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Abstract— Rendering mist, haze or fog remains a challenge in
current computer graphics since it is intrinsically a 3D problem.
While the attenuation caused by fog is easy to implement,
single scattering effects such as glows and shafts of lighthat
increase considerably the realism, are harder to render in eal-
time. This paper addresses the rendering of such effects alg
with volumetric shadows induced by shadow casters in the
participating media. Whereas techniques related to shadownaps
have been explored when rendering with single scattering,his
paper proposes a real-time algorithm using the philosophy fo
shadow volumes, including volumetric shadows. With a spai

handled automatically by graphic cards. Figure 1.a is aegerf
example of this technique. Despite its great speed, thiseod
poorly represents all the effects induced by light scatteri
On the other hand, methods seeking for great realism have
investigated the computation of the multiple scatteringjgift
through the medium. But due to this goal, these methods
are very slow since they need Monte Carlo or finite element
techniques.

In this paper we investigate the complete single scattering

coherence method, simple shaders and an intensive use of thdllumination model. In this local illumination approachnly

stencil buffer, we render the shadow planes in a back to front
order to obtain the correct volumetric shadows. Therefore ar
method is easy to integrate in a graphics engine using the stiaw
volume technique since it requires only a little additionaltexture
memory and is implemented with simple shaders. Realistic
images can be produced in real-time for usual graphic scenend
at a high level framerate for complex scenes, allowing charmg
in the properties of participating medium, animations of objects
and even light sources movements.

Keywords— Single scattering, Real Time, Hardware rendering

I. INTRODUCTION

If light scattering has been intensively explored, frornBli

in 1982 [1] to Sun et al. [2], it is mainly because it greatly
enhances the realism of virtual scenes and can greatly impro

the graphic quality of computer games. Indeed, the lig
scattering occurs everywhere in a scene and thereforeriis-int

sically a 3D phenomenon. For example, look at the difference

between the Figure 1.a rendered classically and the Figbre

where the contributions of a participating medium have been
added. In the first picture, it is not clear where the lights ar
while they can be roughly located in the second. Nevertbeles

the first scattering of light in the medium is taken into acttou
The remaining scattering of light is considered as homoge-
neous and constant all over the scene, like in the OpenGL
fog model. The originality of the model is the introduction
of the indirect single scattering Indeed, we will calldirect
single scattering the effect of the first scattering of light
along view rays. Thendirect single scattering is the same
effect but along illumination rays of any point of scene. Our
contributions in this paper are :

« Define an analytic and comprehensive formulation of
light scattering along view rays and illumination rays.
Based on a angular formulation of the radiative transfer
equation, we present a way to use precomputed 2D table
to compute directly these contributions.

Integration of the volumetric shadows We build a
method based on the shadow volume technique and
using spatial coherence strategy, allowing the rendeifing o
volumetric shadows in the scene, especially discernable
around light sources.

Hardware implementation. Except for the determina-
tion of object’s silhouette, all the work is done in hard-
ware. We store our precomputed 2D tables in textures and

ht*®
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the Figure 1.c shows that, in some cases, rendering only
the participating medium is not enough. In order to increase
realism, we must render the volumetric shadows. Volumetric
shadows are the shadows that cast objects in the partimipati

medium itself. They greatly contribute on the presence in a

use simple shaders to render the illumination of objects
and participating media. The rendering of volumetric
shadows also involves an intensive use of the stencil
buffer.

virtual world. Here, the representation of shadow volunges i Our goal is to design an algorithm that can render accurately
necessary to obtain a realistic image and understand ylegrérticipating media, including effects like light beamdaggy

that a light stands inside the amphora.

or smoky scenes. Our method is not restricted to isotropic

A simple and common way to model light scattering iparticipating media which can be lit by one or several, stati
to handle the attenuation due to participating medium awd moving, point light sources since no precomputation isedo
consider the multiple scattering of light as homogeneous aimvolving either lights or camera. Our technique produdgh h
constant over the scene. This is the OpenGL fog mod®lsolution images and takes into account volumetric shadow
which is popular since it only needs a fog color and isast by occluders contained in the media. With very few



Fig. 1. The same scene lit a. (left) classically, b. (centéth single scattering and c. (right) with single scattgriind volumetric shadows. Who could say
precisely where are the lights in the left picture ? This isiobs in the right picture

texture memory cost, but using intensively graphics hardwarendering or direct representation. In order to add themeld
our method can render images at a high frame rate andricsshadows, the first approach will naturally use shadowsnap
real-time for classical graphics scene. Our method is &sy etechniques whereas the second is implicitly shadow volumes
to implement in traditional graphics engines since it fato oriented [20]. Volume rendering is a classic solution todem
the same strategy than the shadow volume algorithm, and asparticipating medium which is a volume de facto. Methods
only shaders and textures. Therefore, it is straightfodweith like [3]—[7] represent density or illumination in voxels -en
our method to obtain animations where objects or even ligbbded into 2D or 3D textures. Accumulation techniques using
sources can move. textured slices or virtual planes are then used to display th
result. These methods could produce nice images of clouds
or gas, but, in addition to requiring a lot of texture memory,
The representation of participating media has been a réagy are not suitable for shafts of light where sharp edgess.ex
challenge for years. We can easily divide all these studies Special methods are defined to render beams and shafts bf ligh
tween the single and the multiple scattering methods. Téte I@recisely and most of them [11]-{14] use volume rendering
ones try to compute all light reflections and inter-reflensio techniques along with sampling shadows in shadow maps.
inside the medium, whatever the number of these reflectioh®ifortunately, they suffer from artifacts due to the samgli
Despite their realism, they suffer from excessive comjpunat Dobashi et al. [15] present a very elegant solution to solve
time due to the complexity of light exchanges occurring ithis problem using specialized adaptive sampling for shado
these cases. Therefore these approachs are not suitabierforThey obtain an interactive rendering of participating raedi
goal and we will focus on methods considering only the singWithout aliasing or artifacts. However the image resolutio
scattering case. remains low since the method is expensive in terms of fillrate
These techniques [9], [12], [15]-[17] approximate mukiplMoreover, the method works only with static lights due to the
reflections of light as a constant ambient term and consid@ecomputation of shadow maps and only addresses the direct
only the first scattering of light ray in the direction of thesingle scattering.
camera. This assumption allows a direct rendering of tlue ill

mination of the medium which is more suitable for interagtiv The algorithms belonging to the second approach compute

rendering. Visualization is often done by ray tracing or raectly on every point of the scene the contribution of the
marching. View rays are followed to gather the participgting, icipating medium. It is well adapted to classical giagh

media contributions. Unfortunately, these methods [183][ gngines since it consists in one more rendering of the scene.
are far from being real-time on a conventional desktop €Oy this case, methods like [8], [9] use participating medium
puter. With the growing capacities of graphics hardware, o ngaries, or special virtual planes, combined with werte
real-time problem has been investigated. and fragments shaders. Other methods focus on the rendering

Two approaches can be used to achieve this goal : volugyeine atmosphere [10]. Despite their speed and simplialty,
these methods consider only the direct single scattering. T

Il. RELATED WORK

Method

Volume rendering

Direct computation

Direct single scat- [3] [4] [5] [6] [7] [8] [9] [10]
tering
+ Indirect single none our method and [2]

scattering

+ Volumetric shad-
ows

[11] [12] [13] [14] [15]

our method

TABLE |

OVERVIEW OF PREVIOUS WORK ON SINGLE SCATTERING

most advanced method of this group is proposed by Sun et
al. [2] and is the first to consider the effects of the indirect
single scattering. Unfortunately, it does not take shadimtes
account, even though it is real-time. Our work belongs te thi
group but is the only one of them to integrate direct single
scattering, indirect single scattering and volumetricdsives.
Compared to our own work presented in [21], we present here
an hardware implementation along with the representation o
the indirect single scattering which are major improveraent



P and seen from O (see Figure 2) :

B th /d IS(O[_’_ﬁ)e*ktIefkt’r‘
0

Les(up) = e . pla+ g)d:c 3)
In this equationz, r, d, h are geometrical factors ard is
the albedo, i.e. the fraction between the diffuse coefficien
and the extinction coefficient of the medium.is the phase
function expressing for any incoming direction the ratio of
light following the ray direction. Finally/, is the directional
intensity of the source computed relatively to the refeeenc
directionw,.¢. Equation (3) expresses the in-scattering which
is responsible for the subtle effects of atmospheric sGatie
The previous equation can be simplified [21], [22] using the
anglea to minimize the dependency of the integral to it. Using
the variable change = ¢ + h.tan(«), t and h are constant

In this section, we will present an analytic formulation oflong the ray, we can obtain (see the annexes) :
the single scattering illumination model. We will mainlycios

on in-scattering since absorption, emission, multipldteciag Los(th,d,1) = the—ktt/;;(a+ﬁ)p(a+z)ekthwda 4)
and out-scattering are really simple to integrate. We start T 4dth 2

the following developments with the angular formulation we

presented in [21], [22], and that were finely used by [2], worwhere

Fig. 2. Notations for our model

IIl. THE SINGLE SCATTERING ILLUMINATION MODEL

Yo

we review and extend here to obtain the complete illumimatio T —t
model of single scattering. Our developments consider only % = —5t¢=atan(5-)
homogeneous participating media defined all over the scene d —lcos(¢) d—t
and point light sources, assumed to be isotropic. Ya = atan(W) = atan(——)

A. Single scattering along a ray

Considering a view ray immersed in a participating medium,
thg radianceL_ observed along:;p from a point P can be B. The direct single scattering
written (see Figure 2) :

In the case of view rays, the point O is the position of
Ly = Lass(up) + € "OPL(P) 4+ Loe 9" + Lyiss(ip)  the camera. Therefore, the distance between O and S remains
(1) constant whatever the view ray considered. The only vasbl

where Ly, is the direct single scattering ardd P) the radi- in the equation (4) are the angteand the distancd. For an
ance of P attenuated by both absorption and out-scattéfingisotropic light, this equation becomes :

is the extinction coefficient, sum of the absorption coeffiti .
and the diffusion coefficient, properties of the participgt kil ge™ *t/” T\ _jyphinl)dl
. . ’ . . ) L , d = —_ — t cos(x) d 5
medium. The third term represents both emission and meltipl dss($,d) 4dmth ’Yp(oz—|—2 Je a
scattering inducing a constant radiancg along the ray. The _
last term is the object indirect single scattering. If we denote :
Now we focus on the radiance of P that can be written :

0

A sin(a)+1

.
F(A7'y):/ p(aJ%)e—kt cos(a) doy (6)
0

L(P) = Liss(P) + e MSPLy(P) + Lye %57 (2)

. - . ) ) i the direct single scattering could be written :
L;ss is the indirect single scattering received on point P and

L4(P) an usual direct illumination, like Phong model, that is
attenuated by absorption and out-scattering. The thirm ter
once again the contribution of emission and multiple scatje

o d—t
Lass(d, ) = 2= ek:h [F(kth’amn(T))

—t
on the illumination ray. —I(keh, atan(—-=))| - (7)
Then, onlyL,s and L;ss remain unknown. They both are
the contribution of the first light scattering along, redpey, This particular formulation is well suited to optimize the

a view ray and an illumination ray. First of all, we will shader that computes the direct single scattering. Noteahba
investigate the general contribution of this first scattgi@long 2D functionT" is purely numerical and only depends on the
aray before to see its application on view rays and illunmiémat shape of the phase function. It can therefore be precomputed
rays. The integral transfer equation, presented in [23%gi and stored in a 2D table. Figure 3 shows two examples for
the incoming radiancé ;s in directionup stopped at vertex isotropic phase function and mie-hazzy phase function.



C. The indirect single scattering S

Inspired by [2], we also compute the illumination of vertex
P due to the light scattering all over the scene. The indirect
single scattering can be written (see Figure 4) as follows :

2m T
Liss(P) = /9_0 /4)_0 Lss(d),d¢,9,l)fr(u2,u1)(zfc,ﬁ)dw (8) L

The first difficulty is to obtain for each direction; the
distancei, . This distance has been arbitrary fixeadain [2]
but this is a coarse approximation. Nevertheless, it is sea0g
if we want to avoid too much complexity. So we will mak
the same assumption and taklg,s = oo, Vo¢,6. o
First of all, consider the Lambertian case where the functio

. . .. Fig. 4. Notations for Lambert illumination model
fr is the diffuse reflectivity of the surfade;. We then have : g

2m ™
Liss(P) = ka /9_0 /¢—0 Lss(¢, 00,1)(ue.i)sin(¢)dpdd (9) i = (sin(py),0, cos(py,)) (cf.Figure 4) and write :

T 2T
Thanks to the symmetry on¢, we can choose L, (P) = kd/ Lgs(¢,00,1) [/ cos(dn)cos(p)do
the spherical coordinates centered on P such that $=0 0

+ /0 sin((bn)sin((b)cos(ﬁ)d@} sin(¢)de

Function Gamma

"donnees.dat"

It remains after integration :

™

Luss (P) = 27k /¢ Lus(6, 00, [)cos(én )cos () sin(d)dd
=0

Now we can substituté ., with equation (4) to obtain :

TE2[sQ)
Liss(P)= 27rkdcos(<;5n)/ kt4 5
$=0 7l

g(l, ¢)cos(¢)d¢

with
1 (2

cos(a—a¢)
gAG) = | plats)e T T da
0 5 2
. And finally we have :
*T5 200 Jc 2
Function Gamma LiSS(P):kt S 7decos(d)")FL(k,gl) (10)
4T kel
"donnees.dat" with
- T = [eoso)] T plasD)e T ES dhas )
05 F 8.5 0 6—Z 2
0 |-
05 | 95 The Phong model is much more difficult and we need the
15 | -;.5 reparametrization of Ramamoorthi et al. [24]. It gives use t
22 f 55 following equation :
: -3
-3.?) -3.5 2 T
-4 4 Liss(P) = ks/ / L (¢, 00,1)cos™(p)sin(¢)dpdh
6=0J ¢p=0
wheren is the shininess and, the specular reflectivity of

the surface¢ and@ are defined relatively to the axg.. ¢’ is
the angle formed by vectar, andu, (see Figure 5). We can
choose the base to have :

Fi

g. 3. Ther function for isotropic and hazzy phase function ¢ = acos(cos(¢s)cos(¢) + sin(p)cos(0)\/1 — cos?(ps))



Therefore, the equation will be : To

with

Tp(

D. Shadows on view rays

27 o g cos(a—a¢')+1
¢’,A>:/ / / pla+D)e A Tww coslpkh (13)
O O ’_

K2QIs k&,
_ Zs Pk 12
Ar Kl p(kud) (12)

Liss (P) {O

2

2

We want to integrate now the effect of occlusions along any
view rays. Equation (7) describes the particular case where Fig. 6. Case of a partially shadowed view ray
the view ray remains totally lit. In order to integrate shado
volumes, we need to consider more general cases, illudtrate
in Figure 6. Indeed, the ray must be split into lit and shadbwe 4) (CPU) Shadow planes determined by the object’s silhou-

parts. In this example, the medium contribution along tlyasa ettes are sorted in a back to front order.
split into two parts on OA and BP. Using the laplace formula, 5) (GPU) Shadow planes are rendered in that precise order.
it is straightforward to see that equation (7) becomes : The depth test function accepts only planes that are
K201 closer to the camera. Front facing planes add their
Lass(d,¢) = t_Se*ktt[p(kthﬁp) — D(k¢h,vB) contribution when back facing planes subtract them.
A Stencil function is set to allow fragments if the stencil is
+T(keh, va) — L'(keh, v0)] (14)

A. Overview of our method

equal to 1 for front facing planes and O for back facing
IV. HARDWARE IMPLEMENTATION ones. Front facing planes always decrement the stencil
buffer and back facing ones always increment it.

All stages have to be done for each light source. As in [25], a

Our algorithm is easy to implement. We present here theiftialization stage is done to obtain the ambiant lightand
steps of this method and we will precise for each step if thre first depth map. Each stage is detailed in the following
computation is done by CPU or by GPU. sections.

1)

2)

3)

(CPU) The silhouettes of every moving shadow caster
are computed. If the light source is moving, every"
silhouette needs to be recomputed. In our algorithm, we select some objects to be shadow
(GPU) Scene is rendered using the conventional polyegsters. Their silhouettes are easily computed by detérgiin
onal rendering method to obtain the direct illuminatioall edges of their mesh common to a front-facing triangle
and the indirect single scattering. Surface shadows ceggarding the light position and one back facing it. Then
be obtained using shadow planes algorithms [20], [25}/l these edges are linked together if possible, and stared i
The stencil buffer now contains lit areas of the scena. loop list. In order to obtain correct silhouettes, we need
An ambient fog is added to take into account botwell designed closed triangular meshes (2-manifold) foictvh
absorption and multiple scattering. connectivity information are available. These conditidos
(GPU) Scene is rendered once more time and dirdbe shadow casters are the ones indicated in [25]. Shadow
single scattering is computed for each vertex of thelanes are infinite quads formed by a silhouette edge and the
scene. Depth test is set to equality. Only lit parts dight position. They are constituted by the two edge’s vesi

the scene are rendered thanks to the stencil buffer. and two other points, projections of the previous vertiaes t
infinity toward direction : light position - vertex [20]. The

are oriented toward the unshadowed area of the scene. As
we need to compute the medium contribution on all shadow
planes, it is wise to use shadow plane silhouettes rather tha
the shadow planes of all little triangles. Of course, if tiggnt

does not move, only moving shadow caster silhouettes have
to be computed. Finally, if the input geometry is modified by
graphics hardware, using displacement mapping for example
a solution to obtain silhouettes of all objects quickly and
accurately can be found in [26].

Computation of silhouettes (step 1)

C. Rendering the scene (step 2 and 3)

The second and third steps of the algorithm compute the
Fig. 5. Notations for Phong illumination model illumination on surfaces. This can be done using one or



varying vec4 posinScene; varying vec3 lightDir,eyeVec,normal;
// coeff_milieu.rgb = light_intensity.rgb*albedo.rgb*coef_extinctA2/4*PI varying float att; . )
J/ cosff milieu.a : extinction cosfficient uniform vec4 coeff_milieu; / Same as the first shader
uniforrr?vec4 cosff milieu: uniform sampler1D gamma_lambert;
uniform vec4 poslght; // Light position ur‘nform sampler2l? gzjer‘]mafphong;
/ integralRange (min,max, max-min) /l'integralRange.x : Minimum value of Gamma L
niform vecd infe rali?an ’e- /l'integralRange.y : Range of Gamma L
i I 1% 9 t . // integralRange.z : Minimum value of Gamma P
E;:fz:m zngIZ:ZD ir:toene:;?ea'n’ // integralRange.w : Range of Gamma P
uniform samEIerZD dep?htex: uniforrn vecd integralRange:
void main
void main() { 0
vec4 facteurs,resultat;

. // facteurs.r = I then kt * |
float rayDist ;

vec4 facteurs,resultat;

vec3 rayDir; vec3 N = normalize(normal);

/l facteurs.x = -t facteurs.r = length(lightDir);

// facteurs.y = h vec3 L = lightDir/facteurs.r;

// facteurs.z = alpha0

// facteurs.w = alphad float lambertTerm = dot(N,L);

// View ray computation if(lambertTerm > 0.0) {

rayDir.xyz = posInScene.xyz; // Standard computation of lambertian and phong illumination

rayDist = length(rayDir); color += att * gl_LightSource[0].diffuse * gl_FrontMaterial.diffuse * lambertTerm;

rayDir /= rayDist;
vec3 E = normalize(eyeVec);

// -t computation vec3 R = reflect(-L, N);

facteurs.x = -dot(poslght.xyz,rayDir); float dre = max(dot(R, E), 0.0);

//'h computation float specular = pow(dre,gl_FrontMaterial.shininess);

facteurs.y = length(poslght.xyz + rayDir * facteurs.x); color += gl_LightSource[0].specular * gl_FrontMaterial.specular * specular *att;

// alpha0 et alphad computed thanks to atan texture JASH] !ambert

facteurs.z = (facteurs.x/(facteurs.y*20.0)) + 0.5; float dist = length(eyeVec);

facteurs.z = (texture1D(monarctan,facteurs.z)).r; // atan(-t/h) facteurs.r *= coeff_milieu.w;

facteurs.w = (rayDist+facteurs.x)/(facteurs.y*20.0) + 0.5; facteurs.g = texture1D(gamma_lambert,facteurs.r/10.0).r*integralRange.y-+integralRange.x;
facteurs.w = (texture1D(monarctan,facteurs.w)).r; // atan(d-t/h) resultat.a = 6.2831853"lambertTerm*facteurs.g/facteurs.r;

resultat.rgb = gl_FrontMaterial.diffuse.rgb*resultat.a;
/I Ldss computation

resultat.a = coeff_milieu.w*facteurs.y; / Kt h /1SS phong

resultat.b = facteurs.z; // alpha0 if (dre>0.0) {

resultat.r = texture2D(integrale,resultat.ab).r; facteurs.g = facteurs.r/10.0;
resultat.b = facteurs.w; // alphad facteurs.b = dre;

resultat.a = texture2D(gamma_phong,facteurs.gb).r*integralRange.w+integralRange.z;
resultat.rgb += gl_FrontMaterial.specular.rgb*resultat.a/facteurs.r;
gl_FragColor.rgb = facteurs.gbb;//*resultat.a;

resultat.g = texture2D(integrale,resultat.ab).r;
resultat.rg = resultat.rg*integralRange.zz + integralRange.xx;

// Final depth test
rayDir.x = gl_FragCoord.x/1024.0;
rayDir.y = gl_FragCoord.y/1024.0;
rayDir.z = texture2D(depthtex,rayDir.xy).x;
if (9l_FragCoord.z <= rayDir.z + 0.0001) {
gl_FragColor.a = (resultat.g - resultat.r)/ facteurs.y;
gl_FragColor.rgb = coeff_milieu.xyz * exp(-coeff_milieu.w * rayDist) * gl_FragColor.a; . .
} Fig. 8. Shader for;ss computation
else {
discard;
}
}

color.rgb += coeff_milieu.rgb*resultat.rgb*exp(-coeff_milieu.w * dist)*att;

gl_FragColor = color;

and preferred simple scalar products and texture lookups.

Fig. 7. Shader fotL s computation D. Sorting the shadow planes (step 4)

Before rendering all shadow planes, we have to make sure
that we will not render shadow planes, or part of them, that ar
two rendering of the scene depending on the ability of thgemselves in shadow. If we do not care about this problem, it
graphic cards to handle large shaders. Indeed, the numbeAf create artifacts we call shadow in shadows, shadowesan
instructions in the shader for both indirect single scatteand that are in shadow must not be rendered. Then, we render the
direct single scattering computations could exceed tha@sp shadow planes, back- or front-facing, in a "back to frontler
of the graphic card. and use the stencil buffer to avoid the drawing of shadowed
We show in Figure 7 and 8 the two GLSL fragment shadeghadow planes.

used for steps 2 and 3 and which “implement” respectivel ]
equation (1) and (7). These shaders, and the correspono%gRende”ng the shadow planes (step 5)
steps, can be grouped together if possible. Note that we use & remains to render the shadow volumes, i.e. to take into
shader for any kind of participating medium of the scene. TleEcount the equation (14). We still have the stencil we have
two shaders need four textures : a 1D texture used as a lookinpained in the stage 2. Shadow planes are rendered in the
table for arctangent function, a 2D texture representirgy tlorder defined in the previous stage. The same pixel shader of
functionT" defined in (6), 1D texture to store the Lambertiafrigure 7 is used for the shadow planes. The only difference
function (11) and finally one for the Phong function (13). &lotis blending : front facing planes add their contribution whe
that in equations (7), (10), (12) the first fraction could be lback facing planes subtract them.
uniform variable and the second fraction could be computedTaking into account correctly the shadow in shadow prob-
directly by the shaders. Moreover we have avoided the dirdetn requires the use of the stencil buffer. The key idea is
computation ofatan, cos or sin functions in these shaders,to draw only the planes that constitute the boundary between



© initial stencil value shadows rendering. The image in Figure 11.b is a snapshot
1% *1 add one to the stencil of an animation presenting two point light sources, inagdi

-1 subtract one to the stencil p 9 p 9 T

+  contribution added one that moves, in a complex scene containing about 100

A contribution subtracted 000 triangles. The last picture 11.c is another snapshat fro
an animation where camera moves and properties of the
participating medium evolve. The table Il presents the FPS

compared to the number of triangles of those scenes.

without ISS

: with iss, dss| number of
scene with dss and ! :
S . _y ‘ shadows and shadows triangles
L e fig. 11 .a 31 30 14 785
o ® . O /O fig. 11 .b 10.5 10.2 110 014
fig. 11 .c 7.6 7 136 266
Fig. 9. Use of the stencil buffer in the rendering of shadoanpbk TABLE I

FPSCOMPARED TO NUMBER OF TRIANGLES

lit volumes and shadowed ones. This can be done using our
ordering and the value stored in the stencil. We define the
stencil test such that front facing planes pass the steesil t We have presented in this paper a complete single scattering
if its value is one, representing shadowed area, and bdkmination model along with a new algorithm able to render
facing ones passes if it equals zero, value representingtfie main part of this model. It considers a single partidiat
area. Ideally the back (resp. front) facing quads shoulépdw medium recovering the scene and lit by one or several, eventu
add (resp. subtract) one to the stencil buffer if it passgghde ally dynamic, point light sources. Our algorithm is fast egb
test. Unfortunately, the stencil test is before the depsh $& to handle more than 30 frames per second for moderately
we have to do our own depth test in the pixel shader. Thusimplex scenes. It implements the direct single scattgtirey
we only draw shadow planes that make the shadow voluniglirect single scattering and, most of all, volumetriccias
boundaries. The indicated strategy works if the camera is afong with surfacic shadows. Our method can be implemented
the light. A slightly different strategy can be used when thi@ programmable graphics hardware, and compared to volume
camera is in shadow but the philosophy remains the samerendering approach does not need a lot of texture memory.
Therefore it can easily be integrated in any graphics engine
V. RESULTS We also have to point out that our algorithm does not creae th

The previous algorithm has been implemented on a stand&f@Sing effect we can have with volume rendering techrsque
computer using a 2.6 GHz processor and an AT 9800 PRERNKS to the use of the exact shadow planes.
graphics card (which is an old card now!). All images and Th_e _perspectwes are numerous but two developments seems
videos we present have a 800x600 resolution. First of all, W&OMISING - . . o
point out, in Figure 10 the influence of each part of our singf@€la@x assumptions: So far we consider only isotropic point
scattering illumination model. In this example, we have nd@ht and homogeneous participating media. We have made
considered the multiple scattering to concentrate on therot Satisfying preliminary work about animating several boeahd
effects. On the top row, the first column shows the direcRarticipating media and it could be a way to handle hetero-
ilumination of surfaces. The second column adds the dirédgneous medium. Directional light source are easier toland
single scattering. This effect highlights slightly all siirfaces. than point light and will not be a problem. The real challenge
Therefore, if we don’t consider shadow volume, discontinuiiS the integration of directionnal point light sources.
in the illumination can occur between lit and shadowed ared4ake it soft ... and quick : An other way to obtain more
like in the bottom of the jug. After the shadow volumes rendefe@listic image will be to consider soft shadows, for sudac
ing, illustrated in the third column, the discontinuitiésapear. Shadows but also for volumetric shadows. Fortunately, our
All these pictures have been rendered with indirect singéork is well adapted to algorithm such as [27] since it uses
scattering, that introduces subtle modifications : dimmifig shadow volumes. Finaly, note that no optimization have been

the specular highlights on the vase and brightening of darkine to render the scenes. We believe that occlusion culling
region. frustum culling and clustering would greatly speed up our

VI. CONCLUSION

We also present some snapshots of our animations. THgorithm.
first image in Figure 11.a. is a simple scene, where a pen
is bumping in front of two lights. It illustrates a classical
situation where well design 3D objects are moving and cgstin We thank Pascal Lecocq for the developments done in his
shadows. Here the shadow planes are really intricated. Tthesis about this subject and wish him a excellent career in
scene is rendered at more than 30 fps, including directsin@pain. We also thank Leonie Van Royeen for her english
scattering, indirect single scattering and of course velim review.
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Fig. 10.

scattering and the third adds the volumetric shadows

Fig. 11.

(right) A more complex scene
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