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Abstract— Rendering mist, haze or fog remains a challenge in
current computer graphics since it is intrinsically a 3D problem.
While the attenuation caused by fog is easy to implement,
single scattering effects such as glows and shafts of light,that
increase considerably the realism, are harder to render in real-
time. This paper addresses the rendering of such effects along
with volumetric shadows induced by shadow casters in the
participating media. Whereas techniques related to shadowmaps
have been explored when rendering with single scattering, this
paper proposes a real-time algorithm using the philosophy of
shadow volumes, including volumetric shadows. With a spatial
coherence method, simple shaders and an intensive use of the
stencil buffer, we render the shadow planes in a back to front
order to obtain the correct volumetric shadows. Therefore our
method is easy to integrate in a graphics engine using the shadow
volume technique since it requires only a little additionaltexture
memory and is implemented with simple shaders. Realistic
images can be produced in real-time for usual graphic scenesand
at a high level framerate for complex scenes, allowing changes
in the properties of participating medium, animations of objects
and even light sources movements.
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I. I NTRODUCTION

If light scattering has been intensively explored, from Blinn
in 1982 [1] to Sun et al. [2], it is mainly because it greatly
enhances the realism of virtual scenes and can greatly improve
the graphic quality of computer games. Indeed, the light
scattering occurs everywhere in a scene and therefore is intrin-
sically a 3D phenomenon. For example, look at the differences
between the Figure 1.a rendered classically and the Figure 1.b
where the contributions of a participating medium have been
added. In the first picture, it is not clear where the lights are
while they can be roughly located in the second. Nevertheless,
the Figure 1.c shows that, in some cases, rendering only
the participating medium is not enough. In order to increase
realism, we must render the volumetric shadows. Volumetric
shadows are the shadows that cast objects in the participating
medium itself. They greatly contribute on the presence in a
virtual world. Here, the representation of shadow volumes is
necessary to obtain a realistic image and understand clearly
that a light stands inside the amphora.

A simple and common way to model light scattering is
to handle the attenuation due to participating medium and
consider the multiple scattering of light as homogeneous and
constant over the scene. This is the OpenGL fog model
which is popular since it only needs a fog color and is

handled automatically by graphic cards. Figure 1.a is a perfect
example of this technique. Despite its great speed, this model
poorly represents all the effects induced by light scattering.
On the other hand, methods seeking for great realism have
investigated the computation of the multiple scattering oflight
through the medium. But due to this goal, these methods
are very slow since they need Monte Carlo or finite element
techniques.

In this paper we investigate the complete single scattering
illumination model. In this local illumination approach, only
the first scattering of light in the medium is taken into account.
The remaining scattering of light is considered as homoge-
neous and constant all over the scene, like in the OpenGL
fog model. The originality of the model is the introduction
of the indirect single scattering. Indeed, we will calldirect
single scattering the effect of the first scattering of light
along view rays. Theindirect single scattering is the same
effect but along illumination rays of any point of scene. Our
contributions in this paper are :

• Define an analytic and comprehensive formulation of
light scattering along view rays and illumination rays.
Based on a angular formulation of the radiative transfer
equation, we present a way to use precomputed 2D table
to compute directly these contributions.

• Integration of the volumetric shadows. We build a
method based on the shadow volume technique and
using spatial coherence strategy, allowing the rendering of
volumetric shadows in the scene, especially discernable
around light sources.

• Hardware implementation. Except for the determina-
tion of object’s silhouette, all the work is done in hard-
ware. We store our precomputed 2D tables in textures and
use simple shaders to render the illumination of objects
and participating media. The rendering of volumetric
shadows also involves an intensive use of the stencil
buffer.

Our goal is to design an algorithm that can render accurately
participating media, including effects like light beams infoggy
or smoky scenes. Our method is not restricted to isotropic
participating media which can be lit by one or several, static
or moving, point light sources since no precomputation is done
involving either lights or camera. Our technique produces high
resolution images and takes into account volumetric shadows,
cast by occluders contained in the media. With very few



Fig. 1. The same scene lit a. (left) classically, b. (center)with single scattering and c. (right) with single scattering and volumetric shadows. Who could say
precisely where are the lights in the left picture ? This is obvious in the right picture

texture memory cost, but using intensively graphics hardware,
our method can render images at a high frame rate and is
real-time for classical graphics scene. Our method is also easy
to implement in traditional graphics engines since it follows
the same strategy than the shadow volume algorithm, and use
only shaders and textures. Therefore, it is straightforward with
our method to obtain animations where objects or even light
sources can move.

II. RELATED WORK

The representation of participating media has been a real
challenge for years. We can easily divide all these studies be-
tween the single and the multiple scattering methods. The last
ones try to compute all light reflections and inter-reflections
inside the medium, whatever the number of these reflections.
Despite their realism, they suffer from excessive computation
time due to the complexity of light exchanges occurring in
these cases. Therefore these approachs are not suitable forour
goal and we will focus on methods considering only the single
scattering case.

These techniques [9], [12], [15]–[17] approximate multiple
reflections of light as a constant ambient term and consider
only the first scattering of light ray in the direction of the
camera. This assumption allows a direct rendering of the illu-
mination of the medium which is more suitable for interactive
rendering. Visualization is often done by ray tracing or ray
marching. View rays are followed to gather the participating
media contributions. Unfortunately, these methods [18], [19]
are far from being real-time on a conventional desktop com-
puter. With the growing capacities of graphics hardware, the
real-time problem has been investigated.

Two approaches can be used to achieve this goal : volume

Method Volume rendering Direct computation
Direct single scat-
tering

[3] [4] [5] [6] [7] [8] [9] [10]

+ Indirect single
scattering

none our method and [2]

+ Volumetric shad-
ows

[11] [12] [13] [14] [15] our method

TABLE I

OVERVIEW OF PREVIOUS WORK ON SINGLE SCATTERING

rendering or direct representation. In order to add the volumet-
ric shadows, the first approach will naturally use shadow maps
techniques whereas the second is implicitly shadow volumes
oriented [20]. Volume rendering is a classic solution to render
a participating medium which is a volume de facto. Methods
like [3]–[7] represent density or illumination in voxels en-
coded into 2D or 3D textures. Accumulation techniques using
textured slices or virtual planes are then used to display the
result. These methods could produce nice images of clouds
or gas, but, in addition to requiring a lot of texture memory,
they are not suitable for shafts of light where sharp edges exist.
Special methods are defined to render beams and shafts of light
precisely and most of them [11]–[14] use volume rendering
techniques along with sampling shadows in shadow maps.
Unfortunately, they suffer from artifacts due to the sampling.
Dobashi et al. [15] present a very elegant solution to solve
this problem using specialized adaptive sampling for shadows.
They obtain an interactive rendering of participating media
without aliasing or artifacts. However the image resolution
remains low since the method is expensive in terms of fillrate.
Moreover, the method works only with static lights due to the
precomputation of shadow maps and only addresses the direct
single scattering.

The algorithms belonging to the second approach compute
directly on every point of the scene the contribution of the
participating medium. It is well adapted to classical graphics
engines since it consists in one more rendering of the scene.
In this case, methods like [8], [9] use participating medium
boundaries, or special virtual planes, combined with vertex
and fragments shaders. Other methods focus on the rendering
of the atmosphere [10]. Despite their speed and simplicity,all
these methods consider only the direct single scattering. The
most advanced method of this group is proposed by Sun et
al. [2] and is the first to consider the effects of the indirect
single scattering. Unfortunately, it does not take shadowsinto
account, even though it is real-time. Our work belongs to this
group but is the only one of them to integrate direct single
scattering, indirect single scattering and volumetric shadows.
Compared to our own work presented in [21], we present here
an hardware implementation along with the representation of
the indirect single scattering which are major improvements.
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Fig. 2. Notations for our model

III. T HE SINGLE SCATTERING ILLUMINATION MODEL

In this section, we will present an analytic formulation of
the single scattering illumination model. We will mainly focus
on in-scattering since absorption, emission, multiple scattering
and out-scattering are really simple to integrate. We startin
the following developments with the angular formulation we
presented in [21], [22], and that were finely used by [2], work
we review and extend here to obtain the complete illumination
model of single scattering. Our developments consider only
homogeneous participating media defined all over the scene
and point light sources, assumed to be isotropic.

A. Single scattering along a ray

Considering a view ray immersed in a participating medium,
the radianceL observed along~uP from a point P can be
written (see Figure 2) :

L ~uP
= Ldss( ~uP ) + e−ktOP L(P ) + Lae−ktOP + Loiss( ~uP )

(1)
whereLdss is the direct single scattering andL(P ) the radi-
ance of P attenuated by both absorption and out-scattering.kt

is the extinction coefficient, sum of the absorption coefficient
and the diffusion coefficient, properties of the participating
medium. The third term represents both emission and multiple
scattering inducing a constant radianceLa along the ray. The
last term is the object indirect single scattering.

Now we focus on the radiance of P that can be written :

L(P ) = Liss(P ) + e−ktSP Ld(P ) + Lae−ktSP (2)

Liss is the indirect single scattering received on point P and
Ld(P ) an usual direct illumination, like Phong model, that is
attenuated by absorption and out-scattering. The third term is
once again the contribution of emission and multiple scattering
on the illumination ray.

Then, onlyLdss andLiss remain unknown. They both are
the contribution of the first light scattering along, respectively,
a view ray and an illumination ray. First of all, we will
investigate the general contribution of this first scattering along
a ray before to see its application on view rays and illumination
rays. The integral transfer equation, presented in [23], gives
the incoming radianceLss in direction ~uP stopped at vertex

P and seen from O (see Figure 2) :

Lss( ~uP ) =
ktΩ

4π

∫ d

0

IS(α + β)e−ktxe−ktr

r2
p(α +

π

2
)dx (3)

In this equationx, r, d, h are geometrical factors andΩ is
the albedo, i.e. the fraction between the diffuse coefficient
and the extinction coefficient of the medium.p is the phase
function expressing for any incoming direction the ratio of
light following the ray direction. Finally,Is is the directional
intensity of the source computed relatively to the reference
direction ~ωref . Equation (3) expresses the in-scattering which
is responsible for the subtle effects of atmospheric scattering.

The previous equation can be simplified [21], [22] using the
angleα to minimize the dependency of the integral to it. Using
the variable changex = t + h. tan(α), t and h are constant
along the ray, we can obtain (see the annexes) :

Lss(φ, d, l)=
ktΩe−ktt

4πh

∫ γd

γ0

IS(α+β)p(α+
π

2
)e−kth

sin(α)+1
cos(α) dα (4)

where

γ0 = −
π

2
+ φ = atan(

−t

h
)

γd = atan(
d − lcos(φ)

lsin(φ)
) = atan(

d − t

h
)

B. The direct single scattering

In the case of view rays, the point O is the position of
the camera. Therefore, the distance between O and S remains
constant whatever the view ray considered. The only variables
in the equation (4) are the angleφ and the distanced. For an
isotropic light, this equation becomes :

Ldss(φ, d)=
ktΩISe−ktt

4πh

∫ γd

γ0

p(α+
π

2
)e−kth

sin(α)+1
cos(α) dα (5)

If we denote :

Γ(λ, γ) =

∫ γ

0

p(α+
π

2
)e−ktλ

sin(α)+1
cos(α) dα (6)

the direct single scattering could be written :

Ldss(d, φ) =
k2

t ΩIS

4π
e−ktt

kth

[

Γ(kth, atan(
d − t

h
))

−Γ(kth, atan(
−t

h
))

]

(7)

This particular formulation is well suited to optimize the
shader that computes the direct single scattering. Note that the
2D function Γ is purely numerical and only depends on the
shape of the phase function. It can therefore be precomputed
and stored in a 2D table. Figure 3 shows two examples for
isotropic phase function and mie-hazzy phase function.



C. The indirect single scattering

Inspired by [2], we also compute the illumination of vertex
P due to the light scattering all over the scene. The indirect
single scattering can be written (see Figure 4) as follows :

Liss(P ) =

∫ 2π

θ=0

∫ π

φ=0

Lss(φ, dφ,θ, l)fr( ~uc, ~uv)( ~uc.~n)dω (8)

The first difficulty is to obtain for each direction~uc the
distancedφ,θ. This distance has been arbitrary fixed at∞ in [2]
but this is a coarse approximation. Nevertheless, it is necessary
if we want to avoid too much complexity. So we will make
the same assumption and take,dφ,θ = ∞, ∀φ, θ.

First of all, consider the Lambertian case where the function
fr is the diffuse reflectivity of the surfacekd. We then have :

Liss(P ) = kd

∫ 2π

θ=0

∫ π

φ=0

Lss(φ,∞, l)( ~uc.~n)sin(φ)dφdθ (9)

Thanks to the symmetry onθ, we can choose
the spherical coordinates centered on P such that

Fig. 3. TheΓ function for isotropic and hazzy phase function
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Fig. 4. Notations for Lambert illumination model

~n = (sin(φn), 0, cos(φn)) (cf.Figure 4) and write :

Liss(P ) = kd

∫ π

φ=0

Lss(φ,∞, l)

[
∫ 2π

0

cos(φn)cos(φ)dθ

+

∫ 2π

0

sin(φn)sin(φ)cos(θ)dθ

]

sin(φ)dφ

It remains after integration :

Liss(P ) = 2πkd

∫ π

φ=0

Lss(φ,∞, l)cos(φn)cos(φ)sin(φ)dφ

Now we can substituteLss with equation (4) to obtain :

Liss(P )=2πkdcos(φn)

∫ π

φ=0

k2
t ISΩ

4πl
g(l, φ)cos(φ)dφ

with

g(λ, φ) =
1

λ

∫ π
2

φ−π
2

p(α+
π

2
)e−λ

cos(α−φ)+1
cos(α) dα

And finally we have :

Liss(P )=
k2

t ΩIS

4π

2πkdcos(φn)

ktl
ΓL(ktl) (10)

with

ΓL(λ) =

∫ π

0

cos(φ)

∫ π
2

φ−π
2

p(α+
π

2
)e−λ

cos(α−φ)+1
cos(α) dαdφ (11)

The Phong model is much more difficult and we need the
reparametrization of Ramamoorthi et al. [24]. It gives use the
following equation :

Liss(P ) = ks

∫ 2π

θ=0

∫ π

φ=0

Lss(φ
′,∞, l)cosn(φ)sin(φ)dφdθ

where n is the shininess andks the specular reflectivity of
the surface.φ andθ are defined relatively to the axe~ur. φ′ is
the angle formed by vector~us and ~uc (see Figure 5). We can
choose the base to have :

φ′ = acos(cos(φS)cos(φ) + sin(φ)cos(θ)
√

1 − cos2(φS))



Therefore, the equation will be :

Liss(P ) =
k2

t ΩIS

4π

ks

ktl
ΓP (ktl) (12)

with

ΓP (φ′, λ)=

∫ 2π

0

∫ π

0

∫ π
2

φ′
−

π
2

p(α+
π

2
)e−λ

cos(α−φ′)+1
cos(α) cosn(φ)dα (13)

D. Shadows on view rays

We want to integrate now the effect of occlusions along any
view rays. Equation (7) describes the particular case where
the view ray remains totally lit. In order to integrate shadow
volumes, we need to consider more general cases, illustrated
in Figure 6. Indeed, the ray must be split into lit and shadowed
parts. In this example, the medium contribution along the ray is
split into two parts on OA and BP. Using the laplace formula,
it is straightforward to see that equation (7) becomes :

Ldss(d, φ) =
k2

t ΩIS

4π
e−ktt[Γ(kth, γP ) − Γ(kth, γB)

+Γ(kth, γA) − Γ(kth, γO)] (14)

IV. H ARDWARE IMPLEMENTATION

A. Overview of our method

Our algorithm is easy to implement. We present here the 5
steps of this method and we will precise for each step if the
computation is done by CPU or by GPU.

1) (CPU) The silhouettes of every moving shadow caster
are computed. If the light source is moving, every
silhouette needs to be recomputed.

2) (GPU) Scene is rendered using the conventional polyg-
onal rendering method to obtain the direct illumination
and the indirect single scattering. Surface shadows can
be obtained using shadow planes algorithms [20], [25].
The stencil buffer now contains lit areas of the scene.
An ambient fog is added to take into account both
absorption and multiple scattering.

3) (GPU) Scene is rendered once more time and direct
single scattering is computed for each vertex of the
scene. Depth test is set to equality. Only lit parts of
the scene are rendered thanks to the stencil buffer.
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Fig. 5. Notations for Phong illumination model
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Fig. 6. Case of a partially shadowed view ray

4) (CPU) Shadow planes determined by the object’s silhou-
ettes are sorted in a back to front order.

5) (GPU) Shadow planes are rendered in that precise order.
The depth test function accepts only planes that are
closer to the camera. Front facing planes add their
contribution when back facing planes subtract them.
Stencil function is set to allow fragments if the stencil is
equal to 1 for front facing planes and 0 for back facing
ones. Front facing planes always decrement the stencil
buffer and back facing ones always increment it.

All stages have to be done for each light source. As in [25], a
initialization stage is done to obtain the ambiant lightingand
the first depth map. Each stage is detailed in the following
sections.

B. Computation of silhouettes (step 1)

In our algorithm, we select some objects to be shadow
casters. Their silhouettes are easily computed by determining
all edges of their mesh common to a front-facing triangle
regarding the light position and one back facing it. Then
all these edges are linked together if possible, and stored in
a loop list. In order to obtain correct silhouettes, we need
well designed closed triangular meshes (2-manifold) for which
connectivity information are available. These conditionsfor
the shadow casters are the ones indicated in [25]. Shadow
planes are infinite quads formed by a silhouette edge and the
light position. They are constituted by the two edge’s vertices
and two other points, projections of the previous vertices to
infinity toward direction : light position - vertex [20]. They
are oriented toward the unshadowed area of the scene. As
we need to compute the medium contribution on all shadow
planes, it is wise to use shadow plane silhouettes rather than
the shadow planes of all little triangles. Of course, if the light
does not move, only moving shadow caster silhouettes have
to be computed. Finally, if the input geometry is modified by
graphics hardware, using displacement mapping for example,
a solution to obtain silhouettes of all objects quickly and
accurately can be found in [26].

C. Rendering the scene (step 2 and 3)

The second and third steps of the algorithm compute the
illumination on surfaces. This can be done using one or



varying vec4 posInScene;

// coeff_milieu.rgb = light_intensity.rgb*albedo.rgb*coef_extinct^2/4*PI

// coeff_milieu.a  : extinction coefficient 

uniform vec4 coeff_milieu; 

uniform vec4 poslght; // Light position

// integralRange (min,max,max-min)

uniform vec4 integralRange;

uniform sampler1D monarctan;

uniform sampler2D integrale;

uniform sampler2D depthtex;



void main() {

  vec4 facteurs,resultat;

  float rayDist ;

  vec3 rayDir;

  // facteurs.x = -t

  // facteurs.y = h

  // facteurs.z = alpha0

  // facteurs.w = alphad



  // View ray computation

  rayDir.xyz = posInScene.xyz;

  rayDist = length(rayDir);

  rayDir /= rayDist;



  // -t computation

  facteurs.x = -dot(poslght.xyz,rayDir);

  // h computation  

  facteurs.y = length(poslght.xyz + rayDir * facteurs.x);



  // alpha0 et alphad computed thanks to atan texture

  facteurs.z = (facteurs.x/(facteurs.y*20.0)) + 0.5;

  facteurs.z = (texture1D(monarctan,facteurs.z)).r;  // atan(-t/h)

  facteurs.w = (rayDist+facteurs.x)/(facteurs.y*20.0) + 0.5;

  facteurs.w = (texture1D(monarctan,facteurs.w)).r;  // atan(d-t/h)



  // Ldss computation

  resultat.a = coeff_milieu.w*facteurs.y; // Kt h

  resultat.b = facteurs.z;                         // alpha0

  resultat.r = texture2D(integrale,resultat.ab).r;

  resultat.b = facteurs.w;                         // alphad

  resultat.g = texture2D(integrale,resultat.ab).r;

  resultat.rg = resultat.rg*integralRange.zz + integralRange.xx;

 

  // Final depth test

  rayDir.x = gl_FragCoord.x/1024.0;

  rayDir.y = gl_FragCoord.y/1024.0;

  rayDir.z = texture2D(depthtex,rayDir.xy).x;

  if (gl_FragCoord.z <= rayDir.z + 0.0001) {

     gl_FragColor.a = (resultat.g - resultat.r)/ facteurs.y;

     gl_FragColor.rgb = coeff_milieu.xyz * exp(-coeff_milieu.w * rayDist) * gl_FragColor.a;

  }

  else {

     discard;

  }

}

Fig. 7. Shader forLdss computation

two rendering of the scene depending on the ability of the
graphic cards to handle large shaders. Indeed, the number of
instructions in the shader for both indirect single scattering and
direct single scattering computations could exceed the capacity
of the graphic card.

We show in Figure 7 and 8 the two GLSL fragment shaders
used for steps 2 and 3 and which “implement” respectively
equation (1) and (7). These shaders, and the corresponding
steps, can be grouped together if possible. Note that we use a
shader for any kind of participating medium of the scene. The
two shaders need four textures : a 1D texture used as a lookup
table for arctangent function, a 2D texture representing the
function Γ defined in (6), 1D texture to store the Lambertian
function (11) and finally one for the Phong function (13). Note
that in equations (7), (10), (12) the first fraction could be a
uniform variable and the second fraction could be computed
directly by the shaders. Moreover we have avoided the direct
computation ofatan, cos or sin functions in these shaders,

varying vec3 lightDir,eyeVec,normal;

varying float att;

uniform vec4 coeff_milieu; // Same as the first shader

uniform sampler1D gamma_lambert;

uniform sampler2D gamma_phong;

// integralRange.x : Minimum value of Gamma L

// integralRange.y : Range of Gamma L

// integralRange.z : Minimum value of Gamma P

// integralRange.w : Range of Gamma P

uniform vec4 integralRange;



void main()

{

  // facteurs.r = l then kt * l

  vec4 facteurs,resultat;

  vec3 N = normalize(normal);

  facteurs.r = length(lightDir);

  vec3 L = lightDir/facteurs.r;

 

  float lambertTerm = dot(N,L);

 

  if(lambertTerm > 0.0) {

    // Standard computation of lambertian and phong illumination

    color += att * gl_LightSource[0].diffuse * gl_FrontMaterial.diffuse * lambertTerm;

  

    vec3 E = normalize(eyeVec);

    vec3 R = reflect(-L, N);

    float dre = max(dot(R, E), 0.0);

    float specular = pow(dre,gl_FrontMaterial.shininess);

    color += gl_LightSource[0].specular * gl_FrontMaterial.specular * specular *att;

 

    // ISS lambert

    float dist = length(eyeVec);

    facteurs.r *= coeff_milieu.w;

    facteurs.g = texture1D(gamma_lambert,facteurs.r/10.0).r*integralRange.y+integralRange.x;

    resultat.a = 6.2831853*lambertTerm*facteurs.g/facteurs.r;

    resultat.rgb = gl_FrontMaterial.diffuse.rgb*resultat.a;



    // ISS phong

    if (dre>0.0) {

      facteurs.g = facteurs.r/10.0;

      facteurs.b = dre;

      resultat.a = texture2D(gamma_phong,facteurs.gb).r*integralRange.w+integralRange.z;

      resultat.rgb += gl_FrontMaterial.specular.rgb*resultat.a/facteurs.r;

      gl_FragColor.rgb = facteurs.gbb;//*resultat.a;

    }

    color.rgb += coeff_milieu.rgb*resultat.rgb*exp(-coeff_milieu.w * dist)*att;

  }

  gl_FragColor = color;

}

Fig. 8. Shader forLiss computation

and preferred simple scalar products and texture lookups.

D. Sorting the shadow planes (step 4)

Before rendering all shadow planes, we have to make sure
that we will not render shadow planes, or part of them, that are
themselves in shadow. If we do not care about this problem, it
will create artifacts we call shadow in shadows, shadow planes
that are in shadow must not be rendered. Then, we render the
shadow planes, back- or front-facing, in a ”back to front” order
and use the stencil buffer to avoid the drawing of shadowed
shadow planes.

E. Rendering the shadow planes (step 5)

It remains to render the shadow volumes, i.e. to take into
account the equation (14). We still have the stencil we have
obtained in the stage 2. Shadow planes are rendered in the
order defined in the previous stage. The same pixel shader of
Figure 7 is used for the shadow planes. The only difference
is blending : front facing planes add their contribution when
back facing planes subtract them.

Taking into account correctly the shadow in shadow prob-
lem requires the use of the stencil buffer. The key idea is
to draw only the planes that constitute the boundary between
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Fig. 9. Use of the stencil buffer in the rendering of shadow planes

lit volumes and shadowed ones. This can be done using our
ordering and the value stored in the stencil. We define the
stencil test such that front facing planes pass the stencil test
if its value is one, representing shadowed area, and back
facing ones passes if it equals zero, value representing lit
area. Ideally the back (resp. front) facing quads should always
add (resp. subtract) one to the stencil buffer if it passes depth
test. Unfortunately, the stencil test is before the depth test so
we have to do our own depth test in the pixel shader. Thus,
we only draw shadow planes that make the shadow volume
boundaries. The indicated strategy works if the camera is in
the light. A slightly different strategy can be used when the
camera is in shadow but the philosophy remains the same.

V. RESULTS

The previous algorithm has been implemented on a standard
computer using a 2.6 GHz processor and an ATI 9800 PRO
graphics card (which is an old card now!). All images and
videos we present have a 800x600 resolution. First of all, we
point out, in Figure 10 the influence of each part of our single
scattering illumination model. In this example, we have not
considered the multiple scattering to concentrate on the other
effects. On the top row, the first column shows the directe
illumination of surfaces. The second column adds the direct
single scattering. This effect highlights slightly all litsurfaces.
Therefore, if we don’t consider shadow volume, discontinuity
in the illumination can occur between lit and shadowed areas,
like in the bottom of the jug. After the shadow volumes render-
ing, illustrated in the third column, the discontinuities disapear.
All these pictures have been rendered with indirect single
scattering, that introduces subtle modifications : dimmingof
the specular highlights on the vase and brightening of darker
region.

We also present some snapshots of our animations. The
first image in Figure 11.a. is a simple scene, where a pen
is bumping in front of two lights. It illustrates a classical
situation where well design 3D objects are moving and casting
shadows. Here the shadow planes are really intricated. This
scene is rendered at more than 30 fps, including direct single
scattering, indirect single scattering and of course volumetric

shadows rendering. The image in Figure 11.b is a snapshot
of an animation presenting two point light sources, including
one that moves, in a complex scene containing about 100
000 triangles. The last picture 11.c is another snapshot from
an animation where camera moves and properties of the
participating medium evolve. The table II presents the FPS
compared to the number of triangles of those scenes.

scene
without iss
with dss and
shadows

with iss, dss
and shadows

number of
triangles

fig. 11 .a 31 30 14 785
fig. 11 .b 10.5 10.2 110 014
fig. 11 .c 7.6 7 136 266

TABLE II

FPSCOMPARED TO NUMBER OF TRIANGLES

VI. CONCLUSION

We have presented in this paper a complete single scattering
illumination model along with a new algorithm able to render
the main part of this model. It considers a single participating
medium recovering the scene and lit by one or several, eventu-
ally dynamic, point light sources. Our algorithm is fast enough
to handle more than 30 frames per second for moderately
complex scenes. It implements the direct single scattering, the
indirect single scattering and, most of all, volumetric shadows
along with surfacic shadows. Our method can be implemented
in programmable graphics hardware, and compared to volume
rendering approach does not need a lot of texture memory.
Therefore it can easily be integrated in any graphics engine.
We also have to point out that our algorithm does not create the
aliasing effect we can have with volume rendering techniques
thanks to the use of the exact shadow planes.

The perspectives are numerous but two developments seems
promising :
Relax assumptions: So far we consider only isotropic point
light and homogeneous participating media. We have made
satisfying preliminary work about animating several bounded
participating media and it could be a way to handle hetero-
geneous medium. Directional light source are easier to handle
than point light and will not be a problem. The real challenge
is the integration of directionnal point light sources.
Make it soft ... and quick : An other way to obtain more
realistic image will be to consider soft shadows, for surfacic
shadows but also for volumetric shadows. Fortunately, our
work is well adapted to algorithm such as [27] since it uses
shadow volumes. Finaly, note that no optimization have been
done to render the scenes. We believe that occlusion culling,
frustum culling and clustering would greatly speed up our
algorithm.
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Fig. 10. Insight of the influence of the different contributions. The first column is the result after step 2, the second presents the addition of the direct single
scattering and the third adds the volumetric shadows

Fig. 11. Some snapshots of our animations. a. (left) a simplescene with a pen flying between two lights. b. (center) A complexe scene with two lights c.
(right) A more complex scene
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