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Abstract

Representing discrete objects by polyhedral complexes, we can define all conceivable
topological characteristics of points in discrete objects, namely those of vertices of
polyhedral complexes. Such a topological characteristic is determined for each point
by observing a configuration of object points in the 3 × 3 × 3 local point set of
its neighbors. We study a topological characteristic such that the point is in the
boundary of a 3D polyhedral complex and the boundary forms a 2D combinatorial
surface. By using the topological characteristic, we present an algorithm which
examines whether the central point of a local point set is in a combinatorial surface,
and show how many local point configurations exist in combinatorial surfaces in a
3D discrete space.
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1 Introduction

Surfaces are often used in the three-dimensional image analysis, sometimes
implicitly. For example, the method called active balloon uses a deformable
surface for the three-dimensional image segmentation [5]. For such image seg-
mentation, first an initial surface is set and then its shape is changed by using
geometric characteristics such as curvatures. In many cases, such a deformable
surface is realized by a continuous surface which is interpolated from discrete
points in a three-dimensional digital space, such as a spline surface, and its
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shape is changed by moving its control points in a continuous space [17]. If we
need a result such as a segmented object in a discrete space after its contin-
uous deformation, we therefore rediscretize the continuous surface to obtain
a discrete object in a digital image. Obviously, continuous surface models are
not efficient for the case such that both input and output are required to be
discrete. It is more efficient to use a discrete surface model which allows us to
make discrete deformation [7]. In this paper, we study discrete combinatorial
surfaces and their local configurations, especially in the 3×3×3 point region.
We insist that such local configurations determine local geometric parameters
such as curvatures in a discrete space. Therefore, if we can obtain all local
configurations appearing in discrete surfaces a priori, we can expect to ob-
tain useful properties which may give us efficient algorithms for calculation of
geometric parameters as well as those for surface deformation based on such
parameters.

Let us consider a three-dimensional discrete space Z
3, consisting of lattice

points whose coordinates are all integers in a three-dimensional Euclidean
space R

3. In our previous work [14], we presented a boundary extraction algo-
rithm which provides a triangulation (or polygonization) of a set of boundary
points given by

Brm(V) = {x ∈ V : Nm(x) ∩ V 6= ∅} (1)

where V is the input, i.e., a discrete object in Z
3 and V is the complement.

Nm(x) is the m-neighborhood of a point x in Z
3, defined by

Nm(x) = {y ∈ Z
3 : ‖x − y‖2 ≤ t}

where t = 1, 2, 3 for m = 6, 18, 26 respectively. Applying discrete polyhedral
complexes [14] based on combinatorial topology [1,19,20] to object represen-
tation, we can obtain topologies for boundary points. With a help of the
topologies, we found that boundary points in Brm(V) include not only sur-
face points, i.e., points on 2-dimensional combinatorial manifolds, but also
non-surface points, i.e., singular points, as shown in Fig. 1. In this paper, we
use local topological notions similarly to our work [12] to discriminate surface

Fig. 1. Examples of local configurations in a 3×3×3 point region so that the central
point is considered to be a boundary point [14]; a surface point (left), a surface point
but not a simplicity surface point [6] (center), and a non-surface point, i.e., a singular
point (right).
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points from boundary points. Such notions enable us to present an algorithm
to count the local point configurations appearing in discrete combinatorial
surfaces for the 6-, 18- and 26-neighborhood systems; discrete combinatorial
surfaces are defined for any m-neighborhood system, m = 6, 18, 26, such that
their adjacent vertices are m-neighboring. Because there are a finite number
of points in the local region, there must be a finite number of local point
configurations in discrete combinatorial surfaces.

For the 6-neighborhood system, the definition of discrete combinatorial sur-
faces is given by Françon in [8] and he showed that there are 6 local configura-
tions of discrete surfaces for the 6-neighborhood system as illustrated in Fig.
2. Note that the similar results are obtained by using different approaches,
for example, in [10,11]. The discrete deformation model based on such dis-
crete surface configurations for 6-neighborhood system is also presented in
[7]. Moreover, Françon and Kenmochi et al. show that there are five local
configurations which appear in discrete planes, illustrated as the five left con-
figurations in Fig. 2 [9,13]. In other words, there is only one configuration (the
most right one in Fig. 2) which does not appear in discrete planes but appears
in discrete non-planar surfaces.

In [8], however, the 18- and 26-neighborhoods are not practically treated so
that we do not see how to generate discrete combinatorial surfaces for the
18- and 26-neighborhood systems, even if the mathematical definition is given
for any neighborhood system. Morgenthaler et al. defined discrete surfaces
by using the point connectivity based on the Jordan surface theorem; any
Jordan surface divides the space into two [18]. In [6], Couprie et al. pointed
out that, for the 26-neighborhood system, Morgenthaler’s discrete surfaces
have only 13 local configurations while their discrete surfaces, called simplicity
surfaces, have 736 configurations. However, we see that even simplicity surfaces
do not give enough configurations if we would like to treat our boundary
points. For example, we obtain a boundary point by applying our boundary
extraction algorithm [14] as illustrated in Fig. 1 (center) and we see that it is
not considered to be a simplicity surface. Ciria et al. also presented a graph-
based notion of discrete surfaces for the 26-neighborhood system, though the
number of all local point configurations has not been studied yet [4].

To tackle the problem above, we take the approach based on polyhedral com-
plexes similarly to our previous work [13,14]. The organization of our pa-

Fig. 2. The 6 local configurations of discrete combinatorial surfaces for the
6-neighborhood system [8,10,11] where the five left ones appears in discrete planes
[9,13].
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per is as follows. In Section 2, we first define discrete polyhedral complexes
[14], based on combinatorial topology [1,19,20], which gives a topology to a
three-dimensional discrete space. In Section 3, we then study topological char-
acteristics of discrete polyhedral complexes similarly to [12]. By using these
topological characteristics, in Section 4, we consider all conceivable topological
characteristics of object points and distinguish those of boundary points such
that the boundary forms a discrete combinatorial surface. After presenting an
algorithm to examine whether a local point set forms a discrete combinatorial
surface, we count local point configurations in discrete combinatorial surfaces,
called local surface configurations, for each neighborhood system in Section 5.
Finally, we show that such local surface configurations for the 6-neighborhood
system are the same 6 ones as illustrated in Fig. 2 and derive new results
for the 18- and 26-neighborhood systems. We also discuss the utilities of such
study on local configurations in discrete surfaces for three-dimensional shape
analysis in Section 6. This paper is an extended version of [15].

2 Discrete polyhedral complexes

In combinatorial topology, any object in R
3 is represented by a set of sim-

plexes [1,19] or more generally polyhedra [1,20]. An n-dimensional simplex is
considered to be an n-dimensional element in R

3 where n can be from 0 to
3; 0-, 1-, 2- and 3-dimensional simplexes are defined as isolated points, line
segments, triangles, and tetrahedra, respectively. A set of simplexes which are
combined together without contradiction is called a complex [1,19]. Replac-
ing simplexes with convex polyhedra, we obtain polyhedral complexes [1,20]
instead of simplicial complexes.

In this paper, we construct convex polyhedra whose vertices are lattice points
in Z

3 and adjacent vertices are m-neighboring for m = 6, 18, 26. Such convex
polyhedra are called discrete convex polyhedra, and a discrete polyhedral com-
plex is constructed as a set of discrete convex polyhedra combined together
without contradiction [14].

2.1 Convex polyhedra and polyhedral complexes in R
3

For the definitions of convex polyhedra and polyhedral complexes in R
3, we

follow the notions in [20]. Similar notations are also seen in [1,19].

Definition 1 A convex polyhedron σ is the convex hull of a finite set of points
in some R

n.
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The dimension of a convex polyhedron σ is the dimension of its hull. An
n-dimensional convex polyhedron σ is abbreviated to an n-polyhedron. For
instance, a point is a 0-polyhedron, a line segment is a 1-polyhedron, a triangle
or a square is a 2-polyhedron, and a tetrahedron or a hexahedron is a 3-
polyhedron.

Definition 2 Let σ be an n-polyhedron. A linear inequality a · x ≤ z is said
to be valid for σ if it is satisfied for all points x ∈ σ. A face of σ is defined by
any set of the form

δ = σ ∩ {x ∈ R
3 : a · x = z}

where a · x ≤ z is valid for σ.

For instance, a 3-polyhedron which is a tetrahedron has four 0-polyhedra, six
1-polyhedra and four 2-polyhedra for its faces. If an n-polyhedron τ is a face
of σ, τ is called an n-face and such a binary relation is denoted by τ ≺ σ.

The point of a 0-polyhedron, the endpoints of a 1-polyhedron and the vertices
of 2- and 3-polyhedra are called the vertices of each convex polyhedron.

Definition 3 A polyhedral complex C is a finite collection of convex polyhedra
such that

(1) the empty polyhedron is in C,
(2) if σ ∈ C and τ ≺ σ, then τ ∈ C,
(3) if σ, τ ∈ C, then the intersection σ ∩ τ is a common face of σ and τ .

The dimension of C is the largest dimension of a convex polyhedron in C.

We see that any C is a partially ordered set which can be identified with a
topological space called a discrete space; the detail is found in Section 6 of
Chapter 1 in [1].

2.2 Discrete convex polyhedra

We consider discrete polyhedral complexes which are polyhedral complexes
such that vertices of convex polyhedra are all lattice points in Z

3 and adjacent
vertices are m-neighboring for m = 6, 18, 26. The constraints allow us to look
for a discrete convex polyhedron which is not larger than the unit cubic region
as follows. The explication is also found in [14].

Let us consider all possible convex polyhedra in a unit cubic region such that
the vertices of each convex polyhedron are vertices of a unit cube. A unit cube
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Table 1
All possible discrete convex polyhedra for the 6-, 18- and 26-neighborhood systems.

 N6  N18  N26

discrete   convex   polyhedra

dim.

0

1

2

3

has eight lattice points for its vertices. For each lattice point we assign the
value of either 1 or 0 and call the point a 1- or 0-point, respectively. We then
obtain 28 different 1-point configurations in a unit cube and, up to rotations
and symmetries, we can reduce the number of different configurations to 22.
Note that, among the 22 configurations, there are 21 configurations including
at least one 1-point. For each of the 21 configurations, we obtain a convex
polyhedron such that vertices of the polyhedron are 1-points. We then classify
the 21 convex polyhedra with the dimension of n = 0, 1, 2, 3 and with the m-
neighboring relations of adjacent vertices for m = 6, 18, 26 as shown in Table
1. We see that all 21 convex polyhedra are classified for m = 26 and parts of
them are classified for m = 6, 18.

For any neighborhood system, 0-dimensional discrete convex polyhedra are
isolated points. For 1-, 2- and 3-dimensional discrete convex polyhedra, in
the case of the 6-neighborhood, the distance between any adjacent vertices
is equal to 1, and in the case of the 26-neighborhood, it is equal to or less
than

√
3. Hereafter, we abbreviate n-dimensional discrete convex polyhedra
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to n-dimensional discrete polyhedra or simply n-polyhedra.

2.3 Discrete polyhedral complexes

We construct a discrete polyhedral complex which is a finite collection of
discrete convex polyhedra satisfying the three conditions in Definition 3 for
each m-neighborhood system. In this paper, we need to construct a discrete
polyhedral complex only in the local region such as 3 × 3 × 3. Even though
we present an algorithm for construction of a discrete polyhedral complex in
such a local region in this subsection, we remark that the same algorithm can
be applied to three-dimensional binary images of various sizes. Mathematical
details for obtaining discrete polyhedral complexes are found in [14].

Let us consider a point x ∈ Z
3 and the 3 × 3 × 3 point region around x,

that is N26(x). Given a subset V ⊆ N26(x), we explain how to construct a
discrete polyhedral complex Cm for m = 6, 18, 26 from V in this subsection.
We first consider the case of the 26-neighborhood, and then show how to
modify our algorithm for the 18-neighborhood. For the 6-neighborhood, we
refer to another method which is simple for constructing C6 from V.

Hereafter, we abbreviate an n-dimensional discrete polyhedral complex to an
n-dimensional discrete complex or simply an n-complex.

2.3.1 Discrete complex construction for the 26-neighborhood system

We first consider a 2 × 2 × 2 unit cubic region which is a set of eight lattice
points for any x = (p, q, r) in Z

3 such that

D(x) = {p, p + 1} × {q, q + 1} × {r, r + 1}.

Obviously, D(x) includes x itself. Therefore, any 3×3×3 point region N26(x)
is divided into eight unit cubic regions D(y) such that

N26(x) =
⋃

y∈W(x)

D(y)

where W(x) = D(x − (1, 1, 1)).

All points in V (resp. the complement V) are 1-points (resp. 0-points). Setting
the set of 1-points in a unit cube D(y) as

U(y) = D(y) ∩ V,
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we first construct a discrete complex from U(y) in a unit cube D(y), denoted
by cmp26(U(y)). We then obtain a discrete complex C26 with respect to V,
which is also denoted by cmp26(V), such that

C26 =
⋃

y∈W(x)

cmp26(U(y)) (2)

for x is the central point in N26(x). In [14], mathematical proof of (2) is given.

A discrete complex cmp26(U(y)) is constructed from U(y) by the following
algorithm. Let Pn be a set of n-polyhedra in cmp26(U(y)) for n = 0, 1, 2, 3.
Note that |A| denotes the number of elements of a set A and that V er(σ)
denotes a set of 0-faces (or lattice points) of an n-polyhedron σ, namely vertices
of σ.

Algorithm 1

Input: A 1-point set U(y) in a unit cubic region D(y).
Output: A discrete complex cmp26(U(y)).
begin

1 if |U(y)| ≥ 5, then create a 3-polyhedron as a convex hull of all points
in U(y) and put it in P3;

2 else if |U(y)| = 4 and the four points are not coplanar, then create a
3-polyhedron as a convex hull of all points in U(y) and put it in P3;

3 else if |U(y)| = 4 and the four points are coplanar, then create a
2-polyhedron as a convex hull of all points in U(y) and put it in P2;

4 else if |U(y)| = 3, then create a 2-polyhedron as a convex hull of all
points in U(y) and put it in P2;

5 else if |U(y)| = 2, then create a 1-polyhedron as a convex hull of all
points in U(y) and put it in P1;

6 for each 3-polyhedron σ ∈ P3, look for all 2-faces τ of σ such that
V er(τ) is a three- or four-point subset of V er(σ) where all points in
V er(τ) are coplanar and all points in V er(σ) \ V er(τ) are in one side
of the plane spanned by points in V er(τ), and put all such τ in P2;

7 for each 2-polyhedron σ ∈ P2,
7.1 if |V er(σ)| = 3, consider all 1-faces τ of σ such that V er(τ) is any

two-point subset of V er(σ), and put all τ in P1;
7.2 if |V er(σ)| = 4, look for all 1-faces τ of σ such that the distance

between the two points of V er(τ) is one, or such that the distance
between the two points of V er(τ) is

√
2 when there exist exactly

two pairs of points whose distance is 1 in V er(σ), and put all such
τ in P1;

8 set P0 = {{z} : z ∈ U(y)};
9 obtain cmp26(U(y)) =

⋃
n=0,1,2,3 Pn.

end
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Table 2
Five 1-point configurations of a unit cube where different discrete complexes are
constructed for the 18- and 26-neighborhood systems.

N18

N26

a discrete complex in a unit cube

In Steps 6 (resp. 7), we also store binary relations ≺ between 3- and 2-
polyhedra (resp. 2- and 1-polyhedra).

2.3.2 Discrete complex construction for the 18-neighborhood system

Let us consider the case of m = 18. The right column of Table 1 shows that
there are 22 different 1-point configurations of a unit cube for discrete com-
plex construction in the case that m = 26. It also shows that there are five
1-point configurations missing for the 18-neighborhood system in comparison
with those for the 26-neighborhood system. This is because each of those five
convex polyhedra includes a pair of adjacent vertices which are 26-neighboring
but not 18-neighboring. Therefore, to construct a discrete complex in a unit
cube whose 1-point configuration is one of those five for the 18-neighborhood
system, we cannot apply Algorithm 1. Table 2 illustrates the discrete com-
plexes expected for the 18-neighborhood, which are different from those for
the 26-neighborhood.

In order to obtain each discrete complex in the first line of Table 2, we first
decompose a unit cube into two cubes as shown in Table 3. We then apply
Algorithm 1 for each unit cube except for the following exceptional cases.

Let us consider a unit cube D(y) which is the last case in Table 3. At an
adjacent cube D(z) which shares four 1-points with D(y), we need to modify
its polyhedral complex cmp18(U(z)). Figure 3 illustrates that if cmp18(U(z))
has a squared 2-polyhedron σ whose vertices are the four shared 1-points, we
must replace σ with two triangle 2-polyhedra τ1, τ2 and their common face τ3

which is a 1-polyhedron, such that cmp18(U(z))\{σ}∪{τ1, τ2, τ3}. We remark
that such a replacement does not destroy the topology of a discrete complex.

Fig. 3. Additional polyhedral decomposition for the 18-neighborhood system.
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Table 3
Each unit cube in Table 2 is decomposed into two unit cubes for discrete complex
construction in the case of the 18-neighborhood system.

original cube cube decomposition

Table 4
A unit cube of the last line in Table 3 is decomposed into three unit cubes for
discrete complex construction in the case of the 18-neighborhood system, if unit
cubes are adjacent as illustrated in Fig. 4 (left).

original cube cube decomposition

If an adjacent cube D(z) also has the last configuration in Table 3, that is, both
D(y) and D(z) have the last 1-point configuration in Table 3 and they share
four 1-points, and if the distance between two 1-points which are not shared
by D(y) and D(z) is

√
5, as illustrated in the left figure of Fig. 4, we modify

the polyhedral complexes in both cubes, cmp18(U(y)) and cmp18(U(z)), as
illustrated in the right figure of Fig. 4. For such a modification, we decompose
each unit cube of D(y) and D(z) into three unit cubes as shown in Table 4
before applying Algorithm 1 at each unit cube.

We remark that the modification of polyhedral complexes as illustrated in

Fig. 4. Modification of polyhedral complexes in two adjacent unit cubes such that
each of them has the last 1-point configuration in Table 3, and they have four
common 1-points and also have two non-common 1-points whose distance is

√
5, for

the 18-neighborhood system.
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Fig. 4 causes the problem such that a discrete complex C18 constructed from
V ⊆ N26(x) does not depend only on the 3 × 3 × 3 point region, namely
N26(x), when x is the leftmost (or rightmost) point in Fig. 4. We will discuss
how we deal with this problem for topological classification of local point
configurations at the end of Section 4.

2.3.3 Discrete complex construction for the 6-neighborhood system

In order to construct a discrete complex C6 from a 1-point set V, we can have
a geometric algorithm similar to Algorithm 1 which is applied at each unit
cube D(y) to construct cmp6(U(y)) and then obtain C6 by (2). However, it is
more efficient to apply a method to construct a Khalimsky topology [16] or a
partially order set associated to Z

n [2,3]; our discrete polyhedral complex for
the 6-neighborhood system is equivalent to the above partially order set and
it gives a topology equivalent to a Khalimsky topology. In [2] it is mentioned
that a three-dimensional array whose size is 5× 5× 5 is used for storing such
a topology for a 3 × 3 × 3 local point set.

2.4 Properties of discrete polyhedral complexes

We will present several properties of discrete complexes which we will need in
the following sections.

Definition 4 Let C be an n-complex. If we have at least one n-polyhedron
σ ∈ C for every s-polyhedron τ ∈ C such that τ ≺ σ, C is said to be pure.

Figure 5 shows examples of pure and non-pure discrete complexes. The 3-
complex in Fig. 5 (a) is not pure because it includes 0-, 1- and 2-polyhedra
which do not belong to any 3-polyhedron. If we remove these 0-, 1- and 2-
polyhedra from Fig. 5 (a), we obtain a pure 3-complex in Fig. 5 (b).

We need the following notion of combinatorial closure to obtain a discrete
complex from a set of discrete polyhedra, and by using this notion we present
the connectivity of a discrete complex.

Definition 5 Let C be a discrete complex and B be a subset of C. The com-

(a) (b)

Fig. 5. (a) Non-pure and (b) pure 3-complexes.
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(a) (b) (c)

Fig. 6. (a) A 3-complex C, (b) its subset B consisting of three convex polyhedra
whose dimensions are from one to three respectively, and (c) the closure of B in C.

binatorial closure of B is defined as

Cl(B) = B ∪ {τ ∈ C : τ ≺ σ, σ ∈ B}.

Note that B may not be a complex while Cl(B) is always a complex, and
B 6= Cl(B) if B is not a complex. Figure 6 shows an example of the closure
of a subset for a given complex.

Definition 6 Let C be a discrete complex, and σ, τ be arbitrary elements in
C. We say that C is connected, if we have a path σ = a1, a2, . . . , τ = an which
satisfies the following conditions:

(1) ai ∈ C for every i = 1, 2, . . . , n;
(2) Cl({ai}) ∩ Cl({ai+1}) 6= ∅ for every i = 1, 2, . . . , n − 1.

3 Topological point characterization on discrete complexes

Let Sk(C) be the union of all 0-polyhedra in a discrete complex C, namely the
union of V er(σ) for all discrete convex polyhedra σ ∈ C, called the skeleton
of C. Obviously, Sk(C) = V if C is made from V.

The goal of this paper is to present an algorithm to verify whether each point
in Sk(C) is considered to be on a discrete surface or not. For that goal, we
study topological characterization of each point in Sk(C) by observing its
local point configuration and investigate all topological characteristics which
can be maintained by points in Sk(C). In Z

3, we have discrete complexes
whose dimensions can be from zero to three. Thus, we present topological
characterization of discrete complexes for each dimension from one to three
by using the notions of star and link [20] similarly to the previous work [12]. We
then show that there are 12 topological types of points in Sk(C). In the next
sections, we will classify all points in Sk(C) by their topological characteristics
and study the type of points in discrete surfaces.

In this section, we do not have to distinguish the three different neighborhood
systems. Thus, we abbreviate a discrete complex Cm for m = 6, 18, 28 simply
to C.

12



3.1 Star and link

The star and the link are defined for each point in Sk(C) as follows.

Definition 7 For a discrete complex C, the star of a point x ∈ Sk(C) is
defined such that

star(x) = {σ ∈ C : x ∈ σ}.

Definition 8 For a discrete complex C, the link of a point x ∈ Sk(C) is
defined such that

link(x) = Cl(star(x)) \ star(x).

The star and link with respect to C are denoted by star(x : C) and link(x :
C), respectively, when we emphasize C.

The star is defined with respect to a point x in Sk(C) as the set of discrete
convex polyhedra including x. For example, let us consider the star of a point
x in Fig. 7 (a). It includes, as shown in Fig. 7 (b), a pentahedral 3-polyhedron,
four triangle 2-polyhedra, four line-segment 1-polyhedra, and a 0-polyhedron
which is the point x itself. The link of x in Fig. 7 (a) is obtained such as
a squared 2-polyhedron and its faces as shown in Fig. 7 (c). Similarly to
discrete complexes, we define the dimension of star(x : C) as the maximum
dimension of discrete convex polyhedra belonging to star(x : C) and denoted
by dim(star(x : C)). Note that a star is not always a discrete complex because
it may not satisfy the second condition in Definition 3.

3.2 Topological characteristics of stars in one dimension

Stars of points in Sk(C) are classified into the following three types: linear
stars, semi-linear stars, and neither of them, when the dimensions of stars are
one.

Definition 9 Let C be a discrete complex and x be a point in Sk(C). We say
that star(x) is linear if link(x) consists of two 0-polyhedra.

x

(a) (c)(b)

Fig. 7. (a) A 3-complex C; (b) the star of x ∈ Sk(C); (c) the link of x.
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Definition 10 Let C be a discrete complex and x be a point in Sk(C). We
say that star(x) is semi-linear if link(x) consists of one 0-polyhedron.

Figure 8 illustrates points whose stars are linear, semi-linear and neither of
them. We see that a point is an endpoint of a curve if its star is semi-linear,
and an intermediate point of a curve if its star is linear. If the star of a point
is neither linear nor semi-linear, it is an intersection of a curve. By using the
above definitions, we define discrete curves in Z

3.

Definition 11 Let C be a connected and pure 1-complex. We say that C is
a discrete curve with endpoint if the star of every point in Sk(C) is either
linear or semi-linear and there is at least one point whose star is semi-linear
in Sk(C).

Definition 12 Let C be a connected and pure 1-complex. We say that C is a
discrete closed curve if the star of every point in Sk(C) is linear.

3.3 Topological characteristics of stars in two dimensions

Stars of points in Sk(C) are classified into the following three types: cyclic
stars, semi-cyclic stars, and neither of them, when the dimensions of stars are
two.

Definition 13 Let C be a discrete complex and x be a point in Sk(C). We
say that star(x) is cyclic if link(x) is a discrete closed curve.

Definition 14 Let C be a discrete complex and x be a point in Sk(C). We
say that star(x) is semi-cyclic if link(x) is a discrete curve with endpoint.

P1 P2
P3

P4 P5

Fig. 8. Examples of points whose stars are linear, semi-linear and neither of them,
illustrated as white, grey and black points, respectively.

P6

P7

P8

P9

P11

P12

P13

P14
P16

P17

P18

P10

P15

Fig. 9. Examples of points whose stars are cyclic, semi-cyclic, and neither of them,
illustrated as white, grey and black points, respectively.
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Figure 9 illustrates points of stars which are cyclic, semi-cyclic and neither of
them. We see that a point is an edge point of a surface if its star is semi-cyclic,
and an interior point of a surface if its star is cyclic. If the star of a point is
neither cyclic nor semi-cyclic, the point is at an intersection of surfaces. By
using these characteristics, we define discrete surfaces in Z

3.

Definition 15 Let C be a connected and pure 2-complex. We say that C is a
discrete surface with edge if every point in Sk(C) has either a cyclic or semi-
cyclic star, and there is at least one point whose star is semi-cyclic in Sk(C).

Definition 16 Let C be a connected and pure 2-complex. We say that C is a
discrete closed surface if every point in Sk(C) has a cyclic star.

Definition 15 (resp. 16) is similar to the definition of a two-dimensional com-
binatorial manifold with (resp. without) boundary in reference [8]. In fact, the
notion of cyclic stars in Definition 13 corresponds to that of umbrellas in [8].

3.4 Topological characteristics of stars in three dimensions

Stars of points in Sk(C) are classified into the following three types: spherical
stars, semi-spherical stars, and neither of them, when the dimensions of stars
are three.

Definition 17 Let C be a discrete complex and x be a point in Sk(C). We
say that star(x) is spherical if link(x) is a discrete closed surface.

We define semi-spherical stars by using the notion of combinatorial boundary.

Definition 18 Let C be a pure n-complex and H be the set of all (n − 1)-
polyhedra in C each of which is a face of exactly one n-polyhedron in C. The
combinatorial boundary of C is then defined as a pure (n − 1)-complex such

(a) (b)

Fig. 10. An example of a point whose star is considered to be semi-spherical with our
previous definition in [12], but not semi-spherical with that in this paper, illustrated
as the white point in (a). A halftone region and two black bold closed curves in (b)
show its link and its combinatorial boundary.
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that

∂C = Cl(H).

We now see that the endpoints of a discrete curve and the edges of a discrete
surface in Definitions 11 and 15 are their combinatorial boundaries. An exam-
ple is shown in Fig. 10 (b). If we consider the link of the central white point
in Fig. 10 (a) illustrated as a half-tone region in Fig. 10 (b), its combinatorial
boundary is shown as black bold lines.

Definition 19 Let C be a discrete complex and x be a point in Sk(C). We
say that star(x) is semi-spherical if link(x) is a discrete surface with edge
and the edge, i.e., the combinatorial boundary ∂(link(x)) is a discrete closed
curve.

In the previous work [12], semi-spherical stars are simply defined such that
link(x) is a discrete surface with edges. However, we found a counter example
such as a white central point in Fig. 10 (a); its link is a discrete surface with
two boundaries, and its star should not be regarded as a semi-spherical star
because it is not topologically equivalent to a semi-sphere. We therefore modify
our definition of semi-spherical stars.

Figure 11 illustrates points whose stars are spherical, semi-spherical and nei-
ther of them. It also shows that a point whose star is spherical is an interior
point in a 3-complex, a point whose star is semi-spherical is a boundary point
of a 3-complex, and a point whose star is neither spherical nor semi-spherical
is a singular point, i.e., an intersection point of the boundaries.

We present the following proposition which plays an important role in this
paper.

Proposition 20 Let C be a pure 3-complex and x be a point in Sk(C). If
star(x : C) is semi-spherical, then star(x : ∂C) is cyclic.

P19

P20

P24

P25

P26

P27

P28P21
P22

P23

Fig. 11. Examples of points whose stars are spherical, semi-spherical and neither of
them, illustrated as white, grey and black points, respectively.
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PROOF. From Definition 19, ∂(link(x : C)) is a discrete closed curve. Let
H be a set of all 1-polyhedra in ∂(link(x : C)) so that

∂(link(x : C)) = Cl(H). (3)

For any σ ∈ H, from Definition 18, there is exactly one 2-polyhedron τ ∈
link(x : C) such that σ ≺ τ . Therefore, for any σ ∈ H, there is exactly
one 3-polyhedron γ ∈ star(x : C) such that σ ≺ γ as well. We then easily
see that σ becomes the common 1-face of two 2-faces τ1, τ2 of γ. Because we
know from the above that there is only one 2-face in link(x : C) for σ, set
to be τ1, another 2-face τ2 is not in link(x : C) but in star(x : C). Such τ2

is a 2-face of exactly one 3-polyhedron in star(x : C), that is γ. Therefore,
τ2 ∈ star(x : ∂C), and thus σ ∈ Cl(star(x : ∂C)) for any σ ∈ H. Because
σ /∈ star(x : ∂C), we obtain

Cl(H) = link(x : ∂C). (4)

From (3) and (4), link(x : ∂C) becomes a discrete closed curve and conse-
quently, star(x : ∂C) is cyclic from Definition 13.

3.5 Twelve point types by topological star characteristics

By using topological characterization of stars described above, we classify
points x ∈ Sk(C) into twelve types each of which satisfies one of the following
conditions. Note that each point in Sk(C) is classified into one of them.

type 0: dim(star(x)) = 0;
type 1a: star(x) is linear;
type 1b: star(x) is semi-linear;
type 1c: dim(star(x)) = 1 and star(x) is neither linear nor semi-linear;
type 2a: star(x) is cyclic;
type 2b: star(x) is semi-cyclic;
type 2c: dim(star(x)) = 2, Cl(star(x)) is pure and star(x) is neither cyclic

nor semi-cyclic;
type 2d: dim(star(x)) = 2 and Cl(star(x)) is not pure;
type 3a: star(x) is spherical;
type 3b: star(x) is semi-spherical;
type 3c: dim(star(x)) = 3, Cl(star(x)) is pure and star(x) is neither spher-

ical nor semi-spherical;
type 3d: dim(star(x)) = 3 and Cl(star(x)) is not pure.

Some examples of points whose types are 2d and 3d are shown in Fig. 12.
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Table 5
Classification results of points from P1 to P41 in Figs. 8, 9, 11, 12 (P1–P5 in Fig.
8, P6–P18 in Fig. 9, P19–P28 in Fig. 11, P29–P41 in Fig. 12 respectively) into the
twelve types from 0 to 3d (no point for type 0).

classified points

type 1a 4

type 1b 1, 3, 5, 33, 34

type 1c 2

type 2a 10

type 2b 6, 7, 8, 9, 11, 12, 15, 16, 17, 18, 29, 30, 31, 40, 41

type 2c 13, 14

type 2d 32

type 3a 22

type 3b 19, 20, 21, 23, 25, 26, 27, 28, 36, 37

type 3c 24

type 3d 35, 38, 39

Table 5 shows the classification results of all points from P1 to P41, illustrated
in Figs. 8, 9, 11, 12, into the twelve types.

4 Topological classification of local point configurations

As we mentioned above, any point is classified into one of the twelve types.
We also see that these twelve types have a hierarchical structure as shown in
Fig. 13.

By using the hierarchical structure, we can easily obtain an algorithm to clas-

P29

P30 P31

P32
P33

P34

P35

P37

P36

P38

P39 P40

P41

(a) (b)

Fig. 12. Examples of points whose types are 2d (a) and 3d (b), shown as black
points, in non-pure discrete complexes.
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sify a local 1-point set V with respect to a type of the star of the central point
x ∈ V:

(1) construct a discrete complex Cm for m = 6, 18 or 26 from V;
(2) obtain star(x) in Cm;
(3) classify star(x) by its dimension;
(4) if the dimension is more than zero, classify star(x) by its topological

characteristics (including the purity of Cl(star(x)) for more than one
dimension).

Note that x is always a 1-point for any 1-point configuration of V. In addition,
a discrete complex Cm for m = 6, 18, 26 is uniquely obtained from V as
described in Section 2 mostly except for the case of m = 18 as mentioned at
the end of Section 2.3.2. In order to simplify the situation for m = 18 and
to obtain a unique type of the central point x for any input V, we therefore
assume that 1-points exist only in N26(x) and there are only 0-points in the
exterior. Consequently, if we have a unit cube which is the last case in Table
3 and whose four coplanar 1-points are located at the boundary of N26(x)
and shared by an adjacent unit cube in the exterior of N26(x), the cube
decomposition is simply considered as the last one of Table 3 but not as that
of Table 4 to construct C18.

We apply the algorithm to every local 1-point configurations of V ⊆ N26(x)
whose central point x is 1-point. The number of all possible 1-point config-
urations of V is 226 = 67108864, that is reduced to 1426144 up to rotations
around the x-, y- and z-axes and symmetries with respect to the xy-, yz-,
zx-planes.

Among them, we count the number of each type of local point configurations.
Table 6 shows the result for each neighborhood system.

pure closure of star

 3D star 

 all types 
 

type 3b

type 3c

type 0

type 3d

semi-spherical star

type 3a

 spherical star 

 pure closure of star

 2D star 

type 2b

type 2c

type 2d

 semi-cyclic star 

type 2a

 cyclic star 

 1D star 

type 1b

type 1c

 semi-linear star 

type 1a

 linear star 

Fig. 13. Hierarchical point classification by topological characterization of stars in
Z

3.
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Table 6
The numbers of different local point configurations in a 3 × 3 × 3 region for each
of the twelve types, with respect to the 6-, 18- and 26-neighborhood system, up to
rotations and symmetries.

6-neighborhood 18-neighborhood 26-neighborhood

type 0 23 520 22 1

type 1a 200 712 520 11

type 1b 134 280 143 3

type 1c 103 092 735 77

type 2a 26 862 2 852 55

type 2b 345 016 18 741 398

type 2c 113 008 19 324 3 203

type 2d 399 329 18 434 3 664

type 3a 1 23 520 23 520

type 3b 14 031 345 997 290 979

type 3c 374 131 073 321 371

type 3d 65 919 864 783 782 862

total 1 426 144 1 426 144 1 426 144

As a matter of fact, the type of the central point x is not determined by
Cm, but by star(x : Cm). Therefore, we do not need to observe all points in
Sk(Cm) but only those in Sk(Cl(star(x : Cm))) for obtaining the point type
of x. For example, Fig. 14 shows examples of two different 3-complexes C6

and C′

6 whose central points have type 3b such that

Sk(C6) 6= Sk(C′

6)

(a) (b)

Fig. 14. Examples of two different 3-complexes C6 (a) and C′

6 (b) whose central
points, illustrated as white points, have type 3b such that Sk(C6) 6= Sk(C′

6) but
Sk(Cl(star(x : C6))) = Sk(Cl(star(x : C′

6))).
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Table 7
The numbers of star configurations for each of the twelve types, with respect to the
6-, 18- and 26-neighborhood system, up to rotations and symmetries.

6-neighborhood 18-neighborhood 26-neighborhood

type 0 1 1 1

type 1a 2 6 11

type 1b 1 2 3

type 1c 6 17 77

type 2a 6 80 55

type 2b 14 313 398

type 2c 123 938 3 203

type 2d 74 461 3 664

type 3a 1 21 425 23 520

type 3b 9 102 793 290 979

type 3c 11 58 532 321 371

type 3d 274 179 893 782 862

total 522 364 461 1 426 144

but

Sk(Cl(star(x : C6))) = Sk(Cl(star(x : C′

6))). (5)

Obviously, because of (5), they have the same type 3b, and have the same
forms around the central points.

For m = 6, 18, the following equation does not always hold;

Sk(Cm) = Sk(Cl(star(x : Cm))), (6)

while it always holds for m = 26. For example, we see in Fig. 14 that (6)
holds for C6 (a) but does not for C′

6 (b). In order to avoid counting the
local point configurations twice for C6 and C′

6 in Fig. 14, we count different
configurations of Sk(Cl(star(x : Cm))) instead of those of Sk(Cm). Such
configurations are called star configurations and we obtain Table 7. Note that
star(x : Cm) is not a discrete complex so that we make a smallest complex
by using the closure function before taking its skeleton. We also mention that
we count configurations of star(x : Cm) up to rotations and symmetries; thus
no redundant configuration is contained in Table 7.
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Clearly, the number of star configurations for each type in Table 7 is smaller
than that of local point configurations in Table 6 for m = 6, 18. We also see
that the total numbers of different star configurations for m = 6, 18 are much
smaller than that for m = 26.

Now let us also consider the cube decomposition of Table 4 for m = 18 to
obtain the more precise results for Table 7. Experimentally, if we consider all
possible cube decompositions such as Tables 3 and 4, the results for m = 18 in
Table 7 become slightly bigger numbers for all the 2-dimensional stars and the
types 3c and 3d: 88 for type 2a, 347 for type 2b, 1309 for type 2c, 558 for type
2d, 58890 for type 3c, and 184393 for type 3d. For the other stars including type
3b which is of our interest in this paper, the numbers of configurations become
the same as those in Table 7. This is because, as far as the case of type 3b be
concerned, influences on star configurations may be made by modification of
polyhedral complexes in Fig. 4 when the central point x is considered to be
the leftmost (or rightmost) point in Fig. 4, and such a modification seems not
to change Sk(Cl(star(x : C18))) even if it may change C18 itself.

5 Local configurations in discrete combinatorial surfaces

Our discrete combinatorial surfaces appear at the 2-dimensional combinatorial
boundaries of 3-complexes, that is, ∂C where dim(C) = 3. Because star(x :
∂C) is cyclic if star(x : C) is semi-spherical from Proposition 20, we see
that semi-spherical stars whose point type is 3b give all local configurations
appearing in such discrete combinatorial surfaces.

Let us consider a set of boundary points Brm′(V) of (1) for m′ = 6, 18, 26.
In [14], we see that Brm′(V) includes all types of points except for spherical
points (type 3a) which are interior points of V and that there are relations
between our discrete complexes Cm constructed from V and Brm′(V) only for
the pairs (m, m′) = (6, 18), (6, 26), (18, 6), (26, 6) [14]. Those relations indicate
that boundary points of Brm′(V) do not have always semi-spherical stars, but
also the other stars such as one-, two- and three-dimensional stars except for
spherical stars depending on their local point configurations. By using our
topological classification of local point configurations in the previous section,
we easily discriminate semi-spherical stars from the other stars on boundaries.

As shown in Table 7, the numbers of semi-spherical star configurations of
Sk(Cl(star(x : Cm))) are still large, especially for m = 18, 26. What we
are interested in, however, is point configurations of stars of x in combinato-
rial boundaries ∂Cm but not in Cm. For example, we have different discrete
complexes Cm and C′

m such that Sk(Cm) ⊃ Sk(C′

m) and star(x : ∂Cm) =
star(x : ∂C′

m) as illustrated in Fig. 15.
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Table 8
The numbers of surface star configurations for the 6-, 18- and 26-neighborhood
systems.

6-neighborhood 18-neighborhood 26-neighborhood

# of surface stars 6 1 412 6 028

Note that this does not occur for m = 6. However, we have the case that
C6 6= C′

6 and star(x : ∂C6) = star(x : ∂C′

6) as shown in Fig. 16. We can also
say that two discrete surfaces in Fig. 16 have the same shape but do not have
the same orientation if we consider that they have two sides, the inside and
outside.

In order to avoid counting twice for such two discrete complexes Cm and C′

m

in Figs. 15, 16 respectively, we consider point configurations of Sk(Cl(star(x :
∂Cm))) instead of those of Sk(Cl(star(x : Cm))). Such point configurations
are called surface star configurations. The results of counting different surface
star configurations up to rotations and symmetries for m = 6, 18, 26 are shown
in Table 8. For m = 18, we first calculate the result in Table 8 considering a
unique complex for each local point set by using only Table 3 as mentioned
before. If we consider all possible polyhedral complexes for each local point
set, including the case of Fig. 4, we obtain 1720 instead of 1412 in Table 8.
We verified that our results for m = 6 are the same as those in reference [8],
which are illustrated in Fig. 2.

For m = 6, we see that surface star configurations are exactly the same as
cyclic star configurations (type 2a in Table 7). However, for m = 18, 26, they

(a) (b)

Fig. 15. Two different discrete complexes C26 (a) and C′

26 (b) around the central
points x such that star(x : ∂C26) = star(x : ∂C′

26).

(a) (b)

Fig. 16. Two different discrete complexes C6 (a) and C′

6 (b) around the central
points x such that star(x : ∂C6) = star(x : ∂C′

6).
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contain more configurations than cyclic star configurations. One of the reasons
is that a cyclic star requires that both interior and exterior points which are
separated by a discrete surface exist in N26(x). For m = 18, 26, there are
some surface star configurations where there is no interior point as illustrated
in Fig. 1 (center).

6 Conclusions

Given a subset V ⊆ N26(x), we presented a method for classifying the cen-
tral point x into one of the twelve types by the topological characterization
of its star after obtaining a complex Cm. Considering that boundary points
having type 3b form discrete combinatorial surfaces as Proposition 20, we
counted local configurations in discrete surfaces such as local point configura-
tions whose central point has type 3b, namely Sk(Cm), and obtained 14031,
345997 and 290979 configurations for m = 6, 18, 26, respectively, up to rota-
tions and symmetries. We also obtained 9, 102793 and 290979 semi-spherical
star configurations, namely, Sk(Cl(star(x : Cm), and 6, 1412 and 6028 surface
star configurations, namely, Sk(Cl(star(x : ∂Cm))), for m = 6, 18, 26, respec-
tively. For m = 18, if we consider all possible polyhedral complexes C18 which
may break the uniqueness of complex construction for certain local point sets
V (but still keep the finiteness), we obtain 1720 surface star configurations.
The same surface star configurations for m = 6 are already presented in ref-
erence [8] and they are illustrated in Fig. 2. We see that a boundary point
illustrated as the central point in Fig. 1 (center) has a surface star configura-
tion. This explains why our discrete surfaces have more configurations than

Fig. 17. The 32 local star configurations which appear in discrete combinatorial
planes for the 26-neighborhood system.
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that of simplicity surfaces [6].

References [9,13] show that there are 5 and 32 different configurations of stars
which appear in discrete combinatorial planes for m = 6, 26, respectively. Such
planar stars for m = 6 are shown as the five left configurations in Fig. 2. We
also illustrate the 32 configurations of planar stars for m = 26 in Fig. 17. Note
that oriented surfaces are considered in [9,13] so that 8 and 34 configurations
are obtained for m = 6, 26. While there is only one non-planar star for m = 6,
we see that, for m = 26, most of the 6028, namely 5994 surface stars are
non-planar and they do not appear on discrete planes but appear on discrete
non-planar surfaces. Figure 18 shows that, for example, every boundary point
appearing at the faces of a digitized cube has one of the 32 planar stars
illustrated in Fig. 17. On the other hand, around the vertices and edges of a
digitized cube, boundary points have non-planar stars. Figure 18 also shows
that many boundary points on non-planar surfaces such as a sphere, a one-
sheet hyperboloid and a hyperbolic paraboloid have planar stars rather than
non-planar stars. From such experiments, we consider that the study on local
configurations of boundary points in the 26-neighborhood system might be
useful for shape analysis of three-dimensional images. We remark that the

(a) (b)

(c) (d)

Fig. 18. Boundary points of three-dimensional digitized objects, such as a cube, a
sphere, a one-sheet hyperboloid and a hyperbolic paraboloid, are classified into two
types in the 26-neighborhood system: they are illustrated as white and black points
if the stars are planar and non-planar, respectively.
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similar shape analysis may work for m = 18 and may not be worth doing
for m = 6 because most of all boundary points of three-dimensional digitized
objects have planar stars as illustrated in Fig. 19.
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