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ABSTRACT

In this paper, we aim to develop an algorithm for the navigation
of an autonomous robot using optical flow observed through a vi-
sion system mounted on a mobile robot. Optical flow is used for
generating a temporal-model of the robot motion. The temporal-
model enables us to detect a planar area on which robot moves
by matching with optical flow, and estimate a ego-motion of the
mobile robot. If we obtain the planar area and a ego-motion,
we can navigate the mobile robot autonomously. We show ex-
periments for the detection of the planar area and estimation of
the ego-motion of the robot using the image sequence observed
through the mobile robot.

1. INTRODUCTION

Model-based method for object recognition provides a model-
based method for obstacle detection of mobile robots. CAD-
based method detects obstacles by matching geons [1] in a
database [2]. Environment-map-based method detects ob-
stacles using a environmental map without obstacles. The
first method requires to propose geons detect-base. The
second method requires a learning stage for the construc-
tion of environmental map in which the robot works. In
this paper, we propose a temporal-model-based navigation
strategy for autonomous mobile robots.
Temporal-model-based method detects the feasible region
where robot can move using three successive images ob-
served form mobile robot. First two images are used for
the generation of a short term model, second two images
are used for data. Matching these two features from suc-
cessive three images. Therefore, temporal-model-based
method dose not require neither model in a database nor a
learning stage for the generation model.
For the detection of obstacles or planar areas, there are
many methods using vision systems [3]. For example,
the methods of objects recognition using edge detection

or landmarks observation are dependent on the environ-
ment around a robot. These methods involve difficulties,
such as the need to predetermine landmarks, when applied
to general environments. If a robot captures an image se-
quence of moving objects, the optical flow [4] [5] [6] [7],
which is the flow of movement in the scene, is obtained
for the fundamental features to generate environment in-
formation around the mobile robot. Additionally, optical
flow is considered to be fundamental information for ob-
stacle detection in the context of biological data process-
ing [8]. Therefore, the use of optical flow is an appropriate
method for the detection of obstacles from the viewpoint
of the affinity between the robot and human beings.

The obstacle detection using optical flow is proposed in
[9] [10]. Enkelmann [9] proposed an obstacle-detection
method using the model vectors from motion parameters.
Santos-Victor and Sandini [10] also proposed an obstacle-
detection algorithm for a mobile robot using the inverse
projection of optical flow to ground floor. Those methods
require the learning stage for the construction of the model
of a robot motion and a environment. Figure 1 shows the
algorithm for the model-based method. In this method in
the learning stage, a model for the environment without
obstacles is generated.

Our algorithm generates a short term model of the flow
field using first two images from successive three images.
Furthermore, second two images from successive three
images generates features for obstacle detection. There-
fore, matching the short term model and features, the al-
gorithm detects a dominant plane as the feasible region on
which the mobile robot moves. Figure 2 shows the algo-
rithm for the temporal-model-based method. This method
generates temporal-models.
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Figure 1: Model-based navigation using optical flow. The
upper part is the learning stage for the construction of the
model of a robot motion and a environment. During a nav-
igation, obstacles are detected by matching optical flow of
this model and observed ones.

2. DOMINANT PLANE DETECTION FROM
IMAGE SEQUENCE

In this section, we develop an algorithm for the detection
of the dominant plane from the image sequence observed
by a camera mounted on a mobile robot. When the mo-
bile robot moves over the ground plane, we obtain suc-
cessive images which include a dominant plane area and
obstacles. The dominant plane is adapted as the model of
own navigation strategy. In own method, from a triplet
of successive images, the model is estimated and renewed
temporally.
First, we show that the corresponding points in a pair of
successive images, which are a projection of the domi-
nant plane in a space, are connected by an affine trans-
formation. Therefore, the computed optical flow from the
successive images describes the motion of the dominant
plane and obstacles on the basis of camera displacement.
Since the corresponding points in dominant plane motion
are combined by an affine transformation, we can compute
the affine coefficients in Eq.(1) from the optical flow on
the dominant plane. Once the affine coefficients are com-
puted, we can estimate the dominant plane motion in the
image from the affine coefficients. The dominant plane
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Figure 2: Temporal-model-based navigation using optical
flow. This method detects obstacles without a model. The
first two images from triplet of images are used for the
construction of temporal-models.

motion is described by a planar flow field, as shown in
Fig.3. The difference between the estimated planar flow
field and the computed optical flow field enables us to de-
tect the dominant plane area on the image by matching the
flow vectors on the image planes.

2.1. Approximation of dominant plane motion by affine
transformation

We show that the corresponding points in a pair of suc-
cessive images, which are a projection of the dominant
plane in a space, are connected by an affine transforma-
tion. Therefore, the corresponding points (u, v) and (u′, v′)
on the dominant plane are expressed by
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when the camera displacement is small. This means that
homography between the two images of a planar surface is
approximated by an affine transformation when the cam-
era displacement is small.
Setting H to be the 3 × 3 matrix [11], the homography
between the two images of a planar surface is expressed
as

p = Hp′, (2)

where p = (u, v, 1)> and p′ = (u′, v′, 1)> are the cor-
responding points on the two images. The matrix H is
expressed as

H = K(R + tn>)K−1, (3)
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Figure 3: Planar flow of the image sequence. top: Ex-
ample of camera displacement and the environment. left-
bottom: Computed optical flow. right-bottom: Estimated
planar flow. In a top-middle area, where exists the obsta-
cle, the length of optical flow is bigger than planar flow.

where K, R, t, and n are the projection matrix, the rota-
tion matrix, the translation vector, and the plane normal
of the planar surface, respectively. The matrixes K and
K−1 are affine transformations since these matrixes are
the projection matrix of the pinhole camera. Assuming
that the camera displacement is small, the matrix R and
the matrix tn> are approximated by an affine transforma-
tion. This approximation is illustrated in Fig.4. These ge-
ometrical and mathematical assumptions are valid when
the camera is mounted on a robot moving over the domi-
nant plane. Then above assumptions allow us to describe
the relationship between (u′, v′) and (u, v) as the affine
transformation. Therefore, setting a,b,c,d,e,f to be affine
coefficients, Eq.(2) can be expressed as Eq.(1). In the
next section, we develop an algorithm for the estimation
of these six parameters from a sequence of images.

2.2. Planar flow estimation

Using a pair of successive images from a sequence of im-
ages obtained from the camera during robot motion, we
compute the optical flow field (u̇, v̇). Since optical flow
is the correspondence of dense points between an image
pair, Eq.(1) can be applied to each point on the dominant
plane. Let (u, v) and (u′, v′) be the points of the corre-
sponding image coordinates in the two successive images.
Point (u′, v′) can be calculated by adding the flow vector
(u̇, v̇) to (u, v), if (u, v) and (u′, v′) are a pair of corre-
sponding points. Thus, by setting (u̇, v̇) to be the opti-
cal flow at point (u, v) in the image coordinate system, as
shown in Fig.5, we have the relation
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Figure 4: Approximation of dominant plane motion by
affine transformation. top: Homography is expressed by
x̂′ = Hx̂. bottom: Affine transformation is expressed by
x̂′ = Ax̂.

If we obtain (u, v) and (u′, v′), we can compute the affine
coefficients in Eq.(1). If three points are non-collinear,
Eq.(1) has a unique solution. Since the dominant plane
occupies the largest domain in the image, we select three
points randomly to compute the affine coefficients in the
successive pair of images. After we compute the affine
coefficients, using Eq.(1) again, we can compute the mo-
tion of the image sequence of the dominant plane, that is,
the collection of corresponding points
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in the image sequence can be regarded as motion flow of
the dominant plane on the basis of camera displacement
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Figure 5: Optical flow generated by affine transformation.
Optical flow (u̇, v̇) on the dominant plane is described as
an affine transformation.
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Figure 6: Optical flow computed from corresponding
points in two successive images. Optical flow is described
as the correspondence of the same points in the two suc-
cessive images. Therefore, point (u′, v′) is (u + u̇, v + v̇)
and planar flow (û, v̂) is (u ′ − u, v′ − v).

as shown in Fig.6. We call this flow planar flow (û, v̂).
This planar flow is used as temporal-model for dominant
plane detection.

2.3. Dominant plane detection

Next, we compute the dominant plane area using the esti-
mated planar flow and the computed optical flow. Setting
ε to be the tolerance of the difference between the optical
flow vector and the planar flow vector, if
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is satisfied, we accept point (ut, vt) as a point in the dom-
inant plane.

In the case that at least one point on the obstacle area in the
image is selected, the estimated planar flow is no longer
the dominant plane motion. Therefore, the detected dom-
inant plane area is very small. Since the dominant plane
occupies the largest domain in the image, in such cases,
it becomes evident that the selection of points is incorrect.
In those cases, we consequently select another three points
randomly. Figure 7 shows examples of each case.

Once we have detected the dominant plane in a certain
frame of the image sequence, the planar flow of subse-
quent images can be estimated robustly using the least-
squares method, because dense optical flows are used for
the estimation of affine coefficients. Assuming that the
robot displacement is small, the dominant plane of the
successive images changes negligibly. Therefore, using
the optical flow on the estimated dominant plane in the
previous image, we estimate the affine coefficients using
the least-squares method, as shown in Fig.8. Setting (ui, vi)
and (u′

i, v
′

i) (0 ≤ i ≤ n) to be corresponding points, the

Incorrect case. Correct case.

Figure 7: Examples of random sampling. Bottom-left is
incorrect case, since the point is selected on the obstacle
area. Select another points randomly. Bottom-right is cor-
rect case. This planar flow is equal to optical flow in 50%
or more of area.

mean-squared errors Eu and Ev associated with Eq.(1) are

Eu =

n
∑

i=1

{u′

i − (aui + bvi + c)}2, (7)

Ev =

n
∑

i=1

{v′

i − (dui + evi + f)}2, (8)

where n is the number of points used for estimation. There-
fore, we can compute affine coefficients which minimize
errors Eu and Ev . This algorithm generates planar flow
as temporal-model at subsequent frames

2.4. Procedure for dominant plane detection

Our algorithm is summarized as follows.

1. Compute optical flow (u̇, v̇) from two successive
images.

2. Compute affine coefficients in Eq.(1) by random se-
lection of three points.

3. Estimate planar flow (û, v̂) from affine coefficients.

4. Match the computed optical flow (u̇, v̇) and esti-
mated planar flow (û, v̂) using Eq.(6).

5. Detect the dominant plane. If the dominant plane
occupies less than half of the image area, then return
to step(2).

Figure 9 shows the procedure of dominant plane detection
from the image sequence.



t=1

pair of images

(u1,v1),(u2,v2)
dominant plane

t

pair of images

(ut,vt),(ut+1,vt+1)

dominant plane

Figure 8: For the first frame, our algorithm uses a pair of
images for the detection of the dominant plane. For subse-
quence frames, the dominant plane in the previous frame
is used for the application of the least-squares method.
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Figure 9: Procedure for dominant plane detection. (1)
Compute optical flow (u̇, v̇) from two successive images.
(2) Compute affine coefficients in Eq.(1) by random selec-
tion of three points. (3) Estimate planar flow (û, v̂) from
affine coefficients. (4) Match the computed optical flow
(u̇, v̇) and estimated planar flow (û, v̂) using Eq.(6). (5)
Detect the dominant plane. If the dominant plane occupies
less than half of the image area, then return to step(2).
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Figure 10: Strategy of a mobile robot. left: Robot moves
forward. middle: Robot rotates counterclockwise. right:
Robot rotates clockwise.

2.5. Navigation using the dominant plane

We describe an algorithm for navigation of a mobile robot
using the dominant plane. The percentages of the domi-
nant plane in the image determine for the robot a strategy
of a robot motion. If the percentage of the dominant plane
in the image is greater than 80% and the dominant plane of
the left side of the image is greater than that of right side,
the robot moves forward. If the percentage of the domi-
nant plane in the image is less than 80% and the dominant
plane of the left side of the image is greater than that of
right side, the robot rotates counterclockwise to avoid col-
lision of obstacles. If the percentage of the dominant plane
in the image is less than 80% and the dominant plane of
the right side of the image is greater than that of left side,
the robot rotates clockwise. These algorithm are summa-
rized in Fig. 10.

3. EXPERIMENT

In this section, we evaluate the performance of our method
for steps (2) and (5) of the algorithm listed in Fig.9, since
the estimation of affine coefficients and dominant plane
detection are essential to the resolution of our problem.
In Step (2), the parameters are estimated from the image
sequence. In Step (5), the area of the dominant plane in
the images is evaluated. These experiments are described
in subsections 4.1 and 4.2, respectively. For the compu-
tation of optical flow, we use the Lucas-Kanade method



with pyramids [12]. The tolerance for the matching of
flow vectors in Eq.(6) is set to be ε = 0.2, which was
determined experimentally.
To evaluate the accuracy of the dominant plane detection,
we define the error ratio E(t). Setting D(u, v, t) and M(u, v, t)
to be the dominant planes on the image coordinate system
(u, v) at frame t detected from the optical flow and de-
tected manually, respectively, and setting

D(u, v, t) =

{

0 for dominant plane
1 for other area

, (9)

M(u, v, t) =

{

0 for dominant plane
1 for other area

, (10)

we evaluate the ratio

E(t) = 100

∑

u,v
|M(u, v, t) − D(u, v, t)|

∑

u,v
1

(11)

as a function of time t.

3.1. The error rate of affine coefficients with uniform
motion

First, we show the validity of the affine transformation in
two successive images. From Eq.(1), we define matrix At

as

At =





a b c

d e f

0 0 1



 , (12)

where t is the frame number in the image sequence. As-
suming that the velocity of camera displacement is con-
stant in the two successive of images, the relation At+1 '
At is satisfied. Therefore, we define the error of affine
coefficients as

e(t) = |At+1 − At|
2. (13)

In this experiment, we use the marbled-block image se-
quence [13], since the velocity of camera displacement
should be constant. Figure 11 shows the error of affine
coefficients. Figs.12 and 13 show the image sequence of
the detected dominant plane and the error ratio of the dom-
inant plane, respectively.
Figure 11 shows that |At+1 − At|

2 approaches zero with
time. Therefore, the affine coefficients are constant when
the camera displacement is constant. We show the validity
of the affine transformation in two successive images.

3.2. Detection of dominant plane

We show next the validity of the random selection of three
points for the computation of affine coefficients. In this
experiment, we use image sequences of forward motion
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Figure 11: Error of affine coefficients. The vertical axis
is the error of affine coefficients e(t), as given by Eq.(13).
The horizontal axis is the frame number of the image se-
quence.

Figure 12: Detected dominant plane in frames 0, 10
and 20. The original image(top-left), and detected dom-
inant plane in frames 0(top-right), 10(bottom-left) and
20(bottom-right). In the images of the dominant plane,
the white areas are the dominant planes and the black ar-
eas are obstacles.
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Figure 13: Error ratio of dominant plane detection using
the image sequence shown in Fig.12. The vertical axis is
the error ratio E(t) expressed by Eq.(11). The horizontal
axis is the frame number of the image sequence.

Table 1: Error ratios of dominant plane detection in
Fig.14. In the second row, F90, F80 and F70 are the image
sequences of forward motion in which the percentages of
the dominant plane in the image are 90%, 80% and 70%,
respectively. Rotation gives the image sequence of rota-
tional motion. This image sequence is shown in the first
row of Fig.14.

error ratio E(t) [%]
frame F90 F80 F70 Rotation

0 23.22 24.01 20.33 19.37
1 14.40 12.99 12.29 14.50
2 10.91 11.83 10.45 11.09
3 10.54 11.08 10.55 11.29

and rotational motion, because the motion of a mobile
robot mainly consists of these motions. For forward mo-
tion, we prepared image sequences in which the percent-
ages of the dominant plane are 90%, 80% and 70%, since
we assume that the dominant plane occupies more than
half of an image. These percentages of the dominant plane
were computed using M(u, v, t) in Eq.(10). For rotational
motion, we use the rotating blocks image sequence [14].

The result of dominant plane detection is shown in Fig.14.
The first row is the original image, and from the second
row to the fifth row, we show image sequences of the dom-
inant plane in the first, second, third and fourth frames, re-
spectively. In the three images of the dominant plane, the
white areas are the dominant planes and the black areas
are the obstacles. Table 1 lists error ratios evaluated with
Eq.(11).

Figure 14 and Tab.1 show that the validity of regions de-
tected as the dominant plane increases with time.

Figure 14: Detected dominant plane. The first and second
column are the original image and the dominant plane,
respectively.



Figure 15: Detected dominant plane at the 50, 100, 150
and 200 frames.

3.3. Dominant plane detection in the long sequence

We present the dominant plane detection in a long image
sequence for the navigation and path planning of the mo-
bile robot. Figure 15 and Fig.16 show the results for the
dominant plane detection and the error ratio, respectively.
As evident from Fig.16, even if the error ratio increases
in a sequence, the error ratio becomes small with a subse-
quent frame. Therefore, our method detects the dominant
plane without accumulation of the error ratio. Our algo-
rithm runs on a 2.0 GHz Pentium4 for 320 × 240 images
and takes 0.25 seconds per frame for the detection of the
dominant plane.
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Figure 16: Error ratio E(t). The vertical axis is the er-
ror ratio E(t) in Eq.(11). The horizontal axis is the frame
number of the image sequence.

Figure 17: The left column shows the images of the ex-
perimental environment, the middle column shows the im-
ages observed by the mobile robot, and the right column
shows the dominant planes computed by our algorithm.
The top, middle, and bottom rows are captured at frame
16, 68, and 100, respectively.

3.4. Autonomous navigation of the mobile robot

Using the algorithm of Section 3.4., we experiment for the
obstacle avoidance of the mobile robot. Figure 17 shows
the result of the experiment. In the top row of Fig.17, at
the 16 frame, the robot rotates counterclockwise since the
robot detects the obstacle in the right side of the image.
In the middle row of Fig.17, at the 68 frame, the robot ro-
tates clockwise since the robot detects the obstacle in the
left side of the image. In the bottom row of Fig.17, at the
100 frame, the robot moves forward since the percentage
of the dominant plane in the image is greater than 80%.
Figure 18 shows the top view of the experimental envi-
ronment. Figure 18 is generated by projecting dominant
planes in the image plane onto the ground plane. Figure
18 is generated by projecting dominant planes in the im-
age plane onto the ground plane. The trajectory of the mo-
bile robot is also obtained by projecting the planar flow in
the image plane onto the ground plane.

4. CONCLUSION

We developed an algorithm for the navigation of a mo-
bile robot by temporal-model-based planar area detection
using optical flow. The algorithm allows the positions of
obstacles and the location of the robot to be detected us-
ing optical flow using optical flow computed from the im-
age sequence observed through the camera mounted on
the mobile robot. Furthermore, we showed that corre-
sponding points on dominant planes in a pair of succes-
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Figure 18: Environmental map computed from dominant
plane. White and black area are planar area and obstacles,
respectively. The line started at the origin is the trajectory
of the location of the mobile robot. We set the vertical axis
to coincide with the direction of the robot at initial loca-
tion, and the horizontal axis to be orthogonal the vertical
axis.

sive images are combined by affine transformation. Us-
ing this idea, if we compute the affine coefficients which
relate the corresponding points in two successive images,
we can easily obtain a dense planar flow which expresses a
camera motion. This property of the points in a dominant
plane allows us to design an algorithm which enable the
dominant plane to be detected by simple pattern matching
of the flow vectors in a series of dominant planes.
Although model-based approach to dominant plane de-
tection has been proposed in [9], our method is a non-
model-based approach. In addition, our algorithm allows
the dominant plane to be detected without camera cali-
bration, since our algorithm uses short-term model of the
robot motion. Results of experiments using real image
sequences confirmed that the dominant plane can be de-
tected accurately. These experiments allow the applica-
tion of our method to the navigation and path planning of
a mobile robot with a vision system.
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