts. Moreover, in some clinical sit-

uations, highly radio-opaque sternal wires that do not follow

the motion of the stent can severely degrade its visualization.

Specific algorithms (Funck et al., 2010) have been designed to

address these limitations, but this is outside of the scope of this

article.

4. Conclusion

We have presented a comprehensive approach to DSE. We

studied the problem from a clinical standpoint to determine

a successful algorithmic solution. The most original parts of

our DSE technique, the guide-wire segmentation and non-linear

12



registration, have been described and tested thoroughly. Valida-

tion on a large number of synthetic and clinical images demon-

strated that DSE improves significantly image quality (by more

than 1 point out of 5), works automatically (in 91% of the cases)

and performs fast enough (16.6±3s) to be integrated in a typical

angioplasty workflow with success. Moreover our experiments

established that the use of the guide-wire as an input landmark

to non-linear registration of images were beneficial to DSE in

28% of the cases. Further work may include addressing motion

between the landmarks and the stent.
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