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M otivation

Topological properties are fundamental in many applicesio

of Image analysis. Topology-preserving operators, like ho
motopic skeletonisation, are used to transform an object
while leaving unchanged its topological characteristiss.
discrete gridsZ? or Z3), such a transformation can be de-
fined and éiciently implemented thanks to the notion of
simple point.

A typical topology-preserving transformation based on-sim
ple points deletion, that we cajlided homotopic thinning,

may be described as follows. The Input data consists of a
setX of points in the grid (called object), and a subkeof

X (called constraint set). Lety = X. At each iteration,
choose a simple poing in X; but not iInK according to some
criterion (€.g., a priority function) and sek.1 = X \ {X}.
Continue until reaching a stapsuch that no simple point
for X, remains inX, \ K. We call the result of this process a
nomotopic skeleton of X constrained by K.

n such a transformation, the result is expected to fulfil a
oroperty of minimality, as suggested by the term “skeleton”

This Is indeed the case for the procedure described above,

since the resulX, Is minimal in the sense that it contains
no simple point outside dk. However, we could formulate

a stronger minimality requirement, which seems natural for
this kind of transformation: informally, the res}, should
not strictly include any seY which is “topologically equiv-
alent” to X, and which contain&. We say that a homotopic
skeleton ofX constrained b is globally minimal if it ful-

fils this condition.

Now, a fundamental question arises: is any homotopic skele-
ton globally minimal? Let us illustrate this problem in di-
mensions 2 and 3. 1%2, consider a full rectanglX of any
size, and the constraint skkt= (. Obviously, this objecK

IS topologically equivalent to a single point, thus only eem
topic skeletons which are singletons are globally minimal.
A. Rosenfeld proved that any homotopic skeletoiXas$ in-
deed reduced to a single point.

But quite surprisingly, in dimension 3, this property does n
hold: If Xiseg. afull 10x 10x 10 cube, we may find a
homotopic skeleton oK (with empty constraint set) which
IS not reduced to a single point. A classical counter-exampl
IS the Bing’s house with two rooms (Fig. 1).

It could be argued that objects like Bing’s houses are ulylike

to appear while processing real (noisy) images, because of

their complex shape and their size. However, we found that
there exists a large class of objects presenting similgs-pro
erties, some of them being quite small (Fig. 2). Let us call
alump relative to K any objectX which has no simple point
outside ofK, and which strictly includes a subsétinclud-

Ing K and topologically equivalent tX (i.e.,, a homotopic
skeleton which is not globally minimal).

Now, two questions arise: Is it possible to detect when a
thinning procedure gets stuck on a lump, and then, Is it pos-
sible to find a way towards a globally minimal homotopic
skeleton? For performing the latter task, a solution cassis
of identifying a subset oK which can be removed without
changing topology; we call such a subsedimple set. We

are interested essentially by simple sets which are minimal
In the sense that they do not strictly include any other sampil
set, since It Is sfficient to detect such sets in order to carry
on thinning. Also, we hope that minimal simple sets have a
specific structure which could make them easier to analyse.
This work (developed Iin the framework of abstract com-
plexes) Is dedicated to the study of the simplest ones
among such minimal simple sets, called minimal simple

pairs (MSPs), which are those composed of two non-simple Fig. 3. Bficiency of reduction algorithms based on simple points (Algo
points. These minimal simple sets are the ones which are 1) and both simple points and MSPs (Algo 2), respectivelyrizémtal
axis: size (number of voxels) of original objects (full cslpe Vertical
axis: number of objects (over 1000 experiments) which wedeiced to
a single voxel.

most likely to appear in practical applications (Fig. 3hoe
the Interest in understanding their structure.
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Fig. 1 - A Bing’s house irR3 (top), and inz3 (2D “slices”, bottom).
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Fig. 2 - 3D view of setsX; (from top-left to bottom-right:i = 1 to 4)
without simple points. In red: a smallest subset topoldbieguivalent
to X. In yellow: an MSP forX;.

Input : X c Z3
Output : Y C X (Y topologically equivalent tX)

Algo. 1

Y=X

while dx € Y such thaix is a 26-simple point fol¥ do
Y=Y\{X

end while

Algo. 2
Y =X
repeat
while dx € Y such thaix is a 26-simple point fol¥ do
Y =Y\ ({x}
end while
If AP = {x,y} c Y such thatP is an MSP forY then
Y=Y\P
end if
until Y admits no simple point nor MSP
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Properties of M SPs

Proposition 1Let P C F bean MSP for F. Then P Is con-
nected (|C[P]| = 1).

The voxels constituting an MSP cannot be simple voxels
The attachment of a non-simple voxelcan either: i) be
empty, (1) be equal to the boundary df (111) be discon-
nected, v) have at least one tunnel. Some of these case
cannot appear in an MSP. First) and {ii) cannot hold for
such a voxel].e, the attachment of a voxel in an MSP is
non-empty and connected.

Proposition 2Let P T F be an MSP for F. Then the

attachment to F of any voxel of P Is connected. (Vg €
P™, IC[At(g, F)]l = 1).

Then, with the next proposition, we show thaf cannot
hold, hence, the attachment koof any voxelg in an MSP
has no cavity.

Proposition 3Let P C F bean MSP for F. Then the attach-
ment to F of any voxel of P Is different from its boundary

(Vg e P, Att(g, F) # 0°).

The following proposition, (with Prop. 2 and Prop. 3) im-
plies that the attachment o of any voxel in an MSP has at
least one tunnel.

Proposition 4Let P C F bean MSP for F. Then the Euler
characteristic of the attachment to F of any voxd of P is
negative (Vg € P*, yv(Att(g, F)) < 0).

From Prop. 1, we know that an MSP Is necessarily con-
nected. The following proposition tells us more about the
Intersection of the two voxels which compose any MSP.

Proposition 5Let P C F bean MSP for F, and let g;, 9> be
the two voxels of P. Then, g, N g, Isa 2-face.

The two following propositions are necessary conditions fo
an MSP, similar to the conditions which characterise simple
voxels.

Proposition 6Let P C F bean MSP for F. Then the attach-
ment to F of P is connected (|C[Att(P, F)]| = 1).

Proposition 7Let P C F be an MSP for F. Then the at-
tachment to F of P has a Euler characteristic equal to 1

(W (Att(R, F)) = 1).

Characterisation of M SPs

Proposition 8Let P C F bea pair. Then Pisan MSP for F
If and only if all the following conditions hold:

the intersection of the two voxels of P isa 2-face, (1)
Vg € P, |C[Att(g, F)]| = 1, (2)

Yg e PT, y(Att(g, F)) <0, (3)

ICLAt(P, F)]l = 1, (4)

y(Att(P, F)) = 1.(5)

Actually, conditions (1), (3), (4) and (5) areffugient to char-
acterise an MSP, since condition (2) may be deduced fron
them.
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