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In this paper, we aim to develop an algorithm for the navigation of an autonomous robot using optical flow observed through a vision system mounted on a mobile robot. Optical flow is used for generating a temporal-model of the robot motion. The temporalmodel enables us to detect a planar area on which robot moves by matching with optical flow, and estimate a ego-motion of the mobile robot. If we obtain the planar area and a ego-motion, we can navigate the mobile robot autonomously. We show experiments for the detection of the planar area and estimation of the ego-motion of the robot using the image sequence observed through the mobile robot.

...

INTRODUCTION

Model-based method for object recognition provides a modelbased method for obstacle detection of mobile robots. CADbased method detects obstacles by matching geons [START_REF] Biederman | Human image understanding: Recent research and a theory[END_REF] in a database [START_REF] Dickinson | Decoupling recog-nition and localization in cad-based vision[END_REF]. Environment-map-based method detects obstacles using a environmental map without obstacles. The first method requires to propose geons detect-base. The second method requires a learning stage for the construction of environmental map in which the robot works. In this paper, we propose a temporal-model-based navigation strategy for autonomous mobile robots. Temporal-model-based method detects the feasible region where robot can move using three successive images observed form mobile robot. First two images are used for the generation of a short term model, second two images are used for data. Matching these two features from successive three images. Therefore, temporal-model-based method dose not require neither model in a database nor a learning stage for the generation model. For the detection of obstacles or planar areas, there are many methods using vision systems [START_REF] Guilherme | Vision for mobile robot navigation: A survey[END_REF]. For example, the methods of objects recognition using edge detection or landmarks observation are dependent on the environment around a robot. These methods involve difficulties, such as the need to predetermine landmarks, when applied to general environments. If a robot captures an image sequence of moving objects, the optical flow [START_REF] Barron | Performance of optical flow techniques[END_REF] [START_REF] Horn | Determining optical flow[END_REF] [6] [START_REF] Nagel | An investigation of smoothness constraint for the estimation of displacement vector fields from image sequences[END_REF], which is the flow of movement in the scene, is obtained for the fundamental features to generate environment information around the mobile robot. Additionally, optical flow is considered to be fundamental information for obstacle detection in the context of biological data processing [START_REF] Mallot | Inverse perspective mapping simplifies optical flow computation and obstacle detection[END_REF]. Therefore, the use of optical flow is an appropriate method for the detection of obstacles from the viewpoint of the affinity between the robot and human beings.

The obstacle detection using optical flow is proposed in [START_REF] Enkelmann | Obstacle detection by evaluation of optical flow fields from image sequences[END_REF] [START_REF] Santos-Victor | Uncalibrated obstacle detection using normal flow[END_REF]. Enkelmann [START_REF] Enkelmann | Obstacle detection by evaluation of optical flow fields from image sequences[END_REF] proposed an obstacle-detection method using the model vectors from motion parameters. Santos-Victor and Sandini [START_REF] Santos-Victor | Uncalibrated obstacle detection using normal flow[END_REF] also proposed an obstacledetection algorithm for a mobile robot using the inverse projection of optical flow to ground floor. Those methods require the learning stage for the construction of the model of a robot motion and a environment. Figure 1 shows the algorithm for the model-based method. In this method in the learning stage, a model for the environment without obstacles is generated.

Our algorithm generates a short term model of the flow field using first two images from successive three images. Furthermore, second two images from successive three images generates features for obstacle detection. Therefore, matching the short term model and features, the algorithm detects a dominant plane as the feasible region on which the mobile robot moves. Figure 2 shows the algorithm for the temporal-model-based method. This method generates temporal-models. 

DOMINANT PLANE DETECTION FROM IMAGE SEQUENCE

In this section, we develop an algorithm for the detection of the dominant plane from the image sequence observed by a camera mounted on a mobile robot. When the mobile robot moves over the ground plane, we obtain successive images which include a dominant plane area and obstacles. The dominant plane is adapted as the model of own navigation strategy. In own method, from a triplet of successive images, the model is estimated and renewed temporally.

First, we show that the corresponding points in a pair of successive images, which are a projection of the dominant plane in a space, are connected by an affine transformation. Therefore, the computed optical flow from the successive images describes the motion of the dominant plane and obstacles on the basis of camera displacement. Since the corresponding points in dominant plane motion are combined by an affine transformation, we can compute the affine coefficients in Eq.( 1) from the optical flow on the dominant plane. Once the affine coefficients are computed, we can estimate the dominant plane motion in the image from the affine coefficients. The dominant plane motion is described by a planar flow field, as shown in Fig. 3. The difference between the estimated planar flow field and the computed optical flow field enables us to detect the dominant plane area on the image by matching the flow vectors on the image planes.

Approximation of dominant plane motion by affine transformation

We show that the corresponding points in a pair of successive images, which are a projection of the dominant plane in a space, are connected by an affine transformation. Therefore, the corresponding points (u, v) and (u , v ) on the dominant plane are expressed by

u v = a b d e u v + c f , (1) 
when the camera displacement is small. This means that homography between the two images of a planar surface is approximated by an affine transformation when the camera displacement is small. Setting H to be the 3 × 3 matrix [START_REF] Hartley | Multiple view geometry in computer vision[END_REF], the homography between the two images of a planar surface is expressed as

p = Hp , (2) 
where p = (u, v, 1) and p = (u , v , 1) are the corresponding points on the two images. The matrix H is expressed as where K, R, t, and n are the projection matrix, the rotation matrix, the translation vector, and the plane normal of the planar surface, respectively. The matrixes K and K -1 are affine transformations since these matrixes are the projection matrix of the pinhole camera. Assuming that the camera displacement is small, the matrix R and the matrix tn are approximated by an affine transformation. This approximation is illustrated in Fig. 4. These geometrical and mathematical assumptions are valid when the camera is mounted on a robot moving over the dominant plane. Then above assumptions allow us to describe the relationship between (u , v ) and (u, v) as the affine transformation. Therefore, setting a,b,c,d,e,f to be affine coefficients, Eq.( 2) can be expressed as Eq.( 1). In the next section, we develop an algorithm for the estimation of these six parameters from a sequence of images.

H = K(R + tn )K -1 , (3) 

Planar flow estimation

Using a pair of successive images from a sequence of images obtained from the camera during robot motion, we compute the optical flow field ( u, v). Since optical flow is the correspondence of dense points between an image pair, Eq.( 1) can be applied to each point on the dominant plane. Let (u, v) and (u , v ) be the points of the corresponding image coordinates in the two successive images. Point (u , v ) can be calculated by adding the flow vector ( u, v) to (u, v), if (u, v) and (u , v ) are a pair of corresponding points. Thus, by setting ( u, v) to be the optical flow at point (u, v) in the image coordinate system, as shown in Fig. 5, we have the relation If we obtain (u, v) and (u , v ), we can compute the affine coefficients in Eq.( 1). If three points are non-collinear, Eq.( 1) has a unique solution. Since the dominant plane occupies the largest domain in the image, we select three points randomly to compute the affine coefficients in the successive pair of images. After we compute the affine coefficients, using Eq.( 1) again, we can compute the motion of the image sequence of the dominant plane, that is, the collection of corresponding points

u v = u v + u v . (4) 
û v = u v - u v (5) 
in the image sequence can be regarded as motion flow of the dominant plane on the basis of camera displacement 

t t t+∆t u v u' v' a=(u,v) a'=(u',v') o o' (u,v) . .
(u , v ) is (u + u, v + v) and planar flow (û, v) is (u -u, v -v).
as shown in Fig. 6. We call this flow planar flow (û, v). This planar flow is used as temporal-model for dominant plane detection.

Dominant plane detection

Next, we compute the dominant plane area using the estimated planar flow and the computed optical flow. Setting ε to be the tolerance of the difference between the optical flow vector and the planar flow vector, if

ut ut - ût ût < ε (6) 
is satisfied, we accept point (u t , v t ) as a point in the dominant plane.

In the case that at least one point on the obstacle area in the image is selected, the estimated planar flow is no longer the dominant plane motion. Therefore, the detected dominant plane area is very small. Since the dominant plane occupies the largest domain in the image, in such cases, it becomes evident that the selection of points is incorrect.

In those cases, we consequently select another three points randomly. Figure 7 shows examples of each case.

Once we have detected the dominant plane in a certain frame of the image sequence, the planar flow of subsequent images can be estimated robustly using the leastsquares method, because dense optical flows are used for the estimation of affine coefficients. Assuming that the robot displacement is small, the dominant plane of the successive images changes negligibly. Therefore, using the optical flow on the estimated dominant plane in the previous image, we estimate the affine coefficients using the least-squares method, as shown in Fig. 8. Setting (u i , v i ) and (u i , v i ) (0 ≤ i ≤ n) to be corresponding points, the Incorrect case. Correct case.

Figure 7: Examples of random sampling. Bottom-left is incorrect case, since the point is selected on the obstacle area. Select another points randomly. Bottom-right is correct case. This planar flow is equal to optical flow in 50% or more of area.

mean-squared errors E u and E v associated with Eq.( 1) are

E u = n i=1 {u i -(au i + bv i + c)} 2 , (7) 
E v = n i=1 {v i -(du i + ev i + f )} 2 , ( 8 
)
where n is the number of points used for estimation. Therefore, we can compute affine coefficients which minimize errors E u and E v . This algorithm generates planar flow as temporal-model at subsequent frames

Procedure for dominant plane detection

Our algorithm is summarized as follows.

1. Compute optical flow ( u, v) from two successive images.

2. Compute affine coefficients in Eq.( 1) by random selection of three points.

3. Estimate planar flow (û, v) from affine coefficients.

4. Match the computed optical flow ( u, v) and estimated planar flow (û, v) using Eq.( 6).

5. Detect the dominant plane. If the dominant plane occupies less than half of the image area, then return to step(2).

Figure 9 shows the procedure of dominant plane detection from the image sequence. 

Navigation using the dominant plane

We describe an algorithm for navigation of a mobile robot using the dominant plane. The percentages of the dominant plane in the image determine for the robot a strategy of a robot motion. If the percentage of the dominant plane in the image is greater than 80% and the dominant plane of the left side of the image is greater than that of right side, the robot moves forward. If the percentage of the dominant plane in the image is less than 80% and the dominant plane of the left side of the image is greater than that of right side, the robot rotates counterclockwise to avoid collision of obstacles. If the percentage of the dominant plane in the image is less than 80% and the dominant plane of the right side of the image is greater than that of left side, the robot rotates clockwise. These algorithm are summarized in Fig. 10.

EXPERIMENT

In this section, we evaluate the performance of our method for steps (2) and ( 5) of the algorithm listed in Fig. 9, since the estimation of affine coefficients and dominant plane detection are essential to the resolution of our problem. In Step (2), the parameters are estimated from the image sequence. In Step [START_REF] Horn | Determining optical flow[END_REF], the area of the dominant plane in the images is evaluated. These experiments are described in subsections 4.1 and 4.2, respectively. For the computation of optical flow, we use the Lucas-Kanade method with pyramids [START_REF] Bouguet | Pyramidal implementation of the lucas kanade feature tracker description of the algorithm[END_REF]. The tolerance for the matching of flow vectors in Eq.( 6) is set to be ε = 0.2, which was determined experimentally. To evaluate the accuracy of the dominant plane detection, we define the error ratio E(t). Setting D(u, v, t) and M (u, v, t) to be the dominant planes on the image coordinate system (u, v) at frame t detected from the optical flow and detected manually, respectively, and setting

D(u, v, t) = 0 for dominant plane 1 for other area , (9) 
M (u, v, t) = 0 for dominant plane 1 for other area ,

we evaluate the ratio

E(t) = 100 u,v |M (u, v, t) -D(u, v, t)| u,v 1 (11) 
as a function of time t.

The error rate of affine coefficients with uniform motion

First, we show the validity of the affine transformation in two successive images. From Eq.( 1), we define matrix A t as

A t =   a b c d e f 0 0 1   , ( 12 
)
where t is the frame number in the image sequence. Assuming that the velocity of camera displacement is constant in the two successive of images, the relation A t+1 A t is satisfied. Therefore, we define the error of affine coefficients as

e(t) = |A t+1 -A t | 2 . (13) 
In this experiment, we use the marbled-block image sequence [START_REF]Marbled-block sequence: recorded and first evaluated by otte and nagel[END_REF], since the velocity of camera displacement should be constant. Figure 11 shows the error of affine coefficients. Figs.12 and 13 show the image sequence of the detected dominant plane and the error ratio of the dominant plane, respectively. Figure 11 shows that |A t+1 -A t | 2 approaches zero with time. Therefore, the affine coefficients are constant when the camera displacement is constant. We show the validity of the affine transformation in two successive images.

Detection of dominant plane

We show next the validity of the random selection of three points for the computation of affine coefficients. In this experiment, we use image sequences of forward motion is the error of affine coefficients e(t), as given by Eq.( 13).

The horizontal axis is the frame number of the image sequence. and rotational motion, because the motion of a mobile robot mainly consists of these motions. For forward motion, we prepared image sequences in which the percentages of the dominant plane are 90%, 80% and 70%, since we assume that the dominant plane occupies more than half of an image. These percentages of the dominant plane were computed using M (u, v, t) in Eq. [START_REF] Santos-Victor | Uncalibrated obstacle detection using normal flow[END_REF]. For rotational motion, we use the rotating blocks image sequence [START_REF]Rotating blocks: Otago optical flow evaluation sequences[END_REF].

The result of dominant plane detection is shown in Fig. 14. The first row is the original image, and from the second row to the fifth row, we show image sequences of the dominant plane in the first, second, third and fourth frames, respectively. In the three images of the dominant plane, the white areas are the dominant planes and the black areas are the obstacles. Table 1 lists error ratios evaluated with Eq. [START_REF] Hartley | Multiple view geometry in computer vision[END_REF]. 

Dominant plane detection in the long sequence

We present the dominant plane detection in a long image sequence for the navigation and path planning of the mobile robot. Figure 15 and Fig. 16 show the results for the dominant plane detection and the error ratio, respectively. As evident from Fig. 16, even if the error ratio increases in a sequence, the error ratio becomes small with a subsequent frame. Therefore, our method detects the dominant plane without accumulation of the error ratio. Our algorithm runs on a 2.0 GHz Pentium4 for 320 × 240 images and takes 0.25 seconds per frame for the detection of the dominant plane. 

Autonomous navigation of the mobile robot

Using the algorithm of Section 3.4., we experiment for the obstacle avoidance of the mobile robot. Figure 17 shows the result of the experiment. In the top row of Fig. 17, at the 16 frame, the robot rotates counterclockwise since the robot detects the obstacle in the right side of the image.

In the middle row of Fig. 17, at the 68 frame, the robot rotates clockwise since the robot detects the obstacle in the left side of the image. In the bottom row of Fig. 17, at the 100 frame, the robot moves forward since the percentage of the dominant plane in the image is greater than 80%.

Figure 18 shows the top view of the experimental environment. Figure 18 is generated by projecting dominant planes in the image plane onto the ground plane. Figure 18 is generated by projecting dominant planes in the image plane onto the ground plane. The trajectory of the mobile robot is also obtained by projecting the planar flow in the image plane onto the ground plane.

CONCLUSION

We developed an algorithm for the navigation of a mobile robot by temporal-model-based planar area detection using optical flow. The algorithm allows the positions of obstacles and the location of the robot to be detected using optical flow using optical flow computed from the image sequence observed through the camera mounted on the mobile robot. Furthermore, we showed that corresponding points on dominant planes in a pair of succes- The line started at the origin is the trajectory of the location of the mobile robot. We set the vertical axis to coincide with the direction of the robot at initial location, and the horizontal axis to be orthogonal the vertical axis.

sive images are combined by affine transformation. Using this idea, if we compute the affine coefficients which relate the corresponding points in two successive images, we can easily obtain a dense planar flow which expresses a camera motion. This property of the points in a dominant plane allows us to design an algorithm which enable the dominant plane to be detected by simple pattern matching of the flow vectors in a series of dominant planes.

Although model-based approach to dominant plane detection has been proposed in [START_REF] Enkelmann | Obstacle detection by evaluation of optical flow fields from image sequences[END_REF], our method is a nonmodel-based approach. In addition, our algorithm allows the dominant plane to be detected without camera calibration, since our algorithm uses short-term model of the robot motion. Results of experiments using real image sequences confirmed that the dominant plane can be detected accurately. These experiments allow the application of our method to the navigation and path planning of a mobile robot with a vision system.

Figure 1 :

 1 Figure 1: Model-based navigation using optical flow. The upper part is the learning stage for the construction of the model of a robot motion and a environment. During a navigation, obstacles are detected by matching optical flow of this model and observed ones.

Figure 2 :

 2 Figure 2: Temporal-model-based navigation using optical flow. This method detects obstacles without a model. The first two images from triplet of images are used for the construction of temporal-models.

Figure 3 :

 3 Figure 3: Planar flow of the image sequence. top: Example of camera displacement and the environment. leftbottom: Computed optical flow. right-bottom: Estimated planar flow. In a top-middle area, where exists the obstacle, the length of optical flow is bigger than planar flow.

2 XFigure 4 :

 24 Figure 4: Approximation of dominant plane motion by affine transformation. top: Homography is expressed by x = Hx. bottom: Affine transformation is expressed by x = Ax.

Figure 5 :

 5 Figure 5: Optical flow generated by affine transformation. Optical flow ( u, v) on the dominant plane is described as an affine transformation.
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Figure 6 :

 6 Figure 6: Optical flow computed from corresponding points in two successive images. Optical flow is described as the correspondence of the same points in the two successive images. Therefore, point (u , v ) is (u + u, v + v) and planar flow (û, v) is (uu, vv).

  (u t ,v t ),(u t+1 ,v t+1 ) dominant plane

Figure 8 : 9 :

 89 Figure8: For the first frame, our algorithm uses a pair of images for the detection of the dominant plane. For subsequence frames, the dominant plane in the previous frame is used for the application of the least-squares method.

Figure 10 :

 10 Figure 10: Strategy of a mobile robot. left: Robot moves forward. middle: Robot rotates counterclockwise. right: Robot rotates clockwise.

Figure 11 :

 11 Figure11: Error of affine coefficients. The vertical axis is the error of affine coefficients e(t), as given by Eq.(13). The horizontal axis is the frame number of the image sequence.

Figure 12 :

 12 Figure 12: Detected dominant plane in frames 0, 10 and 20. The original image(top-left), and detected dominant plane in frames 0(top-right), 10(bottom-left) and 20(bottom-right). In the images of the dominant plane, the white areas are the dominant planes and the black areas are obstacles.

Figure 13 :

 13 Figure13: Error ratio of dominant plane detection using the image sequence shown in Fig.12. The vertical axis is the error ratio E(t) expressed by Eq.(11). The horizontal axis is the frame number of the image sequence.

Figure 14 and

 14 Figure 14 and Tab.1 show that the validity of regions detected as the dominant plane increases with time.

Figure 14 :

 14 Figure 14: Detected dominant plane. The first and second column are the original image and the dominant plane, respectively.

Figure 15 :

 15 Figure 15: Detected dominant plane at the 50, 100, 150 and 200 frames.

Figure 16 :

 16 Figure16: Error ratio E(t). The vertical axis is the error ratio E(t) in Eq.[START_REF] Hartley | Multiple view geometry in computer vision[END_REF]. The horizontal axis is the frame number of the image sequence.

Figure 17 :

 17 Figure 17: The left column shows the images of the experimental environment, the middle column shows the images observed by the mobile robot, and the right column shows the dominant planes computed by our algorithm. The top, middle, and bottom rows are captured at frame 16, 68, and 100, respectively.

Figure 18 :

 18 Figure18: Environmental map computed from dominant plane. White and black area are planar area and obstacles, respectively. The line started at the origin is the trajectory of the location of the mobile robot. We set the vertical axis to coincide with the direction of the robot at initial location, and the horizontal axis to be orthogonal the vertical axis.

Table 1 :

 1 Error ratios of dominant plane detection in Fig.14. In the second row, F90, F80 and F70 are the image sequences of forward motion in which the percentages of the dominant plane in the image are 90%, 80% and 70%, respectively. Rotation gives the image sequence of rotational motion. This image sequence is shown in the first row of Fig.14.

			error ratio E(t) [%]
	frame	F90	F80	F70	Rotation
	0 23.22 24.01 20.33	19.37
	1 14.40 12.99 12.29	14.50
	2 10.91 11.83 10.45	11.09
	3 10.54 11.08 10.55	11.29