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Abstract In this paper, we present a discrete version of the hybrid
method. In discrete geometry, a discrete plane is defined as
This paper presents a method for segmenting a 3D pointa set of grid points lying between two parallel planes with a
cloud into planar surfaces using recently obtained dissret  small distance, called a thickness [5]. Contrarily to the-co
geometry results. In discrete geometry, a discrete plane istinuous case, there exist a finite number of local geometric
defined as a set of grid points lying between two parallel patterns (LGPs) appearing on discrete planes, calledrlinea
planes with a small distance, called thickness. Contrarily LGP [3]. In fact, points that have linear LGP can be con-
to the continuous case, there exist a finite number of local sidered to be discrete version of locally planar points [7].
geometric patterns (LGPs) appearing on discrete planes.In addition, such a linear LGP does not possess the unique
Moreover, such a LGP does not possess the unique normahormal vector but a set of normal vectors [2]. By using
vector but a set of normal vectors. By using those LGP those LGP properties, we present a segmentation method
properties, we first reject non-linear points from a point following the two steps: first reject non-linear points fram
cloud, and then classify non-rejected points whose LGPspoint cloud (edge-based part), and then merge non-rejected
can have common normal vectors into a planar-surface- points whose LGPs have common normal vectors (region-
point set. From each planar-surface-point set, we alse esti based part). It thus uses only precalculated look-up tables
mate parameters of a discrete plane by minimizing its thick- with respect to LGP, and does not require any parameter
ness. setting. Furthermore, our method is less sensitive to noise
as well as quantization errors. Indeed linear LGPs already
take into account quantization errors for their generation
1. Introduction We show such advantages by applying our algorithm to 3D
point clouds such as range images. In order to evaluate our

This paper presents a method for segmenting a 3D point.segmentatlon results, we also present a method for estimat-

) . . : ing discrete plane parameters from each segmented planar
cloud into planar surfaces using recently obtained diseret f by minimizing its thick B the thick
geometry results. Conventional approaches are classi-.sur.ace y minimizing 1ts thickness. because the hickness
S o . indicates the segmentation inaccuracy, namely the curved-
fied into three categorles_. region-based approach, Emlge'ness of a segmented planar surface, we consider that the
ba_sed approach a_nd_hybrld _approach. _The first one Mer9e%inner the thickness, the better the segmentation result.
points that have similar region properties calculated from
their neighboring points such as normal vectors and cur-
vatures [1]. Because calculated properties are sensdive t
noise and quantization errors, it is known that they cause .
over segmentation. In the second approach, edges ar@-1- Discrete planes
searched for such that they separate regions by using depth
discontinuities [9]. Because edges are not always extlacte
as connected curves, they cause under segmentation, co
trary to the first ones. The third approach is hybrid be- P={(p,q,r) €R® : ap+ Bqg+~yr+4 =0}
tween the two approaches, so that they import both their
merits [7, 8]. For a special case in the third approach, a
planar segmentation method is proposed based on locall
planar points, considering points that are not locally pfan
to be potentially edge points [7]. D(P) = {(p,q,7) €Z* : 0 < ap+Bq+yr+35 < w} (1)

2. Non-linear point reection using LGP

Let R be the set of real numbers. A plakein the 3D
-uclidean spacR? is defined by the following expression:
lid R3 is defined by the foll

whereq, 3,7, 6 € R. LetZ3 be the set of grid points whose
coordinates are integers B®. A discrete plane, which is a
ydigitization of P, is then defined such that



wherew = max (|«|, ||, |7|), called the thickness [5].

2.2. Linear LGP on discrete planes

We consider a cubical grid-point s€(x) whose edge
length is2 around a point: € Z3 such that

Q@) ={yeZ’: |z -yl <1}

Let us assume that each point4A has a binary value such
as eitherl or 0. Such a pattern of binary points @(x) is
called local geometric patterns, abbreviated to LGP. There
are 226 different LGP forQ(z) providing that the central
point x always has the fixed valuke This indicates that

x is considered not to be a background point but to be an [\
object point.

Among those different LGPs, we investigated which _;
LGP can appear on discrete planes [3]. This problem is &
mathematically written as follows. L& be a set of points
whose binary values arein Q(x). If there is a plané®
such that

F=D(P)NQ(x)
={(p,¢,7) €Q(z) : 0 < ap+ Bg+r+6 < w}(2)

we say thafF forms a discrete plane iQ(x). Therefore,
our problem is solved by looking for all possitde namely
LGP, satisfying (2). Such LGP are called linear LGP. Since
this problem is considered to be the feasibility of the in- Figure 1. The 34 linear LGPs.
equalities of (2) for all(p, ¢,7) € F, we need to check if
there are feasible solutions 3, ~, ¢ for each different LGP

of Q(x). If they exist, such LGP can appear on discrete
planes and become linear LGP.

However, [3] shows that we can avoid computing the fea-
sibility test for all22¢ LGPs ofQ(x), by taking an approach
based on arithmetic planes [5], which are related to discret
planes. An algorithm is then proposed to generate all lin-
ear LGPs, and it is found that there exist oBlyLGPs that
appear on discrete planes, called linear LGPs, up to transla
tions, rotations and symmetries, as shown in Fig. 1. Note
that they are generated with the constraints

surface patch on a smooth surface can be approximated to
a planar surface when the size of the patch becomes small.
In the discrete space, even if a point has a linear LGP, we
are uncertain whether such a point appears on a planar sur-
face or a non-planar surface. Contrarily, if a point has a
non-linear LGP, it is exactly a point that never appears on a
planar surface. From this reason, if a point has a linear LGP,
it is called a locally linear point, otherwise, simply calla
non-linear point.

2.4. Non-linear point rejection
0<a<p<l y=L1 (3)
By simply checking the LGP linearity, we can therefore
In order to visualize the shapes of linear LGPs in Fig. 1, we reject non-linear points from a grid-point set, since time li
add polyhedral meshes generated by applying a discreteear LGPs play an important role in filtering linear points.
marching-cube-like method for this-neighborhood sys-  Note that it is realized by looking up the binary table of
tem [4] to a digitized half space. Interior points of objects LGPs (linear or not). In actual experiments, we see that iso-

are designated as black points in the figures. lated points that are considered to be noise are autonmigtical
rejected as well as points around surface edges. However,
2.3. Locally linear and non-linear points it is also observed that some points around an edge are not

rejected, especially when two adjacent surfaces joinieg th
Experimentally, those linear LGPs can be seen not only edge intersect at an obtuse angle. This fact implies that a
on discrete planes but also on discrete smooth surfaces. Insimple post-processing, such as the connected component
tuitively, this is not difficult to understand, since any&bc labeling [5] of a non-rejected point set, does not always giv



tors is calculated from each linear LGP. Remark that all cal-
1 culations are done by using only integers, i.e., they caase n

rounding errors; the details are found in [3].
1 _Table 1. Linear LGPs and their normal cells.
linear LGP normal cells
1 025
1/2 2 191112
i ; i 3 4571023
0 19 > 4,5 0116171824
250 (N 6,17 234578
P : : : 7 2358
P : : 8,9 69101114152123
— - ; —> 10,12 8192025
0 1/4 1/3 1/2 2/3 1 q 11 81718 19 20
13,28 2345679101112131415212223
Figure 2. Normal cells on the af-plane with 14 23613141516212224
16 4571023
18,19 0181925
20,23 013812131617181920222425
satisfactory results for planar surface segmentation. 21,22 381617 2022
24,25 19111213141524
3. Planar surface segmentation of locally linear 26,34 124567102123
points 27 25672123
29,30 01718192025
31,32 11213162224
In order to solve the above problem, we propose a 33 691114 15 21

method using not only the point connectedness but normal
vectors derived from LGPs.

The results are derived in the spage ) from linear
3.1. Feasible normal vectors of linear LGPs LGP with the constraints (3). The feasible region for each
linear LGP is obtained as a convex polygon in the trian-
A linear LGP is a discrete plane patch BX(P) in a  gle region whose vertices ae, 0), (0, 1) and(1, 1) of the
bounded spac®(z), denoted byDqs)(P). Given a  space(w, §) because of (3). Figure 2 illustrates that the
Dqx)(P), we can find a set of Euclidean planBssuch  inequality set of (1) for al(p,¢,r) € Dqx)(P) divides
that the digitization of each of those plane€Qix) is equal  the triangular region in the space, 3) into triangular or
to Dq(x)(P). The set of all such Euclidean planesis called quadrilateral polygons, called normal cells. The feasible
the preimage and it is known that the correspondence be-gion of each linear LGP is given as a set of normal cells that
tween discrete plane patches and Euclidean planes is nogonstitutes a convex polygon in the spdog3). Table 1
one-to-one but one-to-many [2]. Because of the one-to-shows such a set of normal cells whose union corresponds
many correspondence, the preimagelit ;) (P) is rep- to a convex polygon representing a set of feasible normal
resented by a set of parameters3, v, 5. More precisely,  vectors for each linear LGP depicted in Fig. 1.
the preimage is obtained as a feasible solution set of the in-
equality set of (1) for all points dDq ) (P). Itmeansthat 3.2 Discrete Gaussian sphere
the preimage is given by a convex polytope in the parameter
space [2]. The26 normal cells in Fig. 2 are generated with the con-
Because all interesting parameters in this paper arestraints (3). We embed these normal cells into the 3D space
translation-invariant, we focus on the three parameters(c, 3,~) with v = 1, as illustrated in Fig. 3 (left). The tri-
«, 3,~ indicating the normal vector oP, distinguished  angle surrounded by thick lines in Fig. 3 (left) corresponds
from the interceptd of P. We thus apply the Fourier- to the triangular region that is the union of normal cells in
Motzkin elimination to the inequality set of (1) for all Fig. 2. Once the normal cells are embedded into the space
(p,q,7) € Dqx)(P), so that a set of feasible normal vec- («, 3, ), we make the congruous ones by applying to them
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Figure 3. The cubical Gaussian sphere and
the discrete Gaussian sphere.

k

48 transformations of rotations and symmetries of a cube of

edge lengtt2, centered at the origin of the 3D space. We VMWW
see, in Fig. 3 (left), that there are tH8 triangles on the "\%A\&'ﬁ“‘
cube, so that the whole cube contairsis normal cells. ‘\‘t‘?ﬁ\%‘g&\ :
Such a cube is called the cubical Gaussian sphere. \\%{t\ﬂ‘s\x v

We now project normal cells tiled on the cubical Gaus-
sian sphere onto a unit sphere centered at the origin, as
illustrated in Fig. 3 (right). The unit sphere separated by
normal cells is called the discrete Gaussian sphere, becaus
the size of normal cells indicates the resolution of digitiz Figure 4. A synthetic 3D image of a box (top)
normal vectors calculated from linear LGPs. The triangle  and its unified discrete Gaussian image (bot-
surrounded by red lines in Fig. 3 (right) corresponds to the ~ tom).
triangle surrounded by thick lines in Fig. 3 (left) that ar
sponds to the union of normal cells in Fig. 2. In the remain-

der, we denoté& the set of all normal cells on the discrete \\e then obtain the number of pointsRy(c) for everyc €
Gaussian sphere. Remark that we use only integer or ratio-G, called the unified discrete Gaussian image, such that
nal numbers to calculate all normal cells, which are related

to a cubical Gaussian sphere. u(c) = |R(c)]- (5)

Note thatu(c) andR(c) are generated by simply looking
3.3 Unified discrete GGaussian image up a table such as Table 1.

The concept of unified discrete Gaussian images is sim-
. : . . ._ilar to that of extended Gaussian images [6]. The differ-
By using the discrete Gaussian sphere, we give a dis-

. T nces from extended Gaussian images are the followings:
crete version of extended Gaussian images that are usefu . . ' .
: i . the function (5) is defined with respect to a normal eell
for representing surface shapes [6], called unified diecret

L ! ; . . fon the discrete Gaussian sphé¥einstead of a point on
Gaussian images. Let us first consider a discrete version o . ) . .
the Gaussian sphere; the value of (5) is the number of grid

the Gaqsmaq image that is the mapping f““?‘ an object Sur'points::: such thatl(x) includesc, instead of the area of
face point to its normal vector on the Gaussian sphere. Let . N
, : 3 . the surface whose normal vectorris From the definition,
V be a locally linear point set iZ°. For a pointz € V, h ified di o
we define a discrete Gaussian imdge) as the set of nor- we see that our unified discrete G_agssmn_ Image represents
) . . a distribution of normal cells of a digital object surface.
mal cells corresponding to the linear LGP f Choosing . o :
. ; Figure 4 shows an example of the unified discrete Gaus-
a normal cellc € G, we now consider a point subset ¥t s I )
such that sian images fora d_|g|t|zed bo>$. C_oncernlng cell colors on
the discrete Gaussian sphere in Fig. 4 (bottom), the darker
R(c)={xeV:cel(x)}. (4) the blue cell, the larger the value ofc), and the red cell



has the maximum value. The length of the pale blue needle™Algorithm 1: Planar surface segmentation
for each cellc also corresponds to the value @fc). On

a digitized box in Fig. 4 (top), red and blue points are lo-
cally linear, while green points are non-linear. Note tteat r
points correspond to the red cell in Fig. 4 (bottom). Figure

input : a unified discrete Gaussian imagg:), point
setsR(c), and a minimum surface size
output: planar-surface point se fori = 1,2,3, ...

4 shoyvg that we can extract a ;et of giri'd p?ints that belong ; begli::itialize a label such that= 0:
to a digital planeD(P) by choosing a “right” normal cell, s repeat
for exampl_e, ared one. This is based on the_fo_llowmg fact; 4 make a queud;, of normal cells with
if (o, 8,7) is anormal vector oD(P), («, 8,7) is included priorities of valuesu(c);
in the common normal cell(s) d{x) for all x € D(P). 5 increment and initializeS; = 0:
6 seth to be the highest priority cell i, and
3.4. Algorithm remove it fromDy,;
7 while |R(R)| > max(s — 1, |S;|) do

By using the unified discrete Gaussian imagde) and 8 setC to be the maximum connected
the point setd?(c), we present our algorithm for planar sur- component oR(h);
face segmentation from a locally linear point 3t Our 9 if |C| > |S;| then setS; = C;
problem is formulated as follows; each pointc V is as- 10 reseth to be the highest priority normal
signed into one of setS; for i = 1,2,... such that the | cellin Dy, and remove it fromDy,;
points in eacls; constitutes a connected planar-surface set. 11 if |S;| > s then
From the previous discussions, our method is founded onzz forall ¢ such thatu(c) # 0 and
the following hypothesis: if there is a connected point sub- R(c)NS; # 0 do
setS C V such that they have a common normal cell for all 13 L resetR(c) = R(c) \ S; and
x € S, S may constitute a discrete plane. u(c) = |R(c)|;

Based on this hypothesis, we present Algorithm 1. we o
look for the largest connected grid-point s8f, whose 4 | until[Si| <s;
points having a common normal cell by usimgc) and ~ ° | returnsS;fori=1,2,....0—1;

R(c). Because each point has several normal cells, our'® end
method cannot be processed in parallel with respect to nor-
mal cells. It must be a repeated procedure; once we ob-
tain S;, we remove all points o8, from everyR(c), mod- the maximum connected componentRfh), we apply a
ify u(c), and repeat this procedure after the incremenit of simple method based on a depth-first strategy by using a
Practically, we would like to avoid obtaining a very small queue [5]. The time complexity is linear with respect to the
surface patch, so that we set a parametiat is the mini- size of R(h).
mum size foIS;.
Algorithm 1 is thus a loop procedure of seeking planar 3.5. Experimental results
surfacesS;. EachS; is a maximally connected point set,

whose points have a common normal cell. Once we $ind We show results of planar surface segmentation from six
we check the size &8, in Step 11, and ifS;| > s, we re- range images of the same blocks, which are taken from two
move all points 08, from everyR(c) and also modify(c) different viewpoints with three different resolutions. &h

in Step 13. After such modification and incrementingre results are illustrated in Figs. 5 and 6. In the cases of Fig.
seek a news,;. For finding eaclB;, we look for the max- 5, the numbers of valid (measured) points K858 for (a),
imum connected componeft of eachR(c¢), and then set 51740 for (b) and207448 for (c). Among those valid points,

S; to be the maximum among aC. In order to reduce the  we havel1343 locally linear points for (a)47034 for (b),
frequency of calculation of connected components, which and 185566 for (c), respectively. Similarly, in the cases of
is a global operation, we make a priority quellg of nor- Fig. 6, the numbers of valid (measured) points &2&42

mal cells withu(c) in Step 4. We then repeat dequeue of for (d), 48802 for (e) and195765 for (f). Among those

a normal cellh from Dy, to obtain the maximum connected valid points, we havd 0663 locally linear points for (d),
componeniC of R(h) in Step 8. Comparing the size of 43981 for (e), andl 76619 for (f), respectively. Table 2 show

C with the maximum among those of other normal cells the number of locally linear points that are assigned to each
that are already dequeued froby,, we finally obtain the = segmented planar surface, and their corresponding color in
currently maximum point se8; in Step 9. Note that this  Figs.5 and 6. We see tha, 9 and12 planar surfaces are
loop is repeated until the size Bf(h) is less thars or more found in Fig.5 (a), (b) and (c), arkl 8 and11 planar sur-
than the size o8; as described in Step 7. For calculating faces are found in Fig.6 (d), () and (f), respectively.
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Figure 5. Planar surface segmentation re-
sults from range images of blocks, which are
taken from the same viewpoint, with different
resolutions: the image sizesare 160 x 120 (a),
320 x 240 (b), 640 x 480 (c). The minimum sur-
faces sizes s are setto be 100 (a), 500 (b), and
1000 (c), respectively.

Figure 6. Planar surface segmentation re-
sults from range images of blocks, which are
taken from a different viewpoint from that in
Fig. 5, with different resolutions: the image
sizes are 160 x 120 (d), 320 x 240 (e), 640 x 480
(f). The minimum surfaces sizes s are set to
be 100 (d), 500 (e), and 1000 (f), respectively.



Table 2. Colors and point numbers of seg- Table 3. Parameter estimation results of seg-

mented planar surfaces in Figs. 5 and 6. mented planar surfaces in Fig. 5
color @ O ©1 @] @ © (a)
1 blue 1750 6529 23393 1914 6304 15823 € & 8 0l 9
2 yellow 1557 | 6125 | 19822 | 1280 | 4254 | 13809 1| 230846 | 0.0895522] 0512438 | 1 -480.756
3 pink 1536 | 5573 | 16645 | 1171 | 4006 | 12879 2 | 251369 | 0.444688 | 1 0.779847 | 345.085
4 pale blue 1180 | 4408 | 14377 | 822 | 3505 | 12198 3| 3.4758L | -0.475806 | -1.16935 1 -480.306
o orange org | oot | oms | Gas | ahan | sser 5 | Tooree | odszias | 1 | 46420 | 508393
reen 5 1 : : : . e B ~oVo.
7gmwn 218 1620 | 2376 | 612 | 2321 | 5009 6 | 147327 | 1 0.0178218 | -0.558416 | -335.198
8 turquoise 361 | 1424 | 1609 | 220 | 844 | 2266 7| 1125 0.351563 | 1 0.664062 | 274.57
9 olive 197 | 799 | 1419 2169 S 8.205714 i -%.0114286 -8.254286 -ggg.gw
10 | 112 1418 1857 . e - .
11 55)’,‘;5 1160 1219 10 | 151563 | -0.78125 -1.32812 1 -468.875
12 moss green 1036 (b)
€ « 5] ¥ [
1 3.90025 0.0910617 | 0.51279 1 -962.483
. ) . ) 2 4.89735 0.4446018 1 0.780531 691.458
We see in Figs.5 and 6 that non-linear points, colored ‘i ggi;g; -8-3;‘31‘212‘11 -é-igggze i -ggi-ggg
light green, appear around edges of block faces, and some-| 5 | 154492 | 1 0.0212766 | -0.554374 | -668.843
times appear in faces because of noise in the range images g ;;5‘712411 -%-22865632 i -g-%?i%g -1252157)3;9
Because we set the minimum surface siz¢here are lo- s | o0791798| 1 0.0126183 | -0536278 | -651.688
cally linear points that construct no planar surface whose | 9 | 0.717703| 1 -0.00956938| -0.564593 | -680.029
size is not less thanaround the points, colored black in the (c)
figures. Locally linear points become black, if they are ob- € o B v 9
. . 1 7.38188 0.086763 0.507398 1 -1926.6
tained too sparsely in the 3D space to be connected, so that| 5 | 9sse67 | 0.44aaa2| 1 0777778 | 137833
they are seen as some of block faces in Figs.5 and 6. Oth- i g-;gggg -8-%22; -g-igiggl 1 gégg;
erwise, they are considered to have bumps on the whole, | ¢ | 51997 | 1 0.0222728 | -0.558241 | -1347.4
even though they are locally linear. From Figs. 5 and 6, we 3 gggggg -g-g%%l i -ggggggi 2&3%
can conclude that most of the block surfaces are segmented| g | ossses6!| 1. 0.0103611 | -0.562951 | -1358.17
by our simple algorithm, which require neither complicated 9 | 0.875 1 -0.00961538 | -0.572115 | -1376.38
. . . 10 0.808511 1 -0.0141844 -0.529255 | -1290.44
parameter setting nor parameter estimation. 11 | 424536 | 181477 | 00910698 | 1 1930.37
12 2.17989 0.39418 1 0.626984 1009.64
4. Estimation of discrete plane parameters
4.1 Formulation 0<dz+y+y2+d6<e
. 0< —dz—y—72-0 <e,
From each segmented planar-surfaceSsetve estimate 0 < , g <
its discrete-plane parameters as follows. In order to sim- Sz+fytyetd e
. . . / / !
plify our problem, we first consider the case that= ~. 0<z—-pFy—vz—-0 <g¢,
From (1), we obtain a linear inequality set such that, for all . .
(z z())e S, quality wherey’ = 2. Practically, we simultaneously use the above
24 v 6 types of inequalities to find a parameter set minimizing
0<dz+fBy+z+6<e (6)

wherea’ = 2, 5 = g, o = % e > 0. A solution set 4.2 Experimental results

(o, 3, 4") is then obtained by minimizingunder the above

constraints. In this framework, i < 1, S, is recognized as Tables 3 and 4 show the estimation results for segmented

planar surfaces obtained in the previous section, as illus-

a discrete p'af‘e pgtch exactly; otherwiSe.is recognized trated in Figs. 5 and 6. We see that the parameter values of
as a set of grid-points between two parallel planes whose : .
«, § and~ that are obtained for the corresponding planar

distance is wider than the thickness of a discrete plane. Ge- : . .
: surfaces, segmented from the range images with different
ometrically, our method looks for two parallel planes such

that the distance between them becomes minimum resolutions, are very similar. Concerning to the parameter
For all the other cases such that= —v, 3, — 3, a, —a, 4, the values in Table 3 (b) and Table 4 (e) (resp. Table 3 (c)

. ) o _ and Table 4 (f)) are almost twice (resp. four times) as large
we simply nqed to modlfy.(6), so that the following inequal as those in Table 3 (a) and Table 4 (c). The reason is that
ities are obtained respectively

the grid space of Fig. 5 (b) and Fig. 6 (e) (resp. Fig. 5 (c)
0< —dz—pFy—2z—-08§<e, and Fig. 6 (f)) is twice (resp. four times) as large as that of



Table 4. Parameter estimation results of seg-
mented planar surfaces in Fig. 6

(d)
€ « 6] ¥ )
1 | 2.53866 -0.481622 | -0.539924 1 -505.439
2 | 2.78801 -0.235546 1 0.940043 | 446.441
3 | 2.02985 -0.41791 0.238806 1 -489.358
4 | 1.02676 1 0.0126761 | -0.550235 | -331.395
5 | 1.92059 -0.505882 | -0.638235 1 -464.826
6 | 0.760252| 1 -0.0115668 | -0.539432 | -326.766
7 | 1.74775 -0.0720721| -1.63964 1 -500.802
8 | 0.660584 | -0.0720721| 1 -0.448905 | -245.204
(e)
€ « Ié] ¥ 5
1 | 4.0725 -0.486857 | -0.541143 1 -1010.1
2 | 5.03725| -0.232787| 1 0.936131 | 890.082
3 | 3.22654 | -0.417907 | 0.232147 1 -978.429
4 | 1.75286 | 1 0.0111605 | -0.549891 | -663.497
5 | 3.50924 | -0.50308 -0.652977 1 -927.704
6 | 3.09351 | -0.073294 | -1.64027 1 -1000.16
7 | 107945 | 1 -0.00797011 | -0.546077 | -660.958
8 | 1.20741| -0.237037| 1 -0.451852 | -493.904
(®)
€ a IE] ¥ )
1 | 4.88192 -0.462209 | -0.519922 1 -2020.35
2 | 6.38296 -0.413744 0.231031 1 -1956.85
3 | 8.11213 -0.227372 1 0.948015 | 1804.6
4 | 2.76525 1 0.0120939 | -0.553442 | -1335.69
5 | 6.59621 -0.51084 -0.651762 1 -1854.09
6 | 5.85422 -0.0745445 | -1.64605 1 -1998.81
7 | 4.33574 | -0.520009 | -0.586203 1 -2016.94
8 | 0.981103| 1 -0.0106891 | -0.559076 | -1350.38
9 | 0.888889| 1 -0.0121382 | -0.531279 | -1294.01
10 | 1.06774 1 -0.00811321| -0.55717 -1346.02
11 | 0.921053| 1 -0.0115132 | -0.541118 | -1314.11

Fig. 5 (a) and Fig. 6 (d), because of theirimage resolutions.
Note that we always set the grid interval to hewhen we
make a grid space from a range image.

From Tables 3 and 4, we also see that it is rare ¢Ho-
comes less thah. In other words, most of our segmented

planar surfaces cannot be exactly discrete planes. More-

over, the tables show that the higher the image resolution,
the larger the value. Since each segmented planar sur-
face contains many grid points when the image resolution
is high, as seen in Table 2, it can generate a very thicker
discrete plane. It is possible that the thickness is reladed

the spread of grid points in a segmented planar surface as

well as the point number. It might be interesting to study
how we can reduce the thicknesb®y changing the image
resolution, with the aim of inventing a multiscale method
for range image registration by using planar surfaces, for
example.

5. Conclusion

[0l
In this paper, we present a discrete version of the hybrid

method for planar surface segmentation from a 3D grid-
point set. Our method simply requires two types of look-up

tables, such as the binary LGP table (linear or non-linear)
and the normal cell list with respect to each linear LGP, and
does not require any parameter setting/estimation. The ex-
perimental results in Figs. 5 and 6 show us that our method
is useful for planar surface segmentation from a point cloud
because it takes into account not only quantization errors
but also noise. We also present a method for estimating
discrete-plane parameters, which is also based on discrete
geometry. Our estimation results in Tables 3 and 4 show us
that exact discrete planes are rarely obtained for prdctica
images, because of their noise. Theoretically, exactefiscr
planes must be obtained if input is an ideal image, i.e., it
does not contain noise, but contains only quantization er-
rors. However, practically, it is no wonder that input image
contains noise as well as quantization errors. Therefoee, w
have to derive a conclusion that we need to eliminate such
noise, for example, by reducing image resolutions, before
applying our method based on discrete geometry. Because
our method is fully discrete and such discreteness helps us
to build up a multiscale approach, we will reorient our fu-
ture work to inventing the multiscale method for range im-
age registration by using discrete planes, for example. We
expect that our approach will provide a rough registration
result with less computation.
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