
Thirteenth Eurographics Workshop on Rendering (2002)
P. Debevec and S. Gibson (Editors)

Real-Time Animation of Realistic Fog

V. Biri, S. Michelin and D. Arquès

University of Marne-la-Vallée, Gaspard Monge Institute, France

Abstract
Fog introduces a high level of realism to computer graphics. But fog is often simulated by uniform density when real
fog is always much more complex. Its variable density creates beautiful shapes of mist what can add a realistic
ambience to virtual scene. We present here a new algorithm to render such complex medium in real-time and
propose a mean to design non homogeneous fog using chosen functions. Then we take advantage of fog properties
and of graphic hardware to achieve fast rendering. We also present a method to integrate wind effects and fog
animation without expensive cost in time.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Display algorithms

1. Introduction

Integrating participating media in image rendering remains a
real challenge. But such images are important or even neces-
sary for several applications13 , including safety analyses for
smoke, military and industrial simulations, entertainment,
cinema, driving and flying simulators... As a special but cur-
rent participating medium, fog adds to images a very real-
istic effect. Simple model of fog is for example very used
in real-time to enhance realism and provide important depth
culling.

Two main ways have been proposed to simulate fog. The
first one considers it as a standard participating medium, and
rely on physical equations16 to solve the illumination prob-
lem induced by such medium. Both determinist and stochas-
tic attempts are used in this way. Determinist methods group
extensions of radiosity algorithm, like the zonal method14

and other improvements17 � 18, with algorithms which use
spherical harmonics or discrete ordinates1 � 6 � 9. In the same
way, other determinist methods use implicit representations
of directional distribution of light10 � 19. Stochastic methods
use random sampling to render such medium, using Monte
Carlo techniques2 � 5 � 11 or more recently photon maps4. A de-
tailed overview of most previous methods can be found in
the Pérez et al.12. All these methods produce very realistic
images of participating medium but they suffer of a long
computation time especially when we have to deal with fog
in outdoor scene recovering the whole image.

A second way takes advantage of the fog properties

to make several approximations allowing fast rendering.
A standard and simplistic model, which considers a uni-
formly dense fog, is used in real-time graphic APIs, such
as OpenGL15. But further complexity can be achieved to
simulate light sources effects7 or design height dependent
density8 � 3. These two last methods attempt to slightly render
more complex fog and focuses on linear method relying only
on graphic card capacities. All these methods allow simple
but fast representations of fog.

In this paper, we propose a new real-time rendering al-
gorithm allowing complex representation of fog but with-
out global illumination determination. We present a new ap-
proach to build user-defined shapes of mist using a set of
functions. Moreover, the function decomposition allows also
to add wind effect, and to animate such complex medium.

In the next section, we review the transport equation gov-
erning illumination of participating medium. In section 3 we
focus on fog properties to achieve real-time before present-
ing the algorithm in section 4. Section 5 introduces wind
effects and more complex fog animations. Finally results are
shown in section 6 before concluding in section 7.

2. Theoretical background

Fog is a cloud of little water droplets in suspension. When
an emission of light enters such medium, the light is scat-
tered through the cloud. Different amounts of light depend-
ing on its density are then captured, reflected and emitted in

c
�

The Eurographics Association 2002.



Biri, Michelin and Arques / Real-Time Animation of Realistic Fog

�

�
�

�
Figure 1: Ray of incoming light in O from P through a par-
ticipating medium.

all directions. In computer graphics, fog belongs to partici-
pating media. As light travels along a ray of direction �ω in
such medium illustrated in figure 1, four interactions16 mod-
ify the radiance L : absorption, emission, scattering and in-
scattering.

Absorption is mainly responsible for the loss of light. It
represents transformations of radiant energy along the ray in
another energy form, inducing a reduction of radiance. Emis-
sion is the opposite process, creating spontaneous light along
the ray. This is, for example, what happens in neon light-
ing. Scattering and in-scattering are the results of deviations
in light direction induced by the medium. Scattering occurs
when the incoming light is deflected from �ω in other direc-
tions, and in-scattering when light, after being deflected in
the medium, follows �ω. In-scattering produces a raise of ra-
diance along the light ray because light incoming from other
directions are reflected in the medium to the direction �ω.

Absorption and scattering have similar effects and we can
group both phenomena in the same equation :

dL � u � �ω 	
du 
�� Kt � u 	 L � u ��ω 	 (1)

where Kt is the extinction coefficient defined by :

Kt � u 	 
 Ks � u 	�� Ka � u 	
Ka is the absorption coefficient and Ks the diffusion coeffi-
cient. Emission involves an augmentation of radiant energy :

dL � u � �ω 	
du 
 Ka � u 	 La � u 	 (2)

being La the emissive light energy.
The incoming scattered light from in-scattering is modeled
by a phase function p ���ωi ��ω 	 expressing ratio of light coming
from any direction �ωi which follows direction �ω.

dL � u � �ω 	
du 
 Ks � u 	��

S2
Li � u ��ω 	 p ���ωi ���ω 	 d �ωi (3)

being S2 the entire sphere surrounding the considered point.

Addition of equations (1), (2) and (3) gives the transport
equation16 expressing the radiance variation created by the

four interactions in point u and direction �ω :

dL � u � �ω 	
du 
�� Kt � u 	 L � u � �ω 	�� Kt � u 	 J � u � �ω 	

where J � u � �ω 	 is the source radiance :

J � u � �ω 	 
 Ka � u 	
Kt � u 	 La � u 	�� Ks � u 	

Kt � u 	 � S2
Li � u � �ω 	 p � �ωi � �ω 	 d �ωi

It takes into account the radiance added in point u in the
direction �ω due to self-emission and in-scattering. Solution
of previous equation is the integral transport equation from
a point O to a point P in the ray :

L � O 	 
 τ � O � P 	 L � P 	�� � P

O
τ � O � u 	 Kt � u 	 J � u � �ω 	 du (4)

where τ is the transmittance along the ray :

τ � u � v 	 
 exp ��� v
u Kt � x � dx

The first term of equation (4) expresses the reduced light
coming from point P (if any). The second term represents
light added along the ray from point O to point P by self-
emission and in- scattering.

3. Fog and real-time

Our objective is to render realistic fog, in real-time. Since
fog is a special participating medium, several simplifications
could be done to improve calculations. In this section, we
show how time saving can be used to simulate more complex
fog through the use of chosen functions.

3.1. Fog approximation

If we consider a outdoor scene in daylight, fog will have
mainly two effects : a drain of any color received by the eyes
and a creation of a veil of white mist. Since daylight is very
scattered in a fog, we could consider that in-scattering can
be represented by a constant amount of light L f og and that
emission can be neglected. Then, source radiance J � u ���ω 	 is
constant and equal to L f og. Equation (4) becomes :

L � O 	 
 τ � O � P 	 L � P 	�� L f og � P

O
τ � O � u 	 Kt � u 	 du
 τ � O � P 	 L � P 	�� L f og � 1 � τ � O � P 	�	

In that case, each pixel with color Cin drawn in the image
is blended with the color of the fog C f og to obtain the final
color C f in :

C f in 
 fCin ��� 1 � f 	 C f og (5)

where coefficient f is :

f 
 τ � O � P 	 
 exp � � � P

O
Kt � x 	 dx � (6)

In equation (5), the first term represents the loss of light

c
�

The Eurographics Association 2002.



Biri, Michelin and Arques / Real-Time Animation of Realistic Fog

from the incoming color due to for scattering and absorp-
tion of light while the second term is responsible for the
drain of color and the white veil simulating the important
in-scattering of the fog. In classical rendering APIs such as
OpenGL, this fog approximation is generally taken into ac-
count but with a constant fog density and an approximated
distance OP. This induces a very simple representation of
fog.

3.2. Defining complex fog

But in real life, fog is always a complex combination of
layers and shapes. This is specially visible when we travel
quickly, driving or flying, in the fog or when wind changes
its shape. Variations in shape and density could be repre-
sented by variations of the extinction coefficient, which be-
comes in fact an extinction function.

The main idea is to decompose this function into a set of
functions, i.e. it equals a weighted sum of N chosen func-
tions γi.

Kt � x 	 
 N

∑
i � 1

ci γi � x 	 (7)

Since we have to integrate them, functions γi must be cho-
sen carefully. Indeed, we want to know the analytic integrale
Γi of these functions γi to avoid a numerical computation of
the transmittance along the ray. Then the equation (6) be-
comes :

τ � O � P 	 
 exp � � N

∑
i � 1

ci � Γi � P 	 � Γi � O 	�	! (8)

Functions Γi has to be defined over the entire scene. To
avoid coarse function without precision, a good choice is to
take periodic functions that can be precise and defined every-
where.

In the following section, we present some function fam-
ilies we choose for their simplicity or the convenience they
provide. Although others could be chosen, such family can
easily define generic complex fog.

3.2.1. Cosine functions

N cosine functions can be used to represent the extinction
coefficient :

Kt � x 	 
 c0 � N � 1

∑
i � 1

ci cos � kiΛi � x 	�� φi 	
Λi are special operators on 3D point x like projection on one
axis or on a chosen direction. Coefficients ci, ki, φi and ope-
rators Λi are chosen by user. Nevertheless extinction func-
tion must not be negative, in taking for example :

c0 " N

∑
i � 1 # ci #

Figure 2: Partial view of the application used to define fog
density with polynomials

These functions have been chosen because they are naturally
periodic and can easily introduce phase difference. Yet, ope-
rators Λi must be very simple to allow an analytic integra-
tion. For example, we used only projection on elementary
axis or fixed direction.

3.2.2. Polynomial functions

N polynomial functions can also be used to represent the
extinction function :

Kt � x 	 
 N

∑
i � 1

ciPi � x 	
Pi are polynomial functions on 3d point x and ci are cho-
sen coefficients. As polynomials could be easily integrated
and combined, we can use one, two or three dimensional
polynomials. Of course, if they are chosen with two or three
variables (dimensions), it will increase computational time.
Nevertheless, since they are simple functions, polynomials
allow quick computations. And they also give the possibility
to choose easily and intuitively the 3d shape of fog as shown
in the figure 2 which represent a user-defined distribution of
fog density. So defining a shape for the fog density is really
easy and intuitive. Once again, attention should be paid to
build positive function.

Unfortunately, polynomial functions are not periodic. So
we have to make them periodic in restricting their interval of
definition to some bounded area and duplicating this area all
over the scene, as illustrated in figure 3 for a 2 dimensional
polynomial. These polynomial can be also considered null
outside their area of definition to obtain more precice fog
shape. In the examples of section 5, we use 1D polynomi-
als defined on intervals $ � C %�%�% C & where C is a constant set
by the user to fit the scene. The larger this coefficient is, the
wider and coarser the fog will be and the quicker the algo-
rithm. The smaller C is, the finer fog will be and the slower
the algorithm.

When we integrate the extinction function along a path
we just have to decompose each portion of the path in each
bounded area and then integrate these portions translated in

c
�

The Eurographics Association 2002.



Biri, Michelin and Arques / Real-Time Animation of Realistic Fog

'�(*)*+ , -*.0/1, 2�342056�7 5 (*3!-�/8, 239, 39: ;*.�+=<42�:8+ ' >@? A
B

B
66 C

CD;05 ;�: ;�3!-*;FE!2�(*3!', 3!G9.�: ;*.

H*.0/1I9, 3: ;*.�+=<42�:8+ '

Figure 3: Duplication of a non periodic function and inte-
gration along a path for such function.

the reference area as illustrated in figure 3. This virtual peri-
odicity induces to choose carefully coefficients to obtain the
same value in the border of the reference bounding area.

3.2.3. Equipotential functions and combinations

To add precise and complex shapes of the fog, we also in-
troduce equipotential functions. Instead of integrating along
a ray, we suppose that extinction coefficient depends on a
potential created by a defined virtual object : point, line or
sphere. Adding and subtracting such virtual objects leads to
complex potential functions and, as a consequence, sophis-
ticated fog shapes.

The potential functions we use depend on the distance be-
tween the considered ray and the virtual object. For example,
with points and lines, we use the function :

p 
 1
c � dr2 (9)

where r is the distance between the segment OP and the vir-
tual object, c and d two chosen parameters.

The main interest using such functions is to blend them
with the functions described above. Indeed, the integration
being linear, any functions of previous families can be com-
bined to obtain complex fog defined everywhere but with
local precise behaviors.

4. Algorithm

We present in this section the algorithm to render previous
complex fog in real-time taking profit of graphic hardware.

4.1. Fog rendering

For each pixel of the screen, fog must be rendered using
equation (5) which mixes incoming color (i.e. the color of
point P) with the fog color C f og . Coefficient f , representing

the transparency, is computed with equation (8). To obtain
this blend we draw a plan, which has the fog color, in the
screen position and put a transparency texture on it as rep-
resented in figure 4. The transparency is used by OpenGL
hardware to blend incoming color with the fog color.

J

K�L9MON*P�QRNSUT0P KVLUM

Figure 4: Simulation of fog by drawing a plan with a fog
texture.

We take advantage of texture mapping to fit texture size
of fog with the size of the screen. Since we could choose the
size of the fog texture, we are able to maintain real-time, in
choosing a smaller texture when it is needed. Drawback is
that the smaller the texture is, the larger the aliasing will be.

4.2. Computation of transparency

For each pixel of the fog texture, we must integrate the
extinction function along the ray between the eye and the
point represented on the screen at this position. To com-
pute this integral, eye coordinates and viewed point coordi-
nates are needed. By using the depth buffer of graphic cards,
we obtain the depth of the viewed point. Combining this
depth with viewed point position on the screen, and multi-
plying them by the inverse of the projection matrix, gives
the viewed point coordinates in the real scene.

If depth is beyond a viewing threshold, no more calcu-
lations are needed and the transparency will be set to 1 to
represent the fog color. It means that far points are not seen
in case of fog what allows also depth culling and speeds the
algorithm. For all other points, integral is resolved by adding
all contributions of the N functions used to describe the ex-
tinction function using equation (8).

4.3. Antialiasing and buffer method

The main drawback of this method is an aliasing effect, es-
pecially when texture size is small compared to image size.
One cheap way to reduced that effect, is to scale the depth

c
�

The Eurographics Association 2002.



Biri, Michelin and Arques / Real-Time Animation of Realistic Fog

map obtained by the graphic cards in the size of the fog tex-
ture. When scaling, each final depth point is then averaged
with its neighbor pixel depths. Of course this work has to be
done by graphic card if possible otherwise it would be too
slow.

To avoid totally aliasing, the fog texture must have a
greater size than the image, but in this case computation
time will increase. So we design a buffer method borrowed
from 3 to quickly compute the fog texture taking advan-
tage of graphic hardware. Instead of computing each texture
pixel, a first pass consists in projecting in a auxiliary buffer
each patch of the scene, with red vertex color equals to the
transparency computed as defined in section 4.2. We can use
the front buffer if auxiliary buffer is not enabled. Then, this
buffer will be used as the fog texture. In this case, we don’t
have to read the depth buffer and to compute each viewed
point positions since we use already known vertex postions.

Despite the linear interpolation, assumed by graphic hard-
ware, of the transparency between each point used to define
objects in the scene, large textures are computed quickly and
aliasing is avoided. In this method, computational time de-
pends above all on number of vertices and not on the texture
size contrary to the previous method.

4.4. Algorithm overview

Choose size of fog texture
For each frame

Display the scene
Recover the depth map
If (antialiasing is set)
scale the depth map to texture size

Recover the inverse of matrix projection
Recover the eye position
Compute fog for eye position
For each pixel of fog texture
Recover its screen position
Recover its depth
Multiply screen coordinate by projection

matrix
Recover distance between eye and point
Compute f using equation 6 and 8

End_for
Display texture

End_for

5. Wind effect and animation of fog

With this representation of fog, we could integrate easily a
realistic effect of wind. Each function will be tagged to be
sensible or not to the effect of time and wind.

First, we set a direction of wind propagation (which could
change in time) and a wind speed. The extinction coefficient
(i.e. each parameter of functions used) are linked to these
sliding factors.

The effects of this sliding on cosines functions is easily

W�X Y[Z
\^]`_bacX Yd_ba[ecfge`h1eifgejY[kjel[mjn^Y[ZoX Y[pq]jfre^]

W�X Y[Z
s4e`tuX Y`_reipofg]`_=X mjYqv[][_wa

Figure 5: Integration of wind effect on polynomial functions.

integrated since they are periodic. Sliding factors are just
added to coefficients φ and the rendering of fog is done in
the same way as before. For polynomial functions, this is
slightly more complicated since these functions are not nat-
urally periodic. But the effects of sliding could be computed
inexpensively by sliding the start and end point of integra-
tion in the reference bounding area as illustrated in figure 5.
For equipotential function, only the pattern positions have to
be changed.

But other effects could be achieve using time depen-
dent functions. Instead of just translating the functions, any
change of function parameters introduces animations of the
inner shape of the fog. In the cosine function base, chang-
ing coefficients c will modify importance of the functions
between themself. Any modifications of coefficients k will
shrink or expand the function. For polynomial functions,
changing parameters disturbs completely the fog shape. If
we designed two polynomial shapes of fog, a linear inter-
polation between the coefficients of both polynomials will
lead to a similar transformation of the resulting fog. In the
case of equipotential functions, both parameters c and d (cf.
equation 9) and positions of virtual objects could be modi-
fied.

Figure 6: Fog defined with cosine functions

c
�

The Eurographics Association 2002.



Biri, Michelin and Arques / Real-Time Animation of Realistic Fog

6. Results

An implementation of this algorithm has been designed us-
ing QT and OpenGL on a AMD 1600 processor associated
with a GeForce 2 graphic card. Lighting is done by OpenGL
with a directional light simulating the daylight (global direc-
tion of the sun). To render the multiscattering, a high ambiant
term has been chosen. Rendering is done without shadow
casting but a Z-buffer method can be introduce quickly since
we already read the depth buffer and so it will not slow down
our algorithm. We don’t have introduce it because, in case of
fog, there is few shadow effects. The images of figure 6 and 7
are 800x600 pixel wide and use a 512x512 fog texture. They
show different views of a contryside (about 21200 triangles)
in daylight (directional light) with complex mist.

The figure 6 present complex and realistic layers of mist.
The extension function is a combination of four cosine func-
tions plus one constant.

Kt � x � y � z 	 
 1 � 1
2

cos � 5πy 	�� 1
5

cos � 7π � y � 0 � 1x 	�	� 1
5

cos � 5π � y � 0 � 05x 	*	�� 1
10

cos � πx 	 cos � πz
2
	

Figure 7: Fog defined with polynomial functions. Two waves
of density can be seen in the right and in the left.

The image of figure 7 presents a fog defined with a sum
of two simple polynomials of fifth degree with coefficientsx

0 % 8 � � 1 � 0 � 0 � 1 y on the two horizontal axes X and Z. We
point out variations of the shape in this image. This image
shows that, with polynomials, it is easy to choose which part
of the scene will be in the fog. In that extrem example, we
can see the middle of the house but the tree and the house
extremeties are surrounded by the mist.

Figure 8 shows the use of equipotential functions. Here
again the texture have been chosen to 512x512. Four point
equipotential functions, in the first image, are centered in the
trees to enhance the mist in this area. The effect produced is
that fog seems to concentrate on the threes.

Figure 8: Constant fog with equipotential point functions.

Table 1 shows the number of frame per second we ob-
tain for different fog texture resolution in the first outdoor
scene (figure 6). We compare two differents functions : poly-
nomials defined above for this scene and a constant func-
tion. Image size is always 800x600 and without fog, we ob-
tain almost 50 frame per second. In brackets are indicated
the frame per second for the antialiasing algorithm of sec-
tion 4.3. We can see that the antialiasing algorithm is more
sensitive to the scene complexity than to the texture size. So
for large texture, it provides a great speed up in time. More-
over, in this case, we doen’t use any optimisation to reduce
the number of vertices drawn (all the scene is drawn) what
would greatly speed up time presented for the antialiasing
method.

Resolution 512x512 512x256 256x256 256x128 128x128

Polynomials 3.5 (7) 6.7 (9) 12.5 (11) 20 (12) 30 (12.5)

Constant 6.6 (11) 11.5 20 (23) 30 40 (33)

Table 1: Frame per second for scene of figure 6

Figure 9 point out aliasing produced by fog texture, com-
paring resolution 512x512, 256x256 and 128x128. For res-
olution 512x512, aliasing disapears. And finally, figure 10
shows four images from an animation illustrating wind ef-
fect on fog. These images are 800x600 pixel wide and use
a 256x256 texture size. The scene contains 250000 triangles
but our algorithm still maintains its performances (about 20
fps for resolution 128x128). Wind is sensitive when we see
the shape of fog passing through the house and the bridge.

Color pictures and animations can also be found in
http://www-igm.univ-mlv.fr/˜biri/index.html

c
�

The Eurographics Association 2002.



Biri, Michelin and Arques / Real-Time Animation of Realistic Fog

Figure 9: Comparison of fog texture resolutions (from left to right) 512x512 256x256 and 128x128.

Figure 10: Four images from bridge animation.

7. Conclusion and future works

This work is part of a study on the integration of partici-
pating media in global illumination algorithm. The first step
consists in describing efficiently fog properties. In this paper,
we propose to define the extinction coefficient in a function
base and we develop a new real-time rendering algorithm
taking advantage of graphic hardware. Rendering such fog
produces a more realistic view of scene, as illustrated. Fur-
thermore, it allows dynamical change of fog shape and den-
sity. Aliasing is adressed using a large texture, if we search
precision, or using approximated fog and graphic hardware,
if we seek rapidity. Future works consist in integrating such
an approach in a global illumination model.

References

1. N. Bhate and A. Tokuta. Photorealistic Volume Ren-
dering of Media with Directional Scattering. 3rd Eu-
rographics Workshop on Rendering, pp. 227–245, May
1992. 1

2. P. Blasi, B. LeSaëc and C. Schlick. An Importance
Driven Monte-Carlo Solution to the Global Illumina-
tion Problem. 5th Eurographics Workshop on Render-
ing, pp. 173–183, June 1994. 1

3. W. Heidrich, R. Westermann, H. Seidel and T. Ertl. Ap-
plications of Pixel Textures in Visualization and Real-
istic Image Synthesis. Proc. ACM Sym. on Interactive
3D Graphics, pp. 127–134, April 1999. 1, 5

4. H.W. Jensen and P.H. Christensen. Efficient Simulation
of Light Transport in Scenes with Participating Media

using Photon Maps. Computer Graphics Proceding,
SIGGRAPH’98, pp. 311–320, 1998. 1

5. E.P. Lafortune and Y. Willems. Rendering Participating
Media with Bidirectional Path Tracing. 6th Eurograph-
ics Workshop on Rendering, pp. 92–101, June 1996. 1

6. E. Languénou, K. Bouatouch and M. Chelle. Global
Illumination in Presence of Participating Media with
General Properties. 5th Eurographics Workshop on
Rendering, pp. 69–85, June 1994. 1

7. P. Lecocq, S. Michelin, D. Arques and A. Kemeny.
Mathematical approximation for real-time rendering of
participating media considering the luminous intensity
distribution of light sources. Proceeding of Pacific
Graphics 2000, pp. 400–401, 2000. 1

8. J. Legakis. Fast multi-layer fog. Siggraph ’98 Con-
ference Abstracts and Applications, pp. 266, Technical
Sketch, 1998. 1

9. L.N. Max. Efficient Light Propagation for Multi-
ple Anisotropic Volume Scattering. 5th Eurographics
Workshop on Rendering, pp. 87–104, June 1994. 1

10. T. Nishita, Y. Dobashi and E. Nakamae. Display of
Clouds Taking into Account Multiple Anisotropic Scat-
tering and Skylight. Computer Graphics Proceeding,
SIGGRAPH’96, pp. 379–386, June 1994. 1

11. S.N. Pattanaik and S.P. Mudur. Computation of Global
Illumination in a Participating Medium by Monte-Carlo
Simulation. The Journal of Vis. and Comp. Animation,
4(3):133–152, 1993. 1

c
�

The Eurographics Association 2002.



Biri, Michelin and Arques / Real-Time Animation of Realistic Fog

12. F. Pérez, X. Pueyo and F.X. Sillion. Global Illumination
Techniques for the Simulation of Participating Media.
8th Eurographics Workshop on Rendering, June 1997.
1

13. H.E. Rushmeier. Rendering Participating Media : Prob-
lems and Solutions from Application Areas. 5th Eu-
rographics Workshop on Rendering, pp. 35–56, June
1994. 1

14. H.E. Rushmeier. and E. Torrance. The Zonal Method
For Calculating Light Intensities in the Presence of a
Participating Medium. Computer Graphics, 21(4):293–
302, July 1987. 1

15. M. Segal and K. Akeley. The OpenGL Graphics Sys-
tem: A Specification (Version 1.2). Chris Frazier Editor,
1998. 1

16. R. Siegel and J.R. Howell. Thermal Radiation Heat
Transfert. 3rd ed. Hemisphere Publishing, Washington,
1992. 1, 2

17. F.X. Sillion. A Unified Hierarchical Algorithm for
Global Illumination with Scattering Volumes and Ob-
ject Clusters. IEEE Trans. on Vis. and Comp. Graphics.
1(3):240–254, Sept 1995. 1

18. L.M. Sobierajski. Global Illumination Models for Vol-
ume Rendering. Chapter 5: Volumetric Radiosity, pp.
57–83, PhD Thesis, 1994. 1

19. J. Stam. Multiple Scattering as a Diffusion Process. 6th

Eurographics Workshop on Rendering, pp. 41–50, June
1994. 1

c
�

The Eurographics Association 2002.


