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Topological characterization of simple points by complex collapsibility

Yukiko KENMOCHI†

† IGM, CNRS/Université de Marne-la-Vallée/ESIEE - Laboratoire A2SI, ESIEE, France

Abstract Thinning is an image operation whose goal is to reduce object points in a “topology-preserving” way.

Such points whose removal does not change the topology are called simple points and they play an important role

in any thinning process. For efficient computation, local characterizations have been already studied based on the

concept of point connectivity for two- and three-dimensional digital images. In this paper, we introduce a new

topological characterization of simple points based on collapsibility of polyhedral complexes. We also study their

topological characteristics and propose a linear thinning algorithm.
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1. Introduction

Thinning is an image operation whose purpose is to reduce

object points in a “topology-preserving” way. Such points

whose removal does not change the topology are called sim-

ple points and they play an important role in any thinning

process. Mathematically, the definition of simple points is

given as follows. Let us consider the 3D lattice space Z3. A

point x in a finite subset V ⊂ Z3 is said to be simple if there

is a one-to-one correspondence of each connected component

of V and its complement V, and the holes of V and V, with

each connected component of V \ {x} and V ∪ {x}, and

the holes of V \ {x} and V ∪ {x}, respectively [2]. Because

the above global definition is not appropriate for computa-

tion, many studies on their local characterization have been

made: for example, in 3D, characterizations by using con-

nected component numbers, genus, Euler numbers, and/or

other numbers [2], [9], [14].

Here, we introduce one of the most simple characteriza-

tions of simple points in 3D by using topological numbers,

proposed in [2]. We consider the following m-neighborhoods

in Z3:

N6(x) = {y ∈ Z3 : ‖x− y‖1 <= 1},
N26(x) = {y ∈ Z3 : ‖x− y‖∞ <= 1}.

Let V be a subset in Z3, Cm(V) be the set of all m-connected

components of V, and Ca
m[x,V] be the set of all components

in Cm(V) which are m-adjacent to a point x. Then, we de-

fine topological numbers

T6(x,V) = #Ca
6 [x,N18(x) \ {x} ∩V],

T26(x,V) = #Ca
26[x,N26(x) \ {x} ∩V],

where #X is the cardinal of a set X and N18(x) = {y ∈ Z3 :

max(‖x− y‖∞, d ‖x−y‖1
2

e) <= 1}. By using these topological

numbers, we obtain the following proposition.

［Proposition 1］ A point x ∈ V is m-simple if and only if

Tm(x,V) = Tm(x,V) = 1 for (m, m) = (6, 26), (26, 6).

In this paper, we present a new topological characteriza-

tion of simple points based on collapsibility of polyhedral

complexes (Section 2). We show that our characterisation

is also local and only needs the connectivity m of V but

not m of V (Section 3). Therefore, we can avoid the well-

known problem of how to choose a connectivity pair (m, m)

for V and V. Moreover, we show topological characteristics

of simple points derived from collapsibility (Section 4) and

correct the results in [7]. We also propose a linear thinning

algorithm (Section 5) and discuss on the advantages of our

method and on the problems which still exist (Section 6).

2. Complexes and collapsibility

2. 1 Polyhedral complexes in R3

For the definitions of convex polyhedra and polyhedral

complexes in R3, we follow the notions in [15]. Similar nota-

tions are also seen in [1], [13].

［Definition 1］ A convex polyhedron σ is the convex hull

of a finite set of points in some Rn.

The dimension of a convex polyhedron σ is the dimension

of its convex hull. An n-dimensional convex polyhedron σ is

abbreviated to an n-polyhedron. For instance, a point is a 0-

polyhedron, a line segment is a 1-polyhedron, a triangle or a

square is a 2-polyhedron, and a tetrahedron or a hexahedron

is a 3-polyhedron.

A linear inequality a · x <= z is said to be valid for σ if it

is satisfied for all points x ∈ σ. A face of σ is then defined



by any set of the form

δ = σ ∩ {x ∈ R3 : a · x = z}

where a · x <= z is valid for σ. If a k-dimensional convex

polyhedron τ is a face of σ, τ is called an k-face and such a

binary relation is denoted by τ ≺ σ. Note that the binary

relation is reflexive so that σ ≺ σ for any σ and also ∅ ≺ σ

for any σ.

［Definition 2］ A polyhedral complex K is a finite collec-

tion of convex polyhedra such that

（ 1） the empty polyhedron is in K,

（ 2） if σ ∈ K and τ ≺ σ, then τ ∈ K,

（ 3） if σ, τ ∈ K, then the intersection σ ∩ τ is a common

face of σ and τ .

The dimension of K is the largest dimension of a convex

polyhedron in K. It is known that K is a partially ordered

set [1].

2. 2 Collapsing

In this subsection, we introduce a deformation retraction

of a polyhedral complex, called collapsing [12], [13].

Let K be an n-complex and σ be an r-polyhedron in K

where r < n. If there is exactly one (r + 1)-face τ ∈ K such

that σ ≺ τ , such a σ is called free. Then we say that there is

an elementary collapse of K to a subcomplex K′ = K\{σ, τ},
denoted by K ↘e K′.

We say that K collapses to a subcomplex L if there is a

sequence of elementary collapses

K = K0 ↘e K1 ↘e . . . ↘e Kk = L,

and write K ↘ L. It is well known that there is a homotopy

equivalence between K and L if K ↘ L.

［Definition 3］ An n-complex K is said to be collapsible

if K collapses to a point, and we write K ↘ 0 in this case.

3. Collapsibility and simple points

3. 1 Complex construction from a point set

If we have a method to construct a polyhedral complex

K from a finite point set V in Z3, satisfying the following

two properties, we can derive a new local characterization of

simple points based on such a polyhedral complex.

［Property 1］ A polyhedral complex K is uniquely con-

structed from any finite subset V ⊂ Z3, denoted by K =

cmp(V).

Let Skn(K) be the union of all n-polyhedra in K, called

an n-dimensional skeleton of K. Therefore, Sk0(K) denotes

the union of sets of vertices of all σ ∈ K.

［Property 2］ Let K be a polyhedral complex constructed

from a finite subset V ⊂ Z3. Then we have V = Sk0(K).

Several methods can be found in the framework of Khal-

imsky Topology [8], partially ordered sets [3], [4], and discrete

polyhedral complexes [5], [6]. In the following, we explain a

Table 1 All n-dimensional discrete convex polyhedra, n =

0, 1, 2, 3, for the m-neighborhood systems, m = 6, 26,

up to rotations and symmetries.

discrete convex polyhedra
N 6

3

2

1

0

dim. N26

method prosed in [5], [6] for construction of a discrete poly-

hedral complex K from a finite point set V in Z3.

A discrete polyhedral complex is constructed with respect

to a chosen m-neighborhood where m = 6, 26. Let us first

consider the case of m = 26. We consider a unit cube whose

eight vertices are discrete points in Z3. Setting the value of

each point at either 1 or 0, we make a convex hull of points

whose value is 1. The dimension of such a convex hull can

vary from 0 to 3 and we see that every pair of adjacent ver-

tices of any discrete convex polyhedron are 26-neighboring,

as illustrated in Table 1. After generating a discrete convex

polyhedron in each unit cubic region, we compute the union

of all discrete convex polyhedra and their faces, and obtain

a discrete polyhedral complex K.

If we consider discrete convex polyhedra such that every

pair of adjacent vertices are 6-neighboring, we obtain only

one type of discrete convex polyhedra for each dimension as

shown in Table 1. Similarly to the case of m = 26, for the

case of m = 6, considering the union of all discrete convex

polyhedra and their faces, we obtain a polyhedral complex

K. The details and the precise algorithm can be found in [5].

3. 2 Collapsibility and simple points

In order to present a new local characterization of simple

points by using polyhedral complexes, we need to define the

following sets.

［Definition 4］ Let K be a polyhedral complex. The com-

binatorial closure of a subset K′⊂
=K is defined as Cl(K′) =

{τ ∈ K : τ ≺ σ, σ ∈ K′}.
［Definition 5］ For a polyhedral complex K, the star of

σ ∈ K is defined so that star(σ) = {τ ∈ K : σ ≺ τ}.
［Definition 6］ For a polyhedral complex K, the link of

a point σ ∈ K is defined so that link(σ) = Cl(star(σ)) \
star(σ).



If we need to emphasize K where a star and a link are

calculated, we denote them by star(σ : K) and link(σ : K)

respectively. Figure 1 shows examples of star and link. Note

that any link is a polyhedral complex while stars are not

always polyhedral complexes.

［Proposition 2］ Let V be a finite point set and cmp(V)

be a discrete polyhedral complex constructed from V for

the m-neighborhood system where m = 6, 26 as described

in Section 3. 1. A point x ∈ V is m-simple if and only if

link(x : cmp(V)) is collapsible.

We have calculated all local point configurations such that

link(x : cmp(V)) is collapsible, and have verified that they

are the same as those of m-simple points [2]. More precisely,

we obtain 550435 different local point configurations in a

3 × 3 × 3 point region for either case m = 6, 26. Remark

that this is not a coincidence; we can derive this result from

Proposition 1 which is obtained by another local character-

ization. We easily see that any m-simple point for V is a

m-simple point for V if we interchange V with V.

Similar characterizations of simple points can be found

in [3], [10]. Note that the topological space in [10] is dual

to a discrete polyhedral complex for 6-neighborhood [5], [6]

so that we have an inclusion relation ≺ which is inverse.

4. Topological characteristics of simple
points

4. 1 Some notions on polyhedral complexes

We give some notions for polyhedral complexes [5], [6].

［Definition 7］ An n-complex K is said to be pure if there

is at least one n-polyhedron σ ∈ K for every s-polyhedron

τ ∈ K so that τ ≺ σ.

Figure 2 shows examples of pure and non-pure discrete

complexes.

［Definition 8］ Let K be a polyhedral complex, and σ, τ

be arbitrary elements in K. We say that K is connected, if

we have a path σ = a1, a2, . . . , an = τ in K that satisfies

Cl({ai}) ∩ Cl({ai+1}) |= {∅} for every i = 1, 2, . . . , n− 1.

The dimension of star(σ) is defined as the largest dimen-

sion of convex polyhedra belonging to star(σ) and denoted

by dim(star(σ)).

4. 2 Topological characterisation by stars

For each 0-polyhedron, namely a point x, in the 0-skeleton

Sk0(K) of a polyhedral complex K, we define topological

x

(a) (c)(b)

Fig. 1 (a) A 3-complex K; (b) the star of x ∈ Sk0(K); (c) the

link of x.

(a) (b)

Fig. 2 Examples of (a) pure and (b) non-pure 3-complexes.

Fig. 3 One-dimensional topological characterisation of points

whose stars are linear, semi-linear and neither of them,

illustrated as grey, white and black points.

 

Fig. 4 Two-dimensional topological characterisation of points

whose stars are cyclic, semi-cyclic and neither of them,

illustrated as grey, white and black points.

characteristics of stars [1], [6].

［Definition 9］ Let K be a polyhedral complex and x ∈
Sk0(K). We say that star(x) is linear if link(x) consists of

two 0-polyhedra.

［Definition 10］ Let K be a polyhedral complex and x ∈
Sk0(K). We say that star(x) is semi-linear if link(x) con-

sists of one 0-polyhedron.

Figure 3 illustrates stars which are linear and semi-linear.

By using linear and semi-linear stars, we define combina-

torial curves.

［Definition 11］ Let K be a connected and pure 1-

complex. We say that K is a combinatorial curve with end-

points if the star of every 0-polyhedron in Sk0(K) is either

linear or semi-linear and there is at least one point whose

star is semi-linear in Sk0(K).

［Definition 12］ Let K be a connected and pure 1-

complex. We say that K is a combinatorial closed curve

if the star of every 0-polyhedron in Sk0(K) is linear.

By using the above definitions of combinatorial curves, we

define topological characteristics of stars in two dimensions.

［Definition 13］ Let K be a polyhedral complex and x ∈
Sk0(K). We say that star(x) is cyclic if link(x) is a combi-

natorial closed curve.

［Definition 14］ Let K be a polyhedral complex and x ∈
Sk0(K). We say that star(x) is semi-cyclic if link(x) is a

combinatorial curve with endpoints.

Figure 4 illustrates stars which are cyclic and semi-cyclic.

By using cyclic and semi-cyclic stars, we define combina-

torial surfaces.

［Definition 15］ Let K be a connected and pure 2-

complex. We say that K is a combinatorial surface with



Fig. 5 Three-dimensional topological characterisation of points

whose stars are spherical, semi-spherical and neither of

them, illustrated as grey, white and black points.

edges if every 0-polyhedron in Sk0(K) has either a cyclic or

semi-cyclic star, and there is at least one 0-polyhedron whose

star is semi-cyclic in Sk0(K).

［Definition 16］ Let K be a connected and pure 2-

complex. We say that K is a combinatorial closed surface if

every 0-polyhedron in Sk0(K) has a cyclic star.

By using combinatorial surfaces and the following com-

binatorial boundary, we define topological characteristics of

stars in three dimensions.

［Definition 17］ Let K be a pure n-complex where n > 0

and H be the set of all (n−1)-polyhedra in K each of which is

a face of exactly one n-polyhedron in K. The combinatorial

boundary of K is then defined as the pure (n − 1)-complex

∂K = Cl(H).

［Definition 18］ Let K be a polyhedral complex and x ∈
Sk0(K). We say that star(x) is spherical if link(x) is a

combinatorial closed surface.

［Definition 19］ Let K be a polyhedral complex and x ∈
Sk0(K). We say that star(x) is semi-spherical if link(x) is

a combinatorial surface with edges, and the edges, i.e., the

combinatorial boundary ∂(link(x)) is a combinatorial closed

curve.

Figure 5 illustrates stars which are spherical and semi-

spherical.

4. 3 Point classification

Each 0-polyhedron, namely point x, in the 0-skeleton

Sk0(K) of an n-complex K where n <= 3 can be classified

into one of the twelve types each of which satisfies one of the

following conditions [6].

（ 1） dim(star(x)) = 0, that is star(x) = {x};
（ 2） star(x) is linear;

（ 3） star(x) is semi-linear;

（ 4） dim(star(x)) = 1 and star(x) is neither linear nor

semi-linear;

（ 5） star(x) is cyclic;

（ 6） star(x) is semi-cyclic;

（ 7） dim(star(x)) = 2, Cl(star(x)) is pure, and star(x)

is neither cyclic nor semi-cyclic;

（ 8） dim(star(x)) = 2 and Cl(star(x)) is not pure;

（ 9） star(x) is spherical;

（ 10） star(x) is semi-spherical;

（ 11） dim(star(x)) = 3, Cl(star(x)) is pure, and star(x)

(a) (c)(b) (d)

Fig. 6 (a) Three points of type 7 which are colored in grey and

white, (b) the collapsible link of the grey point, and (c, d)

the noncollapsible links of the white points.

(a) (c)(b)

Fig. 7 (a) Two points of type 11 which are colored with grey and

white, (b) the collapsible link of the grey point, and (c)

the noncollapsible link of the white point.

is neither spherical nor semi-spherical;

（ 12） dim(star(x)) = 3 and Cl(star(x)) is not pure.

4. 4 Topological characteristics of simple points

In Section 4. 3, we showed that each point in a point set

V can be classified into one of the twelve types by using

the complicial representation cmp(V). In this subsection,

we check which types of points are simple.

According to Proposition 2, we verify the collapsibility of

link(x) for every type of points x and then obtain the fol-

lowing theorem. In this paper, we omit the proof due to the

page limitation.

［Theorem 1］ Every point whose type is either 3, 6 or 10

is always a simple point. Contrarily, any point whose type is

either 1, 2, 4, 5, 8 or 9 can never be a simple point.

From the above theorem, we see that points of types 7, 11

and 12, differing from the other types, have both cases which

are simple and not simple. Figures 6, 7 and 8 show examples

of simple and non-simple points for types 7, 11 and 12 re-

spectively. The examples illustrate that the connectivity of

link(x) is a necessary condition but not a sufficient one for

the collapsibility of link(x).

From Theorem 1, we also see that simple points can be of

the six different types 3, 6, 7, 10, 11, 12. Table 2 shows the

Table 2 The numbers of local point configurations of simple

points for each point type with respect to 6- and 26-

neighborhood systems.

6-neighborhood 26-neighborhood

type 3 134 280 3

type 6 345 016 398

type 7 28 994 1 037

type 10 14 031 290 979

type 11 332 28 525

type 12 27 782 229 493

total 550 435 550 435



(a) (c)(b)

Fig. 8 (a) Two points of type 12 which are colored in grey and

white, (b) the collapsible link of the grey point, and (c)

the noncollapsible link of the white point.

numbers of all different local configurations of simple points

for each point type.

5. Linear thinning algorithm

Given a finite subset V in Z3, we present a linear algo-

rithm for thinning V. In Algorithm 1, we require a list P

for deletable point candidates and also a boolean function

A : V → B for renewing the deletability of x ∈ V after

removing one of its neighboring points.

In Step 12 of Algorithm 1, we assume that points y whose

types can be changed due to removing x from V are in a

neighborhood of x, i.e. N(x). If we use a method in the

framework of either of a Khalimsky topology [8], a partially

ordered set [3] or a discrete polyhedral complex [5], [6] for con-

struction of a polyhedral complex cmp(V), such a neighbor-

hood N(x) can be considered to be the 26-neighborhood.

Obviously, the result of Algorithm 1 depends on a point

Algorithm 1: Thinning

input : a point set V ⊂ Z3

output: a thinned set V

begin1

obtain a set of all simple points P which are not2

endpoints in V;

foreach x ∈ V do3

if x ∈ P then4

A(x) ← True;5

else6

A(x) ← False;7

while P |= ∅ do8

select a point x ∈ P and P ← P \ {x};9

if A(x) = True then10

V ← V \ {x} (change the value of x from 1 to 0);11

foreach y ∈ N(x) ∩V do12

if A(y) = True and y is not simple or is an13

endpoint then

A(y) ← False;14

else if A(y) = False and y is simple but not15

an endpoint then

P ← P ∪ {y} and A(y) ← True;16

return V;17

end18

x ∈ P selected in Step 9. If we set no endpoint, thinning

results are topologically equivalent with respect to the ini-

tial set V. Therefore, we can simply realize P as a queue

in the case that we are interested in only topological results.

However, if we set endpoints and our interests are not only

topology but also geometry, we may need to realize P as a

priority queue whose priorities depend on distances from the

complement V, for example.

Applying Algorithm 1, we can obtain a curve or surface

skeleton of an initial set V, depending on the definition of

endpoints. Thanks to the results of topological point clas-

sification in Subsection 4. 3, we can set endpoints easily by

dimensions and topological characteristics of stars. If we set

endpoints to have type 3 (semi-linear), Algorithm 1 behaves

as a curve thinning. Similarly, if we set endpoints to have

type 3 and 6 (semi-linear and semi-cyclic), it behaves as a

surface thinning.

6. Setting of endpoints

The above discussion on the endpoint setting is intuitively

correct, but practically we cannot say that it always works.

For example, it is very rare that we use the 6-neighborhood

system for the curve/surface thinning because thinning re-

sults generally contain too many small parts because of too

many configurations of endpoints; see in Table 2 that there

are much more configurations of types 3 and 6 for the 6-

neighborhood than those for the 26-neighborhood. For the

26-neighborhood system, the curve thinning works very well

(see Fig. 10) while the surface thinning does not. This is

because we do not have enough endpoints (type 6) for the

26-neighborhood system as shown in Table 2. To obtain

those semi-cyclic points (type 6), we construct a polyhedral

complex as a collection of convex polyhedra each of which

is locally made from a set of points in V at a unit cubic

region. Therefore, a constructed polyhedron tends to have

three dimensions rather than less than three dimensions for

any point configuration.

We therefore propose a simple method to obtain more con-

figurations for semi-cyclic (type 6) points. In [6], we obtain

all possible configurations of discrete surfaces which appear

on the boundaries of 3D discrete objects and whose central

points have cyclic stars on the surfaces: 6 and 6028 configu-

(a) (b) (c)

Fig. 9 An example of semi-cyclic star generation for the 26-

neighborhood system; (a) a cyclic star, (b) a linear star

having the common central point of (a), and (c) two new

semi-cyclic stars made by cutting (a) by (b).



Fig. 10 The original 3D image (top), its curve thinning result

(bottom left), and its surface thinning result (bottom

right) for the 26-neighborhood system.

rations for the 6- and 26-neighborhood systems, respectively.

We cut each cyclic star (a discrete surface) by a linear star

(a discrete line) having the common central point and create

additional semi-cyclic stars. Figure 9 illustrates an example

for such a semi-cyclic star generation. Then we obtain 22399

configurations instead of 398 for type 6 in Table 2.

With these new semi-cyclic points, we obtain a surface

thinning result in Figs. 10, 11. In these examples, priori-

ties of P categorized by 26 directions are used. Figure 11

illustrates that we may dig a hole at the intersection of dig-

itized planes depending on the rotation of digitized planes

and the number of digitized planes. This is caused by the

image discreteness: locally we cannot distinguish between a

3D part and an intersection of two 2D parts if they have

the same local point configuration. In order to solve the

problem, additional topological configurations for surface in-

tersections [11] and/or supplementary geometrical concepts

will be necessary.

7. Conclusions

In this paper, we presented a new topological characteri-

zation of simple points by using collapsibility of polyhedral

complexes. By using the same framework, we showed that

our topological characterization/classification of points by

stars are useful for curve and surface thinning, but we also

showed that even our approach faces the problem, caused

by the discreteness of the space, such as thinning of surface

intersections.

Fig. 11 A surface thinning result for two intersected digitized

planes for the 26-neighborhood system (left) and the

magnification of the white square (right). A transparency

is given to make easy to see the interior such that there

are two deep holes dug from the surface edges at the

intersection and only one point is connected to surfaces.
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