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Motivation
Topological properties are fundamental in many applications
of image analysis. Topology-preserving operators, like ho-
motopic skeletonisation, are used to transform an object
while leaving unchanged its topological characteristics.In
discrete grids (Z2 or Z3), such a transformation can be de-
fined and efficiently implemented thanks to the notion of
simple point.
A typical topology-preserving transformation based on sim-
ple points deletion, that we callguided homotopic thinning,
may be described as follows. The input data consists of a
setX of points in the grid (called object), and a subsetK of
X (called constraint set). LetX0 = X. At each iterationi,
choose a simple pointxi in Xi but not inK according to some
criterion (e.g., a priority function) and setXi+1 = Xi \ {xi}.
Continue until reaching a stepn such that no simple point
for Xn remains inXn \ K. We call the result of this process a
homotopic skeleton of X constrained by K.
In such a transformation, the result is expected to fulfil a
property of minimality, as suggested by the term “skeleton”.
This is indeed the case for the procedure described above,
since the resultXn is minimal in the sense that it contains
no simple point outside ofK. However, we could formulate
a stronger minimality requirement, which seems natural for
this kind of transformation: informally, the resultXn should
not strictly include any setY which is “topologically equiv-
alent” toX, and which containsK. We say that a homotopic
skeleton ofX constrained byK is globally minimal if it ful-
fils this condition.
Now, a fundamental question arises: is any homotopic skele-
ton globally minimal? Let us illustrate this problem in di-
mensions 2 and 3. InZ2, consider a full rectangleX of any
size, and the constraint setK = ∅. Obviously, this objectX
is topologically equivalent to a single point, thus only homo-
topic skeletons which are singletons are globally minimal.
A. Rosenfeld proved that any homotopic skeleton ofX is in-
deed reduced to a single point.
But quite surprisingly, in dimension 3, this property does not
hold: if X is e.g. a full 10× 10× 10 cube, we may find a
homotopic skeleton ofX (with empty constraint set) which
is not reduced to a single point. A classical counter-example
is the Bing’s house with two rooms (Fig. 1).
It could be argued that objects like Bing’s houses are unlikely
to appear while processing real (noisy) images, because of
their complex shape and their size. However, we found that
there exists a large class of objects presenting similar prop-
erties, some of them being quite small (Fig. 2). Let us call
a lump relative to K any objectX which has no simple point
outside ofK, and which strictly includes a subsetY includ-
ing K and topologically equivalent toX (i.e., a homotopic
skeleton which is not globally minimal).
Now, two questions arise: is it possible to detect when a
thinning procedure gets stuck on a lump, and then, is it pos-
sible to find a way towards a globally minimal homotopic
skeleton? For performing the latter task, a solution consists
of identifying a subset ofX which can be removed without
changing topology; we call such a subset asimple set. We
are interested essentially by simple sets which are minimal,
in the sense that they do not strictly include any other simple
set, since it is sufficient to detect such sets in order to carry
on thinning. Also, we hope that minimal simple sets have a
specific structure which could make them easier to analyse.
This work (developed in the framework of abstract com-
plexes) is dedicated to the study of the simplest ones
among such minimal simple sets, called minimal simple
pairs (MSPs), which are those composed of two non-simple
points. These minimal simple sets are the ones which are
most likely to appear in practical applications (Fig. 3), hence
the interest in understanding their structure.

Fig. 1 - A Bing’s house inR3 (top), and inZ3 (2D “slices”, bottom).

Fig. 2 - 3D view of setsXi (from top-left to bottom-right:i = 1 to 4)
without simple points. In red: a smallest subset topologically equivalent
to Xi. In yellow: an MSP forXi.

Input : X ⊂ Z3

Output : Y ⊆ X (Y topologically equivalent toX)

Algo. 1
Y = X
while ∃x ∈ Y such thatx is a 26-simple point forY do

Y = Y \ {x}
end while

Algo. 2
Y = X
repeat

while ∃x ∈ Y such thatx is a 26-simple point forY do
Y = Y \ {x}

end while
if ∃P = {x, y} ⊂ Y such thatP is an MSP forY then

Y = Y \ P
end if

until Y admits no simple point nor MSP

Fig. 3. Efficiency of reduction algorithms based on simple points (Algo
1) and both simple points and MSPs (Algo 2), respectively. Horizontal
axis: size (number of voxels) of original objects (full cubes). Vertical
axis: number of objects (over 1000 experiments) which were reduced to
a single voxel.

Properties of MSPs
Proposition 1 Let P ⊑ F be an MSP for F. Then P is con-
nected (|C[P]| = 1).

The voxels constituting an MSP cannot be simple voxels.
The attachment of a non-simple voxelf̂ can either: (i) be
empty, (ii) be equal to the boundary of̂f , (iii) be discon-
nected, (iv) have at least one tunnel. Some of these cases
cannot appear in an MSP. First, (i) and (iii) cannot hold for
such a voxel,i.e., the attachment of a voxel in an MSP is
non-empty and connected.

Proposition 2 Let P ⊑ F be an MSP for F. Then the
attachment to F of any voxel of P is connected. (∀g ∈
P+, |C[Att(ĝ, F)]| = 1).

Then, with the next proposition, we show that (ii) cannot
hold, hence, the attachment toF of any voxelg in an MSP
has no cavity.

Proposition 3 Let P ⊑ F be an MSP for F. Then the attach-
ment to F of any voxel of P is different from its boundary
(∀g ∈ P+, Att(ĝ, F) , ĝ∗).

The following proposition, (with Prop. 2 and Prop. 3) im-
plies that the attachment toF of any voxel in an MSP has at
least one tunnel.

Proposition 4 Let P ⊑ F be an MSP for F. Then the Euler
characteristic of the attachment to F of any voxel of P is
negative (∀g ∈ P+, χ(Att(ĝ, F)) ≤ 0).

From Prop. 1, we know that an MSP is necessarily con-
nected. The following proposition tells us more about the
intersection of the two voxels which compose any MSP.

Proposition 5 Let P ⊑ F be an MSP for F, and let g1, g2 be
the two voxels of P. Then, g1 ∩ g2 is a 2-face.

The two following propositions are necessary conditions for
an MSP, similar to the conditions which characterise simple
voxels.

Proposition 6 Let P ⊑ F be an MSP for F. Then the attach-
ment to F of P is connected (|C[Att(P, F)]| = 1).

Proposition 7 Let P ⊑ F be an MSP for F. Then the at-
tachment to F of P has a Euler characteristic equal to 1
(χ(Att(P, F)) = 1).

Characterisation of MSPs
Proposition 8 Let P ⊑ F be a pair. Then P is an MSP for F
if and only if all the following conditions hold:

the intersection of the two voxels of P is a 2-face, (1) (1)
∀g ∈ P+, |C[Att(ĝ, F)]| = 1, (2) (2)
∀g ∈ P+, χ(Att(ĝ, F)) ≤ 0, (3) (3)

|C[Att(P, F)]| = 1, (4) (4)
χ(Att(P, F)) = 1.(5) (5)

Actually, conditions (1), (3), (4) and (5) are sufficient to char-
acterise an MSP, since condition (2) may be deduced from
them.

Contact

Nicolas P
mail: passat@dpt-info.u-strasbg.fr
web:https://dpt-info.u-strasbg.fr/∼passat
Michel C
mail: coupriem@esiee.fr
web:http://www.esiee.fr/∼coupriem
Gilles B
mail: bertrand@esiee.fr


