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ABSTRACT: This paper attempts to numerically examine the concept of diffuse failure 

using a numerical approach based on a discrete element method. First, the theoretical 

background is reviewed, and it is shown how the kinetic energy of a system, initially at rest 

after a loading history, is likely to increase under the effect of disturbances. The vanishing of 

the second-order work thus constitutes a basic ingredient, related to both the pioneering 

work of Hill (1958) and the notion of bifurcation applied to geomechanics (Vardoulakis and 

Sulem, 1995). 

Discrete numerical simulations were performed on homogeneous three-dimensional 

specimens, and the three basic conditions that must be satisfied in order to observe a failure 

mechanism are numerically checked: (i) the equilibrium state belongs to the bifurcation 

domain, in which the symmetric part of the tangent constitutive operator admits at least one 

negative eigenvalue; (ii) the loading is controlled by mixed parameters, some being 

composed of stress components, the other of strain components; and, (iii) the mixed control 

parameters, when maintained constant, impose a loading direction associated with a 

negative value of the second-order work. 
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1. INTRODUCTION 

Failure in geomechanics can be analysed as a bifurcation phenomenon with loss of 

uniqueness and loss of stability (it should be noted that bifurcation does not necessarily imply 

either loss of uniqueness or loss of stability) and this seems to be true for any kind of failure 

mode by divergence (Darve and Vardoulakis, 2004).  

To analyse failure in non-associate materials, one criterion plays a particular role: this is 

the so-called second-order work criterion (Bazant and Cedolin, 2003; Vardoulakis and Sulem, 

1995; Darve and Vardoulakis, 2004) because – if we except flutter instabilities – this is the 

first to be met along a given loading path and it contains all the other classical criteria such as 

plastic limit conditions and strain localisation criteria (Challamel et al., 2009; Challamel et 

al., 2010; Nicot et al., 2010). However, this second-order work criterion has to be used very 

carefully to avoid presumable counter-examples. Clarifying the conditions for utilising this 

criterion properly is the main objective of this paper. 

So, more precisely, three necessary and sufficient conditions have to be fulfilled for true 

material failure: 

the stress state has to be inside the bifurcation domain; 

the loading direction has to be inside an instability cone; 

proper loading variables have to be chosen. 

If one of these three conditions is not fulfilled, failure will not occur even if the second-

order work takes strictly negative values. The second-order work criterion is no more than a 

necessary condition for failure. On the other hand and by excepting flutter instabilities, a 

strictly positive second-order work in all loading directions (i.e. for all disturbances) is a 

sufficient condition of stability (Hill, 1958), excluding any kind of material failure. The 

purpose of this paper is therefore to investigate these three necessary and sufficient conditions 

for failure.  

This requires a numerical method able to describe a failure mechanism in detail. Today it 

seems that only molecular dynamics methods give reliable and robust results for the 

development of a failure mechanism, including pre- and post-failure regimes (by minimizing 

assumptions). Thus a discrete element method (Cundall and Strack, 1979) has been used. 

In the first part of this paper, the notion of loss of sustainability and its correlation with the 

second-order work criterion is reviewed, then discrete element results are presented and 

discussed to check the validity of these three necessary and sufficient conditions for material 

failure. 

2. LOSS OF SUSTAINABILITY: 

Let us consider a granular sample, assumed to be a representative volume element at an 

equilibrium state ),(   under some prescribed boundary conditions. The notion of “control 

parameters” can be introduced: the loading applied to the sample is controlled by parameters 

acting on its boundaries. 

Whether this state ),(   is sustainable if the control parameters are kept unchanged was a 

basic query introduced by Nicot (Nicot et al., 2007; Nicot and Darve, 2007). 

If a new mechanical state can be reached, without changing the control parameters, then 

the equilibrium state is reputed to be unsustainable. As the transition from an equilibrium state 

toward another mechanical state is accompanied by significant increase in the kinetic energy, 

the loss of sustainability is related to failure. In such a case, the initial equilibrium state 

corresponds to a bifurcation point, since the response of the material is discontinuous under 

continuous evolution of control parameters (stationary). 
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Since the development of kinetic energy is the key point of this approach, the loss of 

sustainability can be related to the second-order work criterion. Starting from the balance 

equations written at the equilibrium state, then applying time differentiation of these equations 

yields a condition for kinetic energy raise from zero to a strictly positive value. By assuming 

small deformations and neglecting the changes in the geometrical configuration, this increase 

in kinetic energy coincides with zero or negative values of the second-order work 2W : 

0:2  W . 

This approach is checked using a discrete numerical model in the following section. 

Thereafter, both strain or stress tensors, say X , will be replaced by a six-dimension vector 

X


. 

3. THE DISCRETE ELEMENT MODEL 

3.1 Numerical specimen 

The numerical analyses were carried out with the 3D open source software YADE 

(Kozicki and Donzé, 2008) based on a discrete element method as proposed by Cundall and 

Strack (1979) to describe the mechanical behaviour of granular soils. 

The intergranular interaction law is described by a relation of proportionality between the 

contact force and the relative displacement of the two spheres involved in the contact.  The 

interaction law used in this paper includes three constant mechanical parameters 
nk , 

tk  and 

g . 
nk  is the elastic stiffness contact in the normal direction to the tangent contact plane (no 

tensile normal force is allowed). In the direction included in the tangent contact plane, the 

elastic stiffness contact is denoted by tk . In addition, the tangential contact force obeys the 

Coulomb friction law characterised by a friction angle g . 

The discrete element model consists of a cubical sample made up of 10,000 spherical 

particles whose size distribution is continuous and which diameter 
sD  ranges from 2 to 12 

mm.  

The loading path (strain, stress or mixed control parameters) is imposed on the spheres 

assembly by controlling the positions of six rigid and purely frictionless walls in contact with 

spheres at the boundaries of the specimen, either directly for a strain control or indirectly 

through a closed-loop control for a stress control. Strain and stress responses are numerically 

computed at the boundary of the specimen (as in real test). In this paper, simulations are 

limited to axisymmetric stress-strain states ( 32    and 32   ). 

Numerical computations were performed by considering a loose specimen with an initial 

porosity equal to 0.42. The normal stiffness nk  at the contact between two particles is equal to 

356 sD  (MN/m), the tangent stiffness tk  at the contact between particles is equal to 0.42 nk . 

The friction angle   is fixed at 35 deg. 

The granular assembly was first subjected to an isotropic compression, at different 

confining pressure 3  (50, 100 and 150 kPa). Then, after each confining stage, a drained 

triaxial loading in axisymmetric conditions was simulated. The evolution of both 
p

q
  

(Where q  denotes the deviatoric stress ( 31  q ) and p denotes the mean pressure 

(
3

2 31  
p )) and the volumetric strain v  in terms of the axial strain 1  are given in Figs. 

1 and 2 respectively. 
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Fig. 1: Deviatoric stress ratio over the axial strain at different confining pressures 

 

Fig. 2: Volumetric strain  over the axial strain at different confining pressures 
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3.2 Existence of a bifurcation domain 

Axisymmetric strain probes were conducted in order to compute the macroscopic second 

order work. Stain probes are performed from an initial stress-strain state by imposing a 

loading vector 


 defined in the Rendulic plane of strain increments ( 1 , 32 ) by its 

norm 


= 0.0001 and its angle   between the 32  axis and 


 (see Fig. 3a).   varies 

from 0° to 360° by a 10° interval to check each strain direction. The corresponding response 

vectors 


 are simulated with the discrete element method and defined in the Rendulic plane 

of stress increments ( 1 , 32 ) (see Fig. 3b). The initial stress-strain state of strain probes 

results from an isotropic compression up to 100 kPa followed by an axisymmetric triaxial 

compression (  32  100 kPa) stopped at three stress ratios 317.0 , 553.0  and 

628.0  respectively. 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Definition of strain probes (a) and stress response (b) in the axisymmetric plane of strain increments 

and stress increments respectively 

The values of the normalized second order work: 






.

2 
n

W  corresponding to each 

strain probe direction can be computed once the stress increment 


 is determined for each 

direction of strain increment 


. Fig. 4 presents circular diagrams (Laoufa and Darve, 2002) 

of the normalized second order work 
n

W2  computed from simulations of strain probes. On this 

diagram, each point corresponds to the extremity of a radial vector; its direction is given by 

angle   (strain representation). For convenience, an arbitrary constant 5.0c  is added to 

the polar value of 
n

W2 . A dashed circle is drawn in the circular diagram to represent vanishing 

values of 
n

W2 . 
n

W2  is positive outside the dashed circle, and is negative inside. 

 






1

32 




32 

1



(a) (b) 
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Fig. 4: Circular diagrams of the second-order work at a confining pressure of 100 kPa 

It can be seen that the second order work takes negative values along the strain direction 

included within a cone, for a deviatoric stress ratio larger than approximately 0.5. The 

opening angle of the cone increases with the deviatoric stress ratio as the stress state gets 

closer to the Mohr-Coulomb failure line. The existence of cones of unstable strain directions 

shows that the discrete numerical sample possesses a wide bifurcation domain. Its boundary is 

clearly within the plastic limit surface which means that various types of failure can occur 

before reaching the plastic limit. 

4. SIMULATIONS OF THE LOSS OF SUSTAINABILITY 

It has been shown via the directional analysis in the previous section that negative values 

of the second-order work do exist for the numerical specimen at a deviatoric stress ratio 

628.0 ; the corresponding mechanical state belongs therefore to the bifurcation domain. 

The unstable cone is limited by two directions corresponding to 120  and 155  in 

the Rendulic plane of strain increments ( 1 , 32 ). These two limiting angles can be 

expressed in the Rendulic plane of stress increments ( 1 , 32 ) using the following 

relation and taking into account the signs of stress responses: 















3

1

2
arctan




 , which 

returns  215  and  235  respectively as limit angles of the cone of unstable 

directions in the Rendulic plane of stress increments. 

Setting 



tan2

1
R , it follows that in axisymmetric conditions stress response 

directions are defined by: 0
1

31  
R

. 
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As the second-order work can be expressed as follows: 










R
R

R
W 3

313112 )2()
1

(   (1) 

it is relevant to choose the following control parameters: )
1

( 311 
R

C   and 

)2( 312  RC  . Then, the sustainability of the equilibrium state controlled through 

parameters 1C  and 2C  is checked for R  values corresponding to stress directions inside or 

outside the cone of unstable directions. 

The sample, initially in an equilibrium state (at which the kinetic energy is equal to 7 10
-6

 

J), is perturbed by imposing an instantaneous velocity in a random direction on eight grains 

belonging to the weak contact network that were chosen randomly (Sibille et al, 2009). The 

perturbation corresponds to an external input of kinetic energy of 2.10
-5

 J (the maximal value 

of energy developed by the numerical sample during a strain probe from the initial state is 

about 10
-3

 J). The responses of the numerical specimen after the perturbation of the initial 

state under a confining pressure of 100 kPa and controlled by both control parameters 1C  and 

2C  (maintained constant) using different values of R  (namely  ) are shown in Fig. 5. The 

arrow indicates the time when the perturbation was applied. The response of the specimen for 

a stress direction characterized by 843.0R  (  220 ) chosen inside the unstable cone 

corresponds to a sudden increase in the kinetic energy, that is, to the loss of sustainability 

(Nicot et al., 2007). The kinetic energy increases in an exponential way, and takes values after 

0.035 second thousands times greater than that provided to the specimen when applying the 

perturbation. The equilibrium of the specimen cannot be sustained. The external stress loading 

cannot be balanced anymore by the internal stress whose components decrease. The specimen 

merely collapses. 

On the contrary, for the stress directions bordering on the cone, characterized by 

593.0R  and 01.4R  (  230  and 190  respectively), and directions outside the 

cone characterized by 94.1R  and 286.0R  (  200  and 254  respectively), the 

kinetic energy vanishes after some initial bursts. The mechanical state of the specimen 

remains more or less unchanged and both external stress and strain components stabilize at 

values very near to the initial one (not shown here). No loss of sustainability and no 

bifurcation are observed. 

Similar results were obtained by Sibille as well, using a different computational software 

based on a discrete element method (Sibille et al, 2008 and 2009; Nicot et al, 2009). They 

revealed that, well before the standard Mohr-Coulomb limit is reached and for the unstable 

stress directions detected by the vanishing of the second-order work, some control parameters 

can be chosen to lead the granular material to failure. 
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Fig. 5: Kinetic energy of the specimen after a perturbation is applied in different stress directions 

5. CONCLUDING REMARKS 

This paper has presented the notion of failure, described as the occurrence of an increase in 

kinetic energy under constant loading parameters. This notion based on theoretical findings 

was ascertained from three-dimensional numerical simulations based on a discrete element 

method. In particular, it was thoroughly verified that three basic conditions must be fulfilled 

to give rise to a failure mechanism: 

The equilibrium state belongs to the bifurcation domain. In this domain, loading directions 

exist along which the second-order work takes negative values. 

The loading is controlled by mixed parameters, some being composed of stress 

components, the other of strain components. 

The mixed control parameters, when maintained constant, impose a loading direction 

associated with a negative value of the second-order work. 
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