Topological monsters in Z^3: A non-exhaustive bestiary - Archive ouverte HAL
Communication Dans Un Congrès Année : 2007

Topological monsters in Z^3: A non-exhaustive bestiary

Résumé

Simple points in Z^n, and especially in Z^3, are the basis of several topology-preserving transformation methods proposed for image analysis (segmentation, skeletonisation, ...). Most of these methods rely on the assumption that the --iterative or parallel-- removal of simple points from a discrete object X necessarily leads to a globally minimal topologically equivalent sub-object of X (i.e. a subset Y which is topologically equivalent to X and which does not strictly include another set Z topologically equivalent to X). This is however false in Z^3, and more generally in Z^n. We illustrate this fact by presenting some topological monsters, i.e. some objects of Z^3 only composed of non-simple points, but which could however be reduced without altering their topology.
Fichier principal
Vignette du fichier
Passat_ISMM_2007.pdf (373.16 Ko) Télécharger le fichier
Passat ISMM 2007 1 Poster.pdf (252.78 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00622180 , version 1 (03-03-2018)

Identifiants

  • HAL Id : hal-00622180 , version 1

Citer

Nicolas Passat, Michel Couprie, Gilles Bertrand. Topological monsters in Z^3: A non-exhaustive bestiary. International Symposium on Mathematical Morphology (ISMM), 2007, Rio de Janeiro, France. pp.11-12. ⟨hal-00622180⟩
168 Consultations
68 Téléchargements

Partager

More