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cubic nonlinear Schrödinger equation on a torus

Erwan Faou, Ludwig Gauckler and Christian Lubich

September 12, 2011

Abstract

It is shown that plane wave solutions to the cubic nonlinear Schrödinger equa-
tion on a torus behave orbitally stable under generic perturbations of the initial
data that are small in a high-order Sobolev norm, over long times that extend
to arbitrary negative powers of the smallness parameter. The perturbation stays
small in the same Sobolev norm over such long times. The proof uses a Hamilto-
nian reduction and transformation and, alternatively, Birkhoff normal forms or
modulated Fourier expansions in time.

1 Introduction and statement of the result

Consider the cubic nonlinear Schrödinger equation (NLS) on the d-dimensional
torus Td = R

d/(2πZ)d, for arbitrary dimension d ≥ 1, in the defocusing (λ = 1)
or focusing (λ = −1) case,

i∂tu = −∆u+ λ|u|2u, x ∈ T
d, t ∈ R. (1.1)

For initial data made of a single Fourier mode, u∗(x, 0) = ρeim·x, the equation
has the plane-wave solution u∗(x, t) = ρei(m·x−ωt) with ω = |m|2+λρ2. We show
that under generic perturbations of such initial data by functions with small Hs

Sobolev norm, for sufficiently large Sobolev exponent s, the solution remains
essentially localized in the mth Fourier mode over very long times, and the per-
turbation remains small in the same Hs norm. For the precise formulation of the
result we decompose the solution in the Fourier basis, u(x, t) =

∑
j∈Zd uj(t)e

ij·x.
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Theorem 1.1 Let ρ0 > 0 be such that 1 + 2λρ20 > 0, and let N > 1 be fixed
arbitrarily. There exist s0 > 0 and a set of full measure P in the interval (0, ρ0]
such that for every s ≥ s0 and every ρ ∈ P, there exists ε0 > 0 such that for
every m ∈ Z

d the following holds: if the initial data u(•, 0) is such that

‖u(•, 0)‖
L2 = ρ and ‖e−im·•u(•, 0) − um(0)‖

Hs = ε ≤ ε0,

then the solution of (1.1) with these initial data satisfies

‖e−im·•u(•, t) − um(t)‖
Hs ≤ 2ε for t ≤ ε−N .

To our knowledge, this is the first long-time orbital stability result as well as
long-time high-regularity result for the cubic NLS (1.1) in dimension d > 1. It
is a contrasting counterpart to the instability and ill-posedness results for rough
perturbations given by Christ, Colliander & Tao [7, 8].

In the 1D case, much is already known about orbital stability of periodic
waves for the cubic NLS through the work by Cazenave & Lions [6] and Gallay
& Haragus [13, 14]; see also further references therein.

Technically more closely related to the present work are long-time stability
and high-regularity results by Bambusi & Grébert [4, 2, 18] and Gauckler &
Lubich [15] for small solutions to modifications of the periodic cubic NLS (1.1)
by the addition of a convolution term V ∗ u, which eliminates the resonance of
the frequencies of the linearization of (1.1) around 0. Such a resonance-removing
modification by a convolution potential was previously studied also by Bourgain
[5] and more recently by Eliasson & Kuksin [12], but we emphasize that such
a modification of the equation is not required for the problem considered here,
essentially because we do not consider small solutions of (1.1).

After the reductions and transformations of Section 2, the problem appears in
a Hamiltonian form for which there are two known techniques to arrive at The-
orem 1.1: Birkhoff normal forms, which use a sequence of nonlinear canonical
coordinate transforms to transform the system to a form from which the dynam-
ical properties can be read off, and modulated Fourier expansions, which embed
the system into a larger modulation system having a Hamiltonian structure with
a group invariance property that yields the existence of almost-invariants which
allow us to infer the long-time properties. In Section 3 we reduce Theorem 1.1
to a known abstract result on the long-time near-conservation of super-actions,
which was proved by Grébert [18] via Birkhoff normal forms and by Gauckler
[16] via modulated Fourier expansions, under differing conditions which we verify
for both approaches.
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2 Reductions and Transformations

2.1 Reduction to the case m = 0

In terms of Fourier coefficients, (1.1) is given by

iu̇j = |j|2uj + λ
∑

j=j1−j2+j3

uj1uj2uj3 , (2.1)

where |j| denotes the Euclidean norm of j ∈ Z
d. With the given m ∈ Z

d, we
transform to

vj = uj+meit(|m|2+2j·m). (2.2)

Note that this transformation preserves the L2 norm. The equation for vj is

(|m|2 + 2j ·m)vj + iv̇j = |j +m|2vj + λ
∑

j=j1−j2+j3

vj1vj2vj3

or equivalently

iv̇j = |j|2vj + λ
∑

j=j1−j2+j3

vj1vj2vj3 ,

so that v(x, t) =
∑

j∈Zd vj(t)e
ij·x is a solution of (1.1) and is localized in the zero

mode if u is localized in the mth mode. In other words, up to the transformation
(2.2), we can restrict our attention to the case m = 0.

2.2 Elimination of the zero mode

We separate the 0-mode:

iv̇j = (|j|2 + 2λ|v0|
2)vj + λv20v−j

+2λ
∑

j=−j2+j3
j2,j3 6=0

v0vj2vj3 + λ
∑

j=j1+j3
j1,j3 6=0

vj1v0vj3 + λ
∑

j=j1−j2+j3
j1,j2,j3 6=0

vj1vj2vj3

iv̇0 = λ|v0|
2v0 + 2λ

∑

j 6=0

vjvjv0 + λ
∑

j 6=0

vjv0v−j + λ
∑

0=j1−j2+j3
j1,j2,j3 6=0

vj1vj2vj3

and make the change of variables (v0, vj) 7→ (a, θ, wj) defined by

v0 =
√

ρ2 − a e−iθ, and vj = wje
−iθ, j ∈ Z := Z

d \ {0}.

By the conservation of the L2 norm and Parseval’s equality we have for all times t,

ρ2 = |v0|
2 +

∑

j 6=0

|vj |
2 = ρ2 − a+

∑

j 6=0

|wj |
2

3



which means
a =

∑

j 6=0

|wj |
2. (2.3)

Hence we can completely forget the dynamics of a: it will be controlled by the
wj using (2.3). The equation for wj reads

iẇj + θ̇wj = (|j|2 + 2λ(ρ2 − a))wj + λ(ρ2 − a)w−j

+ 2λ
∑

j=−j2+j3
j2,j3 6=0

√
ρ2 − awj2wj3 + λ

∑

j=j1+j3
j1,j3 6=0

wj1

√
ρ2 − awj3

+ λ
∑

j=j1−j2+j3
j1,j2,j3 6=0

wj1wj2wj3 . (2.4)

To obtain θ̇, let us write the equation for v0 in terms of (a, θ):

θ̇
√

ρ2 − a−
iȧ

2
√

ρ2 − a
= λ(ρ2 − a)3/2 + 2λ

√
ρ2 − a

∑

j 6=0

|wj |
2

+λ
√

ρ2 − a
∑

j 6=0

wjw−j + λ
∑

j1−j2+j3=0

j1,j2,j3 6=0

wj1wj2wj3 .

The equation for θ̇ can therefore be written, using (2.3),

θ̇ = λ(ρ2 + a) + λRe



∑

j 6=0

wjw−j +
1√

ρ2 − a

∑

j1−j2+j3=0

j1,j2,j3 6=0

wj1wj2wj3


 .

Inserting this equation and (2.3) into (2.4), we arrive at a system of differential
equations for the wj, j ∈ Z = Z

d \ {0}.

2.3 The reduced Hamiltonian system

This reduced system of differential equations turns out to be Hamiltonian (see
Appendix A),

iẇj =
∂H̃

∂wj
(w,w), j ∈ Z, (2.5)
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with the real-valued Hamilton function

H̃(w,w) =
∑

j1

(|j1|
2 + λρ2)wj1wj1 +

λ

2
ρ2

∑

j1

wj1w−j1 +
λ

2
ρ2

∑

j1

wj1w−j1

+
λ

2

∑

j1+j2−j3−j4=0

wj1wj2wj3wj4 −
3λ

2

(∑

j1

wj1wj1

)(∑

j2

wj2wj2

)

−
λ

2

(∑

j1

wj1w−j1

)(∑

j2

wj2wj2

)
−

λ

2

(∑

j1

wj1w−j1

)(∑

j2

wj2wj2

)

+ λ
( ∑

j1+j2−j3=0

wj1wj2wj3 +
∑

j1−j2−j3=0

wj1wj2wj3

)√
ρ2 −

∑

j4

wj4wj4 .

(2.6)

Expanding
√
ρ2 − x into a convergent power series for |x| < ρ2, we can write

the Hamiltonian (2.6) as the infinite sum

H̃(w,w) =
∑

r≥2

H̃r(w,w)

where H̃r(w,w) is a homogeneous polynomial of degree r in terms of (wj , wj),
which is of the form

H̃r(w,w) =
∑

p+q=r

∑

(k,l)∈Zp×Zq

M(k,l)=0

H̃klwk1 · · ·wkpwl1 · · ·wlq

where
M(k, l) = k1 + . . . + kp − l1 − . . . − lq (2.7)

denotes the momentum of the multi-index (k, l). We note that the Taylor expan-
sion of H̃ contains only terms with zero momentum, and its coefficients satisfy
the bound

|H̃kl| ≤ M̃ L̃p+q for all (k, l) ∈ Zp ×Zq, (2.8)

where M̃ and L̃ depend on ρ.

2.4 Diagonalization and non-resonant frequencies

We study now the linear part of the system (2.5). As we will see, its eigenvalues
are non-resonant for almost all parameters ρ. Moreover, we can control the
diagonalization of this linear operator.
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The linear part in the differential equation for wj is (|j|
2 + λρ2)wj +λρ2w−j.

On taking the equation for wj together with that for w−j, we are thus led to
consider the matrix (for n = |j|2)

An =

(
n+ λρ2 λρ2

−λρ2 −n− λρ2

)
.

Lemma 2.1 For all n ≥ 1, the matrix An is diagonalized by a 2× 2 matrix Sn

that is real symplectic and hermitian and has condition number smaller than 2:

S−1
n AnSn =

(
Ωn 0
0 −Ωn

)
with Ωn =

√
n2 + 2nλρ2.

Proof. We obtain

Sn =
1√

(Ωn + n)(Ωn + n+ 2λρ2)

(
n+ λρ2 +Ωn −λρ2

−λρ2 n+ λρ2 +Ωn

)

and

S−1
n =

1√
(Ωn + n)(Ωn + n+ 2λρ2)

(
n+ λρ2 +Ωn λρ2

λρ2 n+ λρ2 +Ωn

)
,

and the statements of the lemma then follow by direct verification.

Note that the condition 1 + 2λρ2 > 0 in Theorem 1.1 ensures that all the
eigenvalues Ωn are real, or equivalently, that the linearization of the system (2.5)
at 0 is stable. The frequencies Ωn turn out to satisfy Bambusi’s non-resonance
inequality [1, 4] for almost all norm parameters ρ > 0.

Lemma 2.2 Let r > 1 and ρ0 > 0 with 1 + 2λρ20 > 0. There exist α = α(r) > 0
and a set of full Lebesgue measure P ⊂ (0, ρ0] such that for every ρ ∈ P there
is a γ > 0 such that the following non-resonance condition is satisfied: for all
positive integers p, q with p + q ≤ r and for all m = (m1, . . . ,mp) ∈ N

p and
n = (n1, . . . , nq) ∈ N

q,

|Ωm1
+ . . . +Ωmp − Ωn1

− . . . − Ωnq | ≥
γ

µ3(m,n)α
, (2.9)

except if the frequencies cancel pairwise. Here, µ3(m,n) denotes the third-largest
among the integers m1, . . . ,mp, n1, . . . , nq.

Proof. Note that

Ωn = n+ λρ2 −
ρ4

2(n + λρ2)
+O

( 1

n2

)
.

We can then use the proof of [4, Section 5.1] (see in particular (5.13) in [4]).
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2.5 The transformed Hamiltonian system

Applying the symplectic linear transformation
(

wj

w−j

)
= Sn

(
ξj
ξ−j

)
for j ∈ Z and n = |j|2,

with the matrices Sn of Lemma 2.1, to the Hamiltonian system (2.5) of equations
for wj , we end up with a Hamiltonian system

i
d

dt
ξj(t) =

∂H

∂ξj
(ξ(t), ξ(t)), j ∈ Z = Z

d \ {0},

with the real-valued Hamilton function

H(ξ, ξ) = H̃(w,w),

with H̃ of (2.6). This Hamiltonian is of the form

H(ξ, ξ) =
∑

j∈Z

ωj|ξj |
2 + P (ξ, ξ), (2.10)

where the frequencies are ωj = Ωn for |j|2 = n with Ωn =
√

n2 + 2nλρ2, and the
non-quadratic term P is of the form

P (ξ, ξ) =
∑

p+q≥3

∑

k∈Zp, l∈Zq

M(k,l)=0

Hkl ξk1 · · · ξkp ξl1 · · · ξlq , (2.11)

where the sum is still only over multi-indices with zero momentum (2.7), since
the transformation mixes only terms that give the same contribution to the
momentum. From (2.8) and Lemma 2.1 we obtain the following bound for the
Taylor coefficients.

Lemma 2.3 There exist M > 0 and L > 0 such that for all positive integers
p, q with p+ q ≥ 3 the coefficients in (2.11) are bounded by

|Hkl| ≤ M Lp+q for all k ∈ Zp, l ∈ Zq.

The Hamiltonian equations of motion are now

i
d

dt
ξj(t) = ωjξj(t) +

∂P

∂ξj
(ξ(t), ξ(t)), j ∈ Z, (2.12)

where the nonlinearity is of the form

∂P

∂ξj
(ξ, ξ) =

∑

p+q≥2

∑

k∈Zp, l∈Zq

M(k,l)=j

Pj,k,l ξk1 · · · ξkp ξl1 · · · ξlq (2.13)
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with Pj,k,l an integral multiple (at most (q + 1) times) of Hk,(l,j).
Note that after the change of variables, the weighted ℓ2-norm

‖ξ‖
s
=

(∑

j∈Z

|j|2s|ξj |
2
) 1

2

of the sequence ξ is equivalent to the Sobolev norm ‖e−im·xu − um‖
Hs

of the
corresponding function u,

ĉ ‖ξ‖
s
≤ ‖e−im·xu− um‖

Hs ≤ Ĉ ‖ξ‖
s

(2.14)

with positive constants depending on λ and ρ. In particular, under the assump-
tions of Theorem 1.1, the system (2.12) has small initial values whose ℓ2s norm is
of order ε.

3 Long-time near-conservation of super-actions

In this section we give the proof of Theorem 1.1. After the transformations of
the previous section, we can verify that the conditions required to apply existing
results on the long-time near-conservation of so-called super-actions are fulfilled.
A transformation back to the original variables then gives Theorem 1.1.

3.1 Super-actions

Without the nonlinearity ∂P
∂ξj

in (2.12), the actions

Ij(ξ, ξ) = |ξj |
2, j ∈ Z,

would be exactly conserved along solutions of (2.12). In the presence of the
nonlinearity and in view of the partial resonance ωj = Ωn for all j ∈ Z with
|j|2 = n and the non-resonance of the Ωn as given by Lemma 2.2, there remains
long-time near-conservation of super-actions

Jn(ξ, ξ) =
∑

|j|2=n

Ij(ξ, ξ), n ∈ N, (3.1)

along solutions of (2.12) provided that the initial value is small. The precise
result in our situation is the following.

Theorem 3.1 (Long-time near-conservation of super-actions) Fix N >
1 arbitrarily. For every ρ0 > 0 such that 1 + 2λρ20 > 0 there exist s0 > 0 and a
set of full measure P in the interval (0, ρ0] such that for all s ≥ s0 and ρ ∈ P
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the following holds: There exist ε0 > 0 and C such that for small initial data
satisfying

‖ξ(0)‖
s
≤ ε ≤ ε0,

the super-actions of the solution of (2.12) starting with ξ(0) at t = 0 are nearly
conserved,

∑

n≥1

ns |Jn(ξ(t), ξ(t))− Jn(ξ(0), ξ(0))|

ε2
≤ Cε

1

2 ,

over long times
0 ≤ t ≤ ε−N .

Since ‖ξ‖2s =
∑

n≥1 n
sJn(ξ, ξ), this theorem implies that ‖ξ(t)‖

s
stays of order

ε over long times t ≤ ε−N . When we transform this result back to the solution
u of (1.1), we immediately get Theorem 1.1 on using (2.14).

There are two entirely different approaches to prove Theorem 3.1, Birkhoff
normal forms and modulated Fourier expansions. Both approaches will be out-
lined in the following subsections. Each proof relies on a non-resonance condition
on the frequencies ωj describing the linear part in (2.12), a regularity condition
on the nonlinearity in (2.12) and a condition on the interaction of modes (zero-
momentum condition). Based on Lemmas 2.2 and 2.3, these assumptions will
be verified in the following subsections, separately for each approach since they
are not exactly the same for both proofs. Once the conditions are verified, we
can directly apply results from Bambusi and Grébert [2, 18] (using Birkhoff nor-
mal forms) and Gauckler [16] (using modulated Fourier expansions) to obtain
Theorem 3.1.

3.2 Proof of Theorem 3.1 via Birkhoff normal forms

We follow the Birkhoff normal form approach as developed in [1, 2, 4, 18]. We
verify that the assumptions of [18, Theorem 7.2] are fulfilled by the system (2.12).

3.2.1 Regularity of the nonlinearity

For multi-indices k = (k1, . . . , kp) ∈ Zp and l = (l1, . . . , lp) ∈ Zq we denote by
µi(k, l) the i-th largest integer among |k1|, . . . , |kp|, |l1|, . . . , |lq|, so that µ1(j) ≥
µ2(j) ≥ µ3(j) ≥ · · · . Moreover, for a given positive radius r, we set

Bs(r) = {(ξ, ξ) ∈ C
Z × C

Z : ‖ξ‖
s
≤ r}.

To apply Theorem 7.2 in [18], the Hamilton function

H = H0 + P
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with

H0(ξ, ξ) =
∑

j∈Z

ωj|ξj|
2

P (ξ, ξ) =
∑

p+q≥3

∑

k∈Zp, l∈Zq

M(k,l)=0

Hkl ξk1 · · · ξkp ξl1 · · · ξlq ,

needs to satisfy a non-resonance condition on the frequencies, as provided by
Lemma 2.2, and the following conditions on the non-quadratic part (see [18,
Definition 4.4]):

(H1) There exists s0 ≥ 0 such that for all s ≥ s0, there exists r > 0 such that
P ∈ C∞(Bs(r),C).

(H2) The Taylor coefficients Hkl satisfy the following property: for all (k, l) ∈
Zp × Zq we have Hkl = Hlk, and for all p, q with p + q ≥ 3, there exists
ν ≥ 0 such that for every N ∈ N, there exists C depending on N , p and q
such that for all (k, l) ∈ Zp ×Zq,

|Hkl| ≤ Cµ3(k, l)
ν

(
µ3(k, l)

µ3(k, l) + µ1(k, l) − µ2(k, l)

)N

. (3.2)

The bound (3.2), used in many works on normal forms applied to nonlinear
PDEs - see [10, 11, 1, 18, 3]- implies in particular that the nonlinearity acts on
the ball Bs(r). Moreover, it is preserved by the Poisson bracket of two functions
and by the normal form construction under a non-resonance condition implying
a control of the small denominator by the third largest integer.

We now show that (H1) and (H2) are implied by the coefficient estimates of
Lemma 2.3 together with the fact that the Hamiltonian has only terms with zero
momentum. Let us consider a fixed multi-index (k, l) satisfying M(k, l) = 0.
Following the proof of [18, Lemma 5.2], we see that we always have

|µ1(k, l) − µ2(k, l)| ≤ |M(k, l)| +

p+q∑

n=3

µn(k, l) ≤ (p+ q − 2)µ3(k, l).

From this relation, we infer
(

µ3(k, l)

µ3(k, l) + µ1(k, l)− µ2(k, l)

)N

≥ (p+ q − 1)−N

Using Lemma 2.3, we thus see that the coefficients Hkl satisfy the bound (3.2)
with the constant C = MLp+q(p + q − 1)N and ν = 0. This yields (H2). The

assertion (H1) results from the fact that
√

ρ2 −
∑

j∈Z wjwj is analytic on Bs(r)

for r < ρ, and that the monomials with zero momentum terms define a smooth
Hamiltonian as soon as s0 > d/2 (see for instance [4]). This ensures that P ∈
C∞(Bs(r),C).
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3.2.2 A normal form result

For a given Hamiltonian K ∈ C∞(Bs(r),C) satisfying K(ξ, ξ) ∈ R we denote by
XK(ξ, ξ) the Hamiltonian vector field

XK(ξ, ξ)j =
(
i
∂K

∂ξj
,−i

∂K

∂ξj

)
, j ∈ Z,

associated with the Poisson bracket

{K,G} = i
∑

j∈Z

∂K

∂ξj

∂G

∂ξj
−

∂K

∂ξj

∂G

∂ξj
,

which is well defined for Hamiltonian functions K and G in the class of Hamil-
tonians defined above.

We are now ready to apply Theorem 7.2 of [18] to the Hamiltonian (2.10).
We obtain the following result:

Theorem 3.2 Let ρ be in the set P of full measure as given by Lemma 2.2 for
some N ≥ 3. There exists s0 and for any s ≥ s0 there exist two neighborhoods U
and V of the origin in Bs(ρ) and an analytic canonical transformation τ : V → U
which puts H = H0 + P in normal form up to order N , i.e.,

H ◦ τ = H0 + Z +R

where

(i) Z is a polynomial of degree N which commutes with all the Jn, n ≥ 1, i.e.,
{Z, Jn} = 0 for all n ≥ 1,

(ii) R ∈ C∞(V,R) and ‖XR(ξ, ξ)‖s ≤ Cs‖ξ‖
N

s
for ξ ∈ V,

(iii) τ is close to the identity: ‖τ(ξ, ξ)− (ξ, ξ)‖
s
≤ Cs‖ξ‖

2

s
for all ξ ∈ V.

Let us recall the principle underlying the proof of this result: the construction
of the transformation τ is made by induction by cancelling iteratively the poly-
nomials of growing degree in the Hamiltonian H0+P . As τ is determined as the
flow at time one of a polynomial Hamiltonian χ =

∑
n≥3 χn, where χn are ho-

mogeneous polynomials of degree n, we are led to solve by induction homological
equations of the form

{H0, χn} = Zn +Qn

where Zn is the n-th component of the normal form term, and Qn a homogeneous
polynomial of degree n depending on P and the terms constructed at the previous
iterations. Writing the equation in terms of coefficients, this equation can be
written in the form

(ωk1 + . . .+ ωkp − ωl1 − . . .− ωlq)χkl = Zkl +Qkl

11



where (k, l) ∈ Zp ×Zq with p+ q = n. Using the non-resonance condition (2.9),
we see that we can solve this equation for χkl and set Zkl = 0 without losing too
much regularity (i.e., χ will satisfy (H2) for some ν), except for the multi-indices
(k, l) having equal length p = q and after permutation, |k1|

2 = |l1|
2, . . . , |kp|

2 =
|lp|

2. This yields that the normal form term Z contains only terms of the form
ξk1 · · · ξkpξl1 · · · ξlq with p = q and |k1|

2 = |l1|
2, . . . , |kp|

2 = |lp|
2. We then check

that these terms Poisson-commute with Jn for all n, and hence {Jn, Z} = 0 for
all n.

The proof of Theorem 3.1 can then be done using ‖ξ‖
2

s
=

∑
n≥1 n

sJn(ξ, ξ)
and following the proof of Corollary 4.9 in [18].

3.3 Proof of Theorem 3.1 via modulated Fourier ex-

pansions

Modulated Fourier expansions are an analytical technique for studying long-
time properties of nonlinear perturbations to oscillatory linear systems. They
were originally introduced in [19] to explain the long-time behaviour of numer-
ical methods for oscillatory ordinary differential equations; see also [20, Chap.
XIII]. In [9, 17] and [15] they were used to study long-time properties of small
solutions of nonlinear wave equations and nonlinear Schrödinger equations with
an external potential, respectively, and in [16] for general classes of Hamiltonian
partial differential equations.

Let us assume for the moment that there are no resonances among the fre-
quencies, in particular ωj 6= ωj′ also for |j| = |j′|. A modulated Fourier expansion
of the solution ξ of (2.12) is an approximation of ξ in terms of products of prop-
agators e−iωjt for the linear equation with slowly varying coefficient functions,

ξj(t) ≈ ξ̃j(t) =
∑

k

zkj (εt)e
−i(k·ω)t, j ∈ Z, (3.3)

where the sum runs over a finite set of sequences of integers k = (k(ℓ))ℓ∈Z ∈ Z
Z

with finitely many nonzero entries, and where k · ω =
∑

ℓ∈Z k(ℓ)ωℓ.
Inserting the ansatz (3.3) into the equations of motion (2.12) and equating

terms with the same exponential e−i(k·ω)t leads to the modulation system

iεżkj + (k · ω)zkj

= ωjz
k

j +

∞∑

p+q≥2

∑

k1+...+kp

−l
1−...−l

q=k

∑

k∈Zp, l∈Zq

M(k,l)=j

Pj,k,lz
k1

k1 · · · zk
p

kp z
l1

l1 · · · z
lq

lq

with the coefficients Pj,k,l of (2.13). Modulated Fourier expansions can hence be
seen as embedding the original system of equations in a larger system. The non-

12



linearity is the partial derivative with respect to zkj of the modulation potential

P(z, z) =
∑

p+q≥3

∑

k1+...+kp

−l
1−...−l

q+1=0

∑

k∈Zp, l∈Zq+1

M(k,l)=0

Hklz
k1

k1 · · · zk
p

kp z
l1

l1 · · · z
lq+1

lq+1

with the coefficients Hkl of the non-quadratic part of the Hamiltonian H(ξ, ξ).
The modulation potential is invariant under transformations zkj 7→ eik(ℓ)θzkj for
θ ∈ R and fixed ℓ ∈ Z. The modulation system thus inherits the Hamiltonian
structure from the original equations of motions for ξ, and its transformation
invariance leads to formal invariants

Iℓ(z, z) =
∑

j,k

k(ℓ)|zkj |
2, ℓ ∈ Z,

with z = (zkj )j,k of the modulation system, see [16, Sect. 3.1]. These formal
invariants form the cornerstone for the study of long time intervals.

On a short time interval of length ε−1 it is possible to construct an approx-
imate solution of the modulation system in an iterative way, such that—under
certain assumptions to be verified below—the ansatz (3.3) describes the solution
ξ up to a small error,

‖ξ(t)− ξ̃(t)‖
s
≤ CεN+3 for 0 ≤ t ≤ cε−1

with ξ̃ given by (3.3) with the approximate solution of the modulation system,
see [16, Sects. 3.2–3.4]. The constants depend on N and s but not on ε. Along
this approximate solution z of the modulation system, the formal invariants Iℓ
then become almost-invariants,

∑

ℓ∈Z

|ℓ|2s
∣∣∣ d
dt

Iℓ(z(εt), z(εt))
∣∣∣ ≤ CεN+2,

which are close to the actions Iℓ(ξ, ξ) = |ξℓ|
2,

∑

ℓ∈Z

|ℓ|2s
∣∣Iℓ(z(εt), z(εt))− Iℓ(ξ(t), ξ(t))

∣∣ ≤ Cε
5

2 .

These almost-invariants allow us to repeat the construction of modulated Fourier
expansions on short time intervals of length ε−1 and patch ε−N+1 of those short
intervals together, see [16, Sect. 3.5]. On a long time interval of length ε−N

we then get near-conservation of actions as stated in Theorem 3.1 (with actions
instead of super-actions).

Compared to the above description, the modulated Fourier expansion for our
problem (2.12) has some subtleties that are caused by the partial resonances

13



ωj = ωj′ for |j| = |j′|. Since all sums in the nonlinearity of (2.12) involve only
products of the form ξk1 · · · ξkpξl1 · · · ξlq with k1 + · · ·+ kp − l1 − · · · − lq = j (by
the zero momentum condition in the Hamiltonian), only modulation functions
zkj with

j = j(k) =
∑

ℓ∈Z

k(ℓ)ℓ

can be different from zero. Moreover, since the frequencies ωj in (2.12) are par-

tially resonant, ωj = ωj′ for |j| = |j′|, we can distinguish exponentials e−i(k1·ω)t

and e−i(k2·ω)t only if

k1 − k2 6∈
{
k :

∑

|ℓ|2=n

k(ℓ) = 0 for all n ∈ N

}
.

For this reason, the sum in (2.12) is in our situation only over a set of repre-
sentatives of sequences k where j(k) or k · ω are distinguishable (in the above
sense). The main consequence is that the quantities Iℓ from above are no longer
invariants of the modulation system, but only certain sums of them:

Jn(z, z) =
∑

ℓ∈Z:|ℓ|2=n

Iℓ(z, z), n ∈ N.

Along the approximate solution of the modulation system, they are close to the
corresponding sums of the actions Iℓ , the super-actions Jn. In this way we get
long-time near-conservation of super-actions as in Theorem 3.1.

We finally state and verify the assumptions needed for the iterative construc-
tion of modulation functions. The first lemma below summarises the assumptions
on the nonlinearity in (2.12), whereas the second lemma below deals with the
non-resonance condition on the frequencies describing the linear part of (2.12).
The properties stated in these lemmas are precisely the assumptions under which
Theorem 3.1 has been shown in [16, Theorem 2.7].

Lemma 3.3 The expansion (2.13) of the nonlinearity in (2.12) has the following
properties.

(i) It fulfills the zero momentum condition

Pj,k,l = 0 if j 6= M(k, l)

for j ∈ Z, k ∈ Zp and l ∈ Zq.

(ii) There exist constants Cp,q,s depending only on p, q, s and ρ such that for

|P |p,qj (ξ1, . . . , ξp, ξ
1
, . . . , ξ

q
) =

∑

k∈Zp, l∈Zq

|Pj,k,l| ξ
1
k1 . . . ξ

p
kp
ξ
1
l1 · · · ξ

q
lq

14



the estimate

‖|P |p,q(ξ1, . . . , ξp,ξ
1
, . . . , ξ

q
)‖

s

≤ Cp,q,s‖ξ
1‖

s
· · · ‖ξp‖

s
‖ξ

1
‖
s
· · · ‖ξ

q
‖
s

(3.4)

holds for ξ1, . . . , ξp, ξ
1
, . . . , ξ

q
∈ ℓ2s if s > d

2 .

(iii) There exist r0 > 0 depending only on ρ, and Cs depending in addition on
s > d

2 such that

∑

p+q≥2

Cp,q,s|z|
p+q−2 ≤ Cs for all z ∈ C with |z| ≤ r0.

Proof. Property (i) is obvious, see (2.13).
For property (ii) we recall that (3.4) was verified in [16, Subsect. 2.6] in the
situation Pj,k,l = 0 for j 6= M(k, l) and Pj,k,l = 1 else. The proof is just a
repeated application of the Cauchy-Schwarz inequality, and the corresponding
constants Cp,q,s are given by Cp+q with C depending only on s. In our situation
here, the coefficients Pj,k,l vanish for j 6= M(k, l) and can be bounded with
Lemma 2.3. This implies that the second property (ii) is satisfied with constants
Cp,q,s = (q + 1)MLp+q+1Cp+q.
These constants satisfy (iii) with r0 and Cs depending only on ρ and s.

Lemma 3.4 The frequencies Ωn grow like n, c1n ≤ Ωn ≤ C1n with positive
constants c1 and C1 depending only on ρ.

Moreover, for all ρ0 > 0 such that 1 + 2λρ20 > 0 and for all positive integers
N , there exist s0 and a set of full measure P in the interval (0, ρ0] such that for
all s ≥ s0 and all ρ ∈ P the following non-resonance condition holds: There exist
ε0 > 0 and C0 such that for all r ≤ 2N + 2d+ 6 and all 0 < ε ≤ ε0,

( n

n1 · · · nr

)s− d+1

2

εr ≤ C0 ε
2N+2d+8

whenever a near-resonance

|Ωn ± Ωn1
± · · · ± Ωnr | < ε

1

2

occurs with frequencies that do not cancel pairwise.

Proof. The asymptotic growth behaviour of the frequencies is obvious, and the
non-resonance condition is implied by the non-resonance condition of Lemma 2.2
as shown in [9, Lemma 1].
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A Hamiltonian of the reduced system

We verify that the function H̃ given in Subsect. 2.2 is indeed a Hamiltonian
function for the system for wj . We have

∂H̃

∂wj
(w,w) = (|j|2 + λρ2)wj + λρ2w−j

+ λ
∑

j1+j2−j3=j

wj1wj2wj3 − 3λ
(∑

j1

wj1wj1

)
wj

−
λ

2

(∑

j1

wj1w−j1

)
wj −

λ

2

(∑

j1

wj1w−j1

)
wj − λ

(∑

j1

wj1wj1

)
w−j

+ λ
( ∑

j1+j2=j

wj1wj2

)√
ρ2 −

∑

j4

wj4wj4

+ λ
( ∑

j1+j2−j3=0

wj1wj2wj3

) −wj

2
√

ρ2 −
∑

j4
wj4wj4

+ 2λ
( ∑

j1−j2=j

wj1wj2

)√
ρ2 −

∑

j4

wj4wj4

+ λ
( ∑

j1−j2−j3=0

wj1wj2wj3

) −wj

2
√

ρ2 −
∑

j4
wj4wj4

.

Using a =
∑

j1
wj1wj1 we get

∂H̃

∂wj
(w,w) = (|j|2 + λρ2)wj + λρ2w−j + λ

∑

j1+j2−j3=j

wj1wj2wj3

− 3λawj − λRe
(∑

j1

wj1w−j1

)
wj − λaw−j

+ λ
( ∑

j1+j2=j

wj1wj2

)√
ρ2 − a+ 2λ

( ∑

j1−j2=j

wj1wj2

)√
ρ2 − a

− λRe
( ∑

j1+j2−j3=0

wj1wj2wj3

) wj√
ρ2 − a

,

and finally with θ̇ from Subsect. 2.2,

∂H̃

∂wj
(w,w) = (|j|2 + 2λ(ρ2 − a))wj + λ(ρ2 − a)w−j + λ

∑

j1+j2−j3=j

wj1wj2wj3

− θ̇wj + λ
( ∑

j1+j2=j

wj1wj2

)√
ρ2 − a+ 2λ

( ∑

j1−j2=j

wj1wj2

)√
ρ2 − a

= iẇj .
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2010. http://nbn-resolving.de/urn:nbn:de:bsz:21-opus-47540.

[17] L. Gauckler, E. Hairer, Ch. Lubich and D. Weiss, Metastable en-
ergy cascades in weakly nonlinear wave equations, Preprint, 2011.
http://na.uni-tuebingen.de/preprints.shtml
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10, D-72076 Tübingen, Germany.
lubich@na.uni-tuebingen.de

18

http://nbn-resolving.de/urn:nbn:de:bsz:21-opus-47540
http://na.uni-tuebingen.de/preprints.shtml

	1 Introduction and statement of the result
	2 Reductions and Transformations
	2.1 Reduction to the case m=0
	2.2 Elimination of the zero mode
	2.3 The reduced Hamiltonian system
	2.4 Diagonalization and non-resonant frequencies
	2.5 The transformed Hamiltonian system

	3 Long-time near-conservation of super-actions
	3.1 Super-actions
	3.2 Proof of Theorem 3.1 via Birkhoff normal forms
	3.2.1 Regularity of the nonlinearity
	3.2.2 A normal form result

	3.3 Proof of Theorem 3.1 via modulated Fourier expansions

	A Hamiltonian of the reduced system

