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1. INTRODUCTION 

Unsaturated soils represent an important three-phase system in which internal forces arise 
from the interaction of solid, liquid and gas phases. As such, in determining the behaviour 
and strength of unsaturated soils, it becomes difficult to choose the controlling stress variable 
that would substitute for the role of effective stress in the saturated case. Bishop (1959) 
extended Terzaghi’s effective stress principle to account for the presence of an air phase by 
intuitively introducing an average pore fluid pressure weighted over the pore air ( au ) and 
water ( wu ) pressures, i.e.  

 [ ]' (1 )  = ( ) ( )w a a a wu u u u uσ σ χ χ σ χ= − + − − + −  (1) 

where σ  and 'σ  are the total and effective stresses respectively, and χ  is the weighted 
parameter that is arbitrarily confounded with the degree of saturation, rS . Here, soil 
mechanics sign convention is used, i.e. positive stresses mean compression. Understanding 
the suction stress as a function of the difference between air and water pressures, as well as 
its dependency on the degree of saturation is a longstanding problem both theoretically and 
experimentally. 

The present paper examines the notion of stress and its definition for a three-phase system 
composed of idealized soil particles and pore water menisci through a micromechanical 
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ABSTRACT: The paper is concerned with a micromechanical formulation of force 
transmission within an unsaturated soil as a three-phase system composed of idealized 
spherical particles connected by a pore water menisci network. It is proposed here a tensorial 
effective stress equation that can be viewed as a generalized Bishop’s equation in which the 
elusive effective stress parameter χ  is elucidated. The latter can be expressed as an explicit 
function of the number of water menisci, particle packing and degree of water saturation. 
Also, interparticle forces are found to be dependent on the distribution of pore fluid pressure 
and the contractile skin arising from the interaction of interfaces. Two major findings of this 
work are: (1) the determination of the analytical relationship between χ  and degree of 
saturation, and (2) the identification of a suction based internal shear effect even under 
isotropic external loading. The understanding of suction stress and its dependency on the 
degree of saturation is a longstanding problem both theoretically and experimentally. 
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analysis. By considering air and water pressures, surface tension, as well as interparticle 
forces within an assembly of spherical particles, the (Cauchy) stress tensor can be readily 
calculated as a volume average of the various constituents (phases) just like in the case of a 
solid body consisting of interacting point masses in a volume (Love, 1944). The proposed 
derivation ultimately leads to a tensorial effective stress equation which can be viewed as a 
generalized Bishop’s equation explicitly written as a function of the spatial distribution of 
water menisci and an anisotropic tensor describing the distribution of pore fluid around 
particle surfaces, including the effect of the contractile skin. It is noteworthy that the same 
formulation can be reached based on the theory of energy and thermodynamics. 

One of the implications of this generalized formulation is that the stress tensor formulation 
engenders a suction based shear effect even under isotropic loading, which is fundamental to 
the understanding of the strength behaviour of unsaturated soils. Furthermore, as a by-product 
of this micromechanical derivation, an analytical expression is obtained for the weighting 
parameter χ . By considering regular spherical particle assemblies such as in two-particle or 
multi-particle configurations with tetrahedral and cubical packings, together with changing 
the geometry of the pore water meniscus to mimic filling, the relationship between χ  and 
degree of saturation can be computed explicitly. The variation of χ  as a material parameter 
with the degree of saturation on both water meniscus and particle packing is discussed in the 
light of experimental data already available for different types of soils. The work constitutes a 
rational approach within which the role of capillary forces and their distributions can be 
accounted for through the microscale physics that governs the state of stress in an unsaturated 
soil and its macroscopic engineering properties. 

2.  STRESS DERIVATION IN A THREE-PHASE SYSTEM 

The stress tensor in a representative elementary volume (REV) comprising an ensemble of 
interacting solid particles in the presence of a water and air phase can be generally written as 
a volume average of each individual phase stress over the total volume V, i.e. 

 1 1
p

w aN

ij ij ij w ij a ijV V

V VdV dV u u
V V V V

σ σ σ δ δ< >= = + +∑∫ ∫  (2) 

where ,  , ,V p a wα α =  represent solid particle, water and air phase volume respectively, N  
the number of particles, and ijδ  the Kronecker delta. In Eq. (2), the stress in the water and air 

phases have been considered to be hydrostatic and equal to wu  and au  respectively. As a 
result, the last two terms on the right in Eq. (2) simply refer to the partial pressures due to air 
and water phases with their respective volume fractions applied to each individual pressure.  

Next, suppose the above system is idealized as an ensemble of mono-disperse spherical 
particles of radius R  joined by independent concave liquid bridges with negligible 
interparticle contact area. Since we are primarily interested in the transport of forces in the 
REV, we will focus on the first term on the right in Eq. (2) related to particle interactions. 
Applying Gauss’ divergence theorem to the latter term for the case of static and weightless 
media, the following so-called granular stress tensor is obtained: 

 1 1
p p

N N

ij g ij i jV
dV x t d

V V
σ σ

Γ
< > = = Γ∑ ∑∫ ∫  (3) 
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where pΓ  is the surface of a particle, ix  the spatial position of points on pΓ  at which various 
surface tractions jt  act. Among the various surface tractions exerted on an individual 
particle, we will find contributions from pair-wise particle contact forces due to external 
loading, actions of air and water pressures on dry ( p

dΓ ) and wetted ( p
wΓ ) surfaces 

respectively, and surface tension arising from air/water/solid interfaces formed by water 
menisci along contour mΓ  as illustrated in Fig. 1. 

 

Figure 1 Free body diagram for analysis of interparticle forces 

Furthermore, noting that c
i i ix x Rn= + , where c

ix  is the position vector of the particle 
centroid, and considering equilibrium of forces on the closed surface of each particle, we 
finally get: 

 .1
p p

w md

N N N L N L
a w

ij g j i j i j i j i
u R u R Rf l n n d n n d T n d

V V V V
αβ αβ

αβ

σ
Γ Γ Γ

< > = + Γ + Γ − Γ∑ ∑ ∑∑ ∑∑∫ ∫ ∫  (5) 

where jn  is the normal to the particle surface, jf αβ  is the mutual contact force between 

particle pair α  and β , il
αβ  the so-called branch vector defining to the separation distance 

between the same two particles, jT  the surface tension forces per unit length related to water 

menisci action on mΓ  formed by the intersection of the water meniscus with the particle’s 
surface, L  the number of liquid bridges, p

wΓ  is the part of the particle wetted by the liquid 
bridge, whereas p

dΓ  is the union of all dry parts of the particle’s surface (see Fig. 1). 
Interestingly, the air/water interface at the particle’s surface, seen as a contractile skin, allows 
the REV to withstand tensile stresses.  

It should be noted that the decomposition of surface tractions as laid out in Fig. 1 and 
which enters Eq. (5) leads to the well-known result that capillary forces arising from a 
concave liquid bridge between two spherical particles have two sources. The first source 
comes from the pressure difference between air and water described by the Young-Laplace 
equation, whereas the second source originates from the surface tension force acting on the 
boundary of the wetted area on the particle surfaces where solid, air and water coexist (e.g. 
see Megias-Alguacil and Gauckler, 2009).  

Second International Symposium on Computational Geomechanics (ComGeo II), 27/04/2011, Cavtat-Dubrovnik, HRV



The tensor moment of force, defined by the first term to the right of Eq. (5) as a dyadic 
product between f  and l , is easily identified as the effective stress tensor ijσ ′  used in the 
fully saturated case. Therefore, further rearrangement of Eq. (5) and substitution into Eq. (2) 
finally leads to the form of a generalized Terzaghi’s effective stress relation: 

 ( ) ( ) ( )
g
w m

N L N L

ij ij a ij a w r ij a w j i j i
R Ru u u S u u n n d T n d
V V

σ σ δ φ δ
Γ Γ

′ = − + − + − Γ + Γ∑∑ ∑∑∫ ∫  (6) 

in which φ  is the porosity, rS is the degree of saturation, whereas the last two terms relate to 
distributional descriptions of liquid bridges (menisci) and contractile skin effects respectively 
as surface integrals of dyadic products of contact normals and surface tension forces as 
illustrated in Fig. 2. 

 

Figure 2. Geometry of meniscus and surface tension forces for a pair of spherical particles 

These integrals over each pair of particles can be readily calculated and as their 
contributions are assembled over the entire REV, we get the following general relationships 
distinguishing isotropic from deviatoric components: 

 
2

( )  and sin ( )
3p

w m

N L N L

j i ij ij j i ij ij
Rn n d A T n d R Bπ ωδ πγ α ϖδ

Γ Γ
Γ = + Γ = +∑∑ ∑∑∫ ∫  (7) 

in which γ  is the surface tension, ijA  and ijB  are deviatoric so-called fabric tensors with 
respect to liquid bridge arrangements, whereas ω  and ϖ  are parameters corresponding to 
their isotropic part respectively. 

Finally, substituting Eq. (7) into (6) and after rearranging leads to some form of equation 
that is recognizable as a generalized Bishop’s equation, i.e. 

 ( ) ( )ij ij a ij a w ij ij iju u u Gσ σ δ χ δ κδ′ = − + − + +  (8) 

where 
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2 2

; sin ; ( ) sin
4 4

p p

r ij a w ij ij
V R V RS G u u A B

V V V V
π πχ φ ω κ γϖ α γ α= + = = − +  (9) 

in which α  is the filling angle attached to a water meniscus. 
As discussed earlier, the current derivation inherently accounts for capillary forces that 

arise from the pressure difference between air and water, and surface tension force acting on 
the wetted surface on the surface of grains, i.e. the contractile skin. Therefore, referring to Eq. 
(9), the term κ refers to the isotropic part of the distribution of surface tension forces with its 
anisotropic (deviatoric) part represented by the second term of the tensor G . It turns out that 
the latter term is of second order (since 2 /R Vγ  is small) relative to the first term of G  which 
describes the anisotropic distribution of capillary forces due to pressure difference between 
air and water. In other words, the effect of capillary forces in unsaturated soils is mostly 
controlled by the contribution due to air-water pressure difference. Accordingly, Eq. (8) can 
be simply written as 

 ( ) ( ) , with ( )
4

p

ij ij a ij a w ij ij ij a w ij
Vu u u G G u u A

V
σ σ δ χ δ′ = − + − + = −  (10) 

The micromechanically derived Eq. (8) shows that the effective stress in unsaturated soil 
is governed by not only two independent state variables: net normal stress ( )ij a ijuσ δ− and 
matric suction ( )a wu u−  including a material variable χ  as in Bishop (1959), but also by 
distributions of contractile skin surface tension and matric suction. Since the latter 
distribution can be anisotropic depending on liquid bridge spatial distribution and particle 
packing, effective stresses can also be affected by deviatoric loading. Turning to Eq. (9), the 
derived effective stress parameter χ  emerges as a function of degree of saturation as well as 
distributional quantities such as particle packing and number of meniscus per unit volume of 
REV. This will be investigated in the next section as to the capturing of the dependency of χ  
on the degree of saturation and other parameters. 

3.  EFFECTIVE STRESS COEFFICIENT FOR SIMPLE PACKINGS 

The effective stress parameter χ , as a function of degree of water saturation rS , is 
theoretically evaluated for two limiting cases, namely simple cubic (SC) simple packing 
(loosest state) and tetrahedral (TH) packing (densest state) in idealized soil comprised of 
mono-sized spherical particles. Figures 2a,b show simple cubic and tetrahedral packing 
geometries respectively with liquid bridges between each pair of particles. The water 
meniscus is assumed to be a surface of revolution with constant curvature and circular in 
section so as to form a toroid. In all subsequent calculations, a small wetting angle 
( 0.5 )θ = ° is chosen to maximize the filled volume of menisci and hence achieve high degrees 
of saturation in the pendular regime. The effect of contact angle could be explored, but this is 
not the focus of this paper. 
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Figure 2. Loosest and densest packings with interconnecting water menisci 

3.1 Calculation of χ  

Referring back to Eqs. (6) & (7), the effective stress parameter χ  emerges as the isotropic 
part of the integral giving the distribution of liquid bridges. For each meniscus connecting a 
pair of particles, we readily compute the fabric tensor as 

 
12

3 2
2 1 2

2

0 0
= 0 0 ; 2(1 cos ) and (1 cos ) (2 cos )

3
0 0

p
w

ij j i
RF n n d

λ
π λ λ α λ α α

λ
Γ

⎡ ⎤
⎢ ⎥= Γ = − = − +⎢ ⎥
⎢ ⎥⎣ ⎦

∫ (11) 

According to Eq.(11), ijF  is a symmetric tensor with its first invariant, ( )ijtraceδ F , being 
independent of the rotation of the coordinate system. Thus, referring to Eq. (7) and summing 
contributions of the fabric tensors over all liquid bridges on all particles, and then taking into 
account the isotropic part of the resultant tensor we finally find 1 2= 2 ( 2 ) / 3Lω λ λ+  for 
different packings. Furthermore, noting Eq. (9), the explicit expression of the effective stress 
parameter for different packings of spherical particles can be thus derived, i.e.  

 
3

1 2 1 2
2 ( 2 ) (1 ) ( 2 )
9 6r r

R LS L S
V N

πχ φ λ λ φ φ λ λ= + + = + − +  (12) 

which depends on the filling angle α , among others.  
Using a toroidal meniscus geometry, the volume of the liquid bridge between two 

contacting spherical particles can be readily calculated based on α  at equilibrium conditions 
during saturation, see Megias-Alguacil and Gauckler (2009). Therefore, χ  as given in Eq. 
(12) can be readily calculated as a function of rS . The maximum degree of saturation is 
reached whenever the filling angle reaches its maximum and the curvature of the meniscus 
decreases to a minimum so that the toroid degenerates into a cylinder. For example for a 
packing of two particles, this would give a value of 28%rS = . 

Furthermore, the maximum degree of saturation for SC and TH cases can be reached 
without any of the liquid bridges overlapping, which can be readily calculated based on the 
maximum filling angle. Table 1. summarizes the results for the these packings. 
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Table 1. Expressions of χ  for various packings 

Packing Porosity 
φ  

/L Nμ =  χ  Maximum 
α  

Maximum 
rS  

A pair of 
particles 

0.4764 1/2=0.5 3

1 2
2 ( 2 )

9r
RS

V
πφ λ λ+ +

 

90°  28% 

Tetrahedral 
(TH) 

0.1285 6/4=1.5 3

1 2
26 ( 2 )

9r
RS

V
πφ λ λ

⎛ ⎞
+ +⎜ ⎟

⎝ ⎠
 

30°  25%  

Simple Cubic 
(SC) 

0.4764 12/8=1.5 3

1 2
212 ( 2 )

9r
RS

V
πφ λ λ

⎛ ⎞
+ +⎜ ⎟

⎝ ⎠
 

45°  17% 

 

4. DISCUSSIONS AND CONCLUSIONS 
Figure 4 shows the computed effective stress values as a function of degree of saturation with 
the line rSχ =  also plotted here as a reference. All simulations produce a curve that plots 
above the rSχ =  line showing a perceptible bend with a break in slope at some characteristic 
degree of saturation when the water meniscus reaches its maximum filling angle maxα . 
Subsequent filling would then proceed at fixed wetting points on the particle while the 
curvature of the meniscus (dotted lines in Fig. 2) continues to decrease towards reaching a 
larger water volume.  

The simulations reveal that both packing and the number of liquid bridges influence the 
shape of the  vs. rSχ  curve. For instance, the tetrahedral packing gives much lower χ  values 
than those associated with the simple cubic packing for the same degree of saturation. Also, 
as one would expect for the same packing with decreasing number of liquid bridges, lower 
values of χ  are predicted for the same degree of saturation because of a decrease in overall 
suction. We recall that overall suction depends on χ  as is evident in Eq. (10) or in Bishop’s 
original equation.  

Experimental data for various types of soils are shown in Fig. 5 for comparison with the 
numerical results of Fig. 4. It should be noted that the range of degree of saturation, examined 
in the numerical computations based on idealized mono-sized spheres, is well below 30% 
since the menisci are not allowed to merge to give full saturation. The restriction of the 
packing to rather simple configurations with mono-sized spherical particles could plausibly 
account for the difference between experimental and computed data. This matter will require 
a more detailed investigation. At any rate, it is also not evident that the experimental data in 
the range of small degree of saturation investigated (less than 30%) is accurate and reliable, 
given known difficulties in measuring low suction in soils.  

The theory developed in this paper is being extended to poly-disperse and non-spherical 
particles, which should give more realistic vs. rSχ  curves. Given the limited experimental 
data for low to extremely low suctions on soils, discrete element simulations is an alternative 
means for exploring, among other things, the validity of the proposed theory. Another 
interesting outcome of this work arising from Eq. (10) is that the contribution of the matric 
suction to the effective stress is by no means isotropic, but is generally anisotropic as dictated 
by the spatial distribution of liquid bridges and fabric of the solid skeleton during 
deformation history. It is thought that this issue becomes particularly relevant in the pendular 
regime where material instabilities in the form of skeleton collapse are common. (ref). 
Indeed, discrete element numerical simulations may be of great value for elucidating volume 
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changes in unsaturated soils as a result of increase or decrease in water saturation and also for 
formulating constitutive models for unsaturated soils.  

 

 

Figure 4. Computed relationship between degree of saturation Sr and effective stress parameter χ 

 

 

Figure 5. Relationship between degree of saturation Sr and effective stress parameter χ  for various soils 
(After Bishop, 1961?) 
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