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Jean-Luc Pelouard,5 Daniel Lincot,1,2,3 and Jean-François Guillemoles1,2,3,b)
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We report high concentration experiments on polycrystalline thin film solar cells. High level

regime is reached, thanks to the micrometric scale of the Cu(In,Ga)Se2 cells, which strongly

decreases resistive losses. A 4% absolute efficiency increase is obtained at a concentration of

�120, and current densities as high as 100 A/cm2 can be measured. These results show that the use

of polycrystalline thin films under high concentration is possible, with important technological

consequences. VC 2011 American Institute of Physics. [doi:10.1063/1.3604789]

In concentrated photovoltaic systems, Joule losses are

increased and become the main limiting factor of conversion

efficiency1 due to highly concentrated light fluxes. In order

to reduce resistances, front contact collecting grids are used

on concentrator solar cells. The grid coverage is a trade-off

between the decreased resistances and the detrimental shad-

owing. As a result, Joule losses remain an issue for concen-

trator cells. This is particularly true for thin film solar cells,

where the window layer has a relatively high sheet resistance

(10 to 20 X/square) and limits the use of concentration to

very low concentration ratio2–4 (C <� 20).

In this letter, we present experimental demonstration of

microcells whose lateral dimensions are small enough to

make spreading resistances vanishingly small, as predicted by

theory.5,6 We focus on polycrystalline thin film Cu(In,Ga)Se2

(CIGS) microcells. CIGS is currently the most efficient thin

film solar cell material,7 and efficiencies over 20% were

achieved recently. We study CIGS microcells, with a periph-

eral contact that collects the current without shadowing the

cells. As a consequence of reduced resistances, microcells

can work under high fluxes.8 We report experiments under

high concentration (>200 W/cm2) and demonstrate a 4%

absolute efficiency increase under concentrated illumination

(10 W/cm2). We also study the high injection regime, and

the microcell series resistance is found to decrease with

illumination.

The device described in this letter is a glass/Mo/CIGS/

CdS/ZnO solar cell, with a 15 lm diameter active area. The

bottom part of the cell is provided by Würth Solar, and the

CdS and ZnO layers are deposited in our laboratory, using

the same process as described elsewhere.5,7 To create micro-

cells, we inserted a 400 nm thick insulating SiO2 layer and

20 nm/300 nm Ti/Au bilayer between the buffer and window

layer. Photolithographically defined holes in the SiO2 layer

delimit the microcells. The Au layer plays the role of the pe-

ripheral front contact, without shadowing the cell. The com-

plete structure is depicted in Fig. 1(b). A scanning electron

microscope (SEM) cross-section image of the side of a

microcell is shown in Fig. 1(a).

Solar cells of 0.1 cm2, made during the same process,

are used as a reference. Under AM1.5 illumination, they

yield (13.2 6 0.4%) efficiency (short-circuit current density

Jsc¼ 28.13 6 0.2 mA/cm2 and open circuit voltage Voc

¼ 631 6 0.6 mV). This efficiency is representative of stand-

ard large area deposition of industrial coevaporated CIGS.

In order to assess their performances under concentrated

illumination, microcells are tested under continuous 532 nm

laser illumination. The short-circuit current is linear with the

incident laser power on microcells up to incident light power

over 2� 106 W/m2. We checked that the linearity stays valid

for the full solar spectrum up to� 100 suns; we can therefore

define the light concentration ratio as the ratio between the

experimental short circuit current density and the reference

AM1.5 short circuit current density.

Figure 2 shows the characteristics of the microcell as a

function of the laser power. The cell conversion efficiency is

evaluated as the ratio of the maximum electric output power

by the equivalent incident light power, the latter being given

FIG. 1. (Color online) Architecture of Cu(In,Ga)Se2 microcells. (a) SEM

cross-section of a microcell. (b) Scheme of the structure, not to scale. The

red rectangle corresponds to the part that is observed in SEM.
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by the product of the incident light power under one sun

(1000 W/cm2) by the concentration ratio.

These data show that the microcell efficiency increases

with laser power and reaches a maximum at 17% for an inci-

dent power around 104 mW/cm2 or short circuit current den-

sity of 3.5 A/cm2. Compared to the unconcentrated case, a

maximum efficiency increase of 4 points in absolute, or

more than 30% in relative, is observed. At higher incident

light power, the efficiency decreases and goes back to its

unconcentrated value, at around 105 mW/cm2 or 35 A/cm2.

The increase in efficiency with incident power is due to

the photocurrent increase compared to the dark current. This

effect leads to an increase of the Voc as shown in the inset of

Fig. 2. We can see more precisely that Voc is increasing line-

arly with the logarithm of the laser power as expected at a

fixed temperature. From the fact that Voc does not deviate

from this trend, we can infer that the temperature increase of

the cell is very limited, less than 10 K at 1000 suns. The

maximum in efficiency observed at 104 mW/cm2 occurs

when resistive losses counterbalance the improved Voc or

when the product of the series resistance by the short circuit

current approximately equals nkT/q.9 This maximum is

reached on microcells at current densities nearly ten times

higher than on standard centimeter size CIGS cells,2 con-

firming experimentally that resistances are drastically limited

in this concentration range. Indeed, in microcells, spreading

resistances are vanishingly small,5 and the devices are then

limited by size independent sources of resistance, originating

from the electrical contacts and the absorber layer.

These results show that polycrystalline thin film CIGS

microcells, under concentration, have a behaviour compara-

ble to monocrystalline III–V monojunction solar cells:10 the

best GaAs solar cell to date reaches a maximum efficiency at

a concentration ratio of� 117. The 15 lm device presented

here has a maximum efficiency at a concentration ratio

of� 120. This is a breakthrough compared to previous

experiment on CIGS, as the maximum efficiency was

obtained at �14.2

A feature of the high injection regime is that the series

resistance is decreasing with increasing incident light power

density as displayed in Fig. 3. Indeed, carriers that are photo-

generated in the absorber reduce its resistivity, resulting in

lower series resistance. The increase in photogenerated car-

rier density is proportional to the incident light power den-

sity; therefore, the total series resistance of the microcell

Rsmicrocell can be expressed as:11

Rsmicrocell ¼ Rc þ Rsabs

¼ Rc þ
Rs0

1þ 1þ lp

ln

� �
� Ln

t

� �2� q2�EQE�Rs0�Plight

kT� hm

� � ;

(1)

where Rc is the light independent series resistance; Rsabs, the

light modulated series resistance associated with the CIGS

absorber layer; Rs0, the absorber resistance in dark condition;

Rs0¼ t/qlpp0, with q the elementary charge, t the absorber

thickness, ln (lp) the electron (hole) mobility, Plight the inci-

dent light power density, Ln the minority carrier diffusion

length in the absorber, EQE the external quantum efficiency

at 532 nm, kT/q the thermal voltage, and hm the energy of the

incident photons. In Fig. 3, the experimental data are fitted

according to Eq. (1), with Rc¼ 1.8� 10�3 X cm2,

Rs0¼ 3.1� 10�2 X cm2. Given that EQE¼ 84% at 532 nm,

the absorber thickness is 2.5 lm, and assuming lp/ln � 1,

we evaluate Ln to 3 lm, which is above reported value from

EQE measurements.12 Our results show that the resistance

modulation is sufficiently important to decrease the series

resistance by more than one order of magnitude in the

explored concentration range. Maximum efficiencies at con-

centration ratios �1000 would require improved Rc, now

limited by the contact of the probe on Au. Increased Ln (or

reduced t) would make the absorber contribution to Joule

losses negligible at all incident power.

The potentiality of strongly scaling down thin film solar

cells for a use under concentrated illumination has been dem-

onstrated. We showed that the microcell structure leads to a

drastic reduction of resistances and is therefore particularly

FIG. 2. (Color online) Characteristics of a 15 lm diameter microcell. Effi-

ciency vs short circuit current density, or laser power density (k¼ 532 nm).

The dots are experimental data; the line is a guide for the eyes. The inset

shows Voc vs Jsc.

FIG. 3. (Color online) Series resistance of a 15 lm microcell that is deter-

mined by fitting the current-voltage characteristics, as a function of the inci-

dent power density or short circuit current density. The dots correspond to

experimental data; the line is the fit according to Eq. (1).
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suitable for high flux performance. Polycrystalline thin film

microcells on glass were fabricated and showed a 4% abso-

lute improvement in efficiency at a concentration ratio of

�120 and an improvement in Voc up to �1000. The modula-

tion of series resistance with illumination, i.e., a distinctive

feature of the high injection regime on CIGS microcells, is

highlighted. These results open interesting perspectives. New

architectures for the microscale concentration of light need to

be developed. Microcells could be grown with selective depo-

sition methods, such as electrodeposition or printing, which

are already developed for thin films. As a consequence,

microcells could lead to important material saving, by a factor

between 10 and 1000, depending on the concentration used.

This is particularly important for thin film technologies rely-

ing on In or Te, such as CIGS or CdTe. Our results suggest

the use of microcells under high injection is of interest for

industrial applications as well as for fundamental studies.
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