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INTRODUCTION

Geomaterials such as soils and rocks exhibit anisotropic behavior (strength) as a result of their microstructure such as particle arrangement, micro cracks, and bedding (weakness) planes, among others. During the past several years, a plethora of approaches to derive yield or failure criteria have been proposed in order to address material strength anisotropy. For instance, [START_REF] Mehdi | The Mathematical Theory of Plasticity[END_REF] presented a failure criterion for metals based on a quadratic function of stresses expressed in axes of anisotropy, which was later extended to rocks by [START_REF] Pariseau | Plasticity theory for anisotropic rocks and soils[END_REF]. Other treatments are based on the critical plane concept whereby a potential failure plane is searched such that certain failure conditions based on anisotropy are met; see [START_REF] Jaeger | Shear failure of anisotropic rocks[END_REF][START_REF] Mclamore | The mechanical behavior of anisotropic sedimentary rocks[END_REF]. Unlike the latter, there are also other criteria that are purely empirical in nature such as in [START_REF] Ramamurthy | A strength criterion for anisotropic rocks in[END_REF] and Garagon (2010) with fitting parameters that often do not have any physical meaning.

In more modern incarnations of the critical plane approach, [START_REF] Pietruszczak | Formulation of failure criteria for anisotropic frictional materials[END_REF] apply directional strength variation with relative orientation of stress and anisotropy axes to work out an anisotropic failure criterion involving fabric tensors. In this paper, we follow the same above-mentioned approach except that we limit our study to a small amount of model

ABSTRACT:

The paper is concerned with the derivation of failure criteria for anisotropic materials through a simple extension of the Mohr Coulomb failure criterion and embracing the critical plane concept. We revisit the classic problem of determining the macroscopic strength of a rock specimen with an initial structural anisotropy in relation to the directions of externally applied principal stresses. Macroscopic friction angle and cohesion, as two main elements of material strength, are essentially made to be direction dependent following a distribution that depends on only 3 additional parameters describing: (1) the ratio of the maximum to minimum strength, (2) a shape parameter for the transition rate from maximum to minimum values, and (3) the non-coaxiality between principal stress and strength directions. The search for the critical plane is interpreted graphically showing the existence of multiple solutions and the switching of resulting modes for the same externally applied stress. One of the essential benefits of the proposed model is the capture of material characteristics such as failure plane orientation and macroscopic strength over a large range of stress conditions using only a few parameters that have physical meaning and which can be easily determined experimentally. This is demonstrated through various examples involving experimental results. Finally, a micromechanical model and the developed critical plane model are juxtaposed to show the same trend in results.

parameters through a simple extension of Mohr-Coulomb failure criterion with direction dependent strength. Attention is focused on the physical interpretation of failure modes in the anisotropic cases as to whether failure occurs near a plane of weakness (anisotropy) or elsewhere. Two sets of available experimental data have been used to verify the proposed model. The proposed failure criterion can be easily implemented into constitutive models to provide more accurate predictions on the behaviour of sedimentary rocks in stability problems.

Finally, the validity of strength distribution concept has been examined through a microscale model in which the strength in a particular orientation has been related to the density of contacts between particles along the same direction. It has been shown that if the density of contacts is made to vary with the same proposed macro-scale distribution function, the results will exhibit acceptable consistency.

BASICS OF THE MODEL

The present work considers the simple 2-D case where failure is governed by Mohr-Coulomb theory with both friction (ϕ ) and cohesion ( c ) as material strengths defined through a failure function (criterion), i.e. tan 0

f n F c τ σ ϕ = - -= (1) 
in which τ and n σ are the shear stress and the normal stress acting on a given plane as a result of applied external principal stresses ( 1 σ and 3 σ ) such as in a biaxial test. In the anisotropic case, for every plane oriented at an angle θ with the direction 3 σ and corresponding strength parameters k θ and c θ , the failure function is
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Against the above backdrop, k θ and c θ are deemed to follow a certain distribution in space according to the following trigonometric functions:
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in which β represents the angle between the major strength orientation and the direction of the minor principal stress, 3 σ ; ω and c ω are anisotropy ratios of maximum to minimum friction and cohesion respectively; λ and c λ are shape factors controlling the transition rate from maximum to minimum friction and cohesion respectively; and 0 k and 0 c refer to the mean friction and cohesion respectively. Such strength distribution could be experimentally determined in a direct shear box test in which the imposed failure plane is varied and the corresponding strength subsequently measured. . For λ equal to 0.999 approaching 1, the distribution here shows a sharp drop in strength for a particular orientation (here 120 θ = °), whereas for other directions the strength is essentially the same. Such a distribution mimics a plane of weakness which was first addressed by [START_REF] Jaeger | Shear failure of anisotropic rocks[END_REF], but in a more primitive manner. By contrast, for smaller values of λ, the spatial strength distribution becomes smoother and resembles the failure criterion proposed by [START_REF] Mclamore | The mechanical behavior of anisotropic sedimentary rocks[END_REF] where failure parameters were empirically related to the angle β , the principal strength direction, using experimental data from a biaxial test. It is worth mentioning that results of such tests require careful interpretation in order to construct the spatial strength distribution. The failure analysis of the prototype problem referring to a sample subjected to principal stresses 1 σ and 3 σ entails finding the orientation, f θ , of the critical (failure) plane for which the failure criterion f F (Eqs. 2&3) is satisfied with the smallest external stress ratio 1 3 ( / ). σ σ Since the failure criterion and local stresses ( , n τ σ ) are both direction dependent as described by ( ) f F θ and ( ) S θ respectively, the above-mentioned failure condition is met whenever ( )/ 0.

f d F S dθ - =
In other words, we find the plane θ for which the failure criterion is optimized under externally applied biaxial stresses, i.e. the conditional derivative ( | )/ 0

f d F S dθ = .
As such, failure is not necessarily interpreted as a tangency condition between the Mohr circle and the failure criterion in the traditional ( vs. ) τ σ space where the spatial direction θ does appear explicitly. Therefore, we propose a new graphical representation of the search for failure in the anisotropic case.

Polar representation of failure

Let us consider a non cohesive material ( 0 c = ) for simplicity to illustrate a polar representation of failure. Rearranging Eq. ( 2), we get ( )

1 3 1 1 sin 2 ; / cos 2 R n R k R θ θ τ θ σ σ σ θ + - ⎛ ⎞ = = = ⎜ ⎟ + ⎝ ⎠ (4)
such that the search for the critical failure plane simply reduces to finding when the stress ratio ( / ) n τ σ coincides with the strength k θ in a polar plot. ) where two mathematically possible solutions occur as plausible failure plane orientations. These are not conjugate solutions as in the isotropic case, given that they occur at distinct externally applied stress levels. Here, the solution with the smaller stress ratio is chosen, this being first encountered during loading history. It turns out that the chosen solution refers to a failure plane whose orientation f θ gives a negative shear stress whereby / 2 f π θ π < < . o . This kink corresponds to a sharp discontinuity in computed failure plane orientation, indicating a switching of failure mode from failure occurring near a plane of weakness to failure within the intact material. This is also immediately seen in Fig. 6d where two equally possible failure plane orientations occur as the stress ratio rosette tangents the strength envelope at two locations: one near the direction of minimum strength (weakness plane) and the other in a direction of much higher strength (intact material). In general, as β increases from zero, the direction of minimum strength tends toward the location of maximum stress ratio rosette (Figs. 6a,b), which accordingly causes the failure stress ratio to decrease until it reaches a minimum value at which the failure plane and the direction of minimum strength are coaxial. This is occurs at 34.4 Further exploration of the model indicates that the transition rate with respect to β from failure near the weakness plane to one in the intact material is controlled by λ which describes both the curvature and shape of the strength distribution. Indeed, experimental data (e.g. [START_REF] Liao | Triaxial residual strength of an anisotropric rock[END_REF] show that there may not always be a switching of failure modes as captured remarkably by the model for small values of λ , see Fig. 7. Also, note that as λ approaches 1, the switching of modes becomes evident as characterized by a 'shoulder' where the strength reverts to its intact value. 
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NUMERICAL RESULTS

The proposed model has been calibrated for two sets of experimental results available for two different sedimentary rocks, i.e. Martinsburg slate [START_REF] Donath | Experimental study of shear failure in anisotropic rocks[END_REF] and argillite [START_REF] Liao | Triaxial residual strength of an anisotropric rock[END_REF]. The model parameters have been determined following a systematic procedure in which salient points in the experimental curves are examined. As previously discussed, the minimum macroscopic (sample) strength occurs at a characteristic β whereby failure occurs along the direction of lowest strength; hence the minimum friction angle can be deduced. The evolution of the above-mentioned minimum strength with confining stress in turn allows us to calculate the minimum cohesion.

Furthermore, if there is a 'shoulder' which refers to strength in the intact material, the maximum friction angle and cohesion can be easily determined. If there is no apparent 'shoulder', then the maximum friction and cohesion are found following an iterative process whereby deviations between experimental data and numerical simulations are minimized at 90

β °=
. Finally, λ is found by calibrating experimental data with simulations at 0 β = . It is interesting to note that the effect of λ on the macroscopic strength is quite pronounced at 0 β = as shown in Fig. 7. This value of λ then enters into a recursive calculation to reach a better estimation of maximum friction and cohesion in the case there is no 'shoulder'. Model parameters for chosen sets of data are presented in Table 1. The overall predictions as seen in Figure 8 for the two data sets are indeed very good considering that the calibration of the model was performed using only characteristics points of the experimental results. There are two aspects that need to be considered during the simulations: one refers to the capture of confining stress effect and the other is the characteristic trend of the variation of macroscopic strength as a function of β for a particular confining stress. Both aspects have been successfully fulfilled since different strength characteristics related to the type of rock have been correctly captured. However, in Fig. 8a, the model over-predicts the strength for a confining pressure of 200 MPa. This is because a linear Mohr-Coulomb failure criterion was used which is not able to capture the decrease in strength (friction) at such a high confining pressure. 

DISCUSSION AND CONCLUSION

The modeling approach followed in this work hinges on the idea of introducing directionally dependent strength parameters (friction angle and cohesion) into Mohr-Coulomb failure criterion to capture the anisotropic strength of structured materials. While this approach is at the macroscopic level, the counterpart reasoning at the microscopic level is one which introduces the notion of particle contact density varying along directions in space with yet a unique strength parameter (friction) at the particle level. This has been worked out by Nicot [START_REF] Nicot | The H-microdirectional model: accounting for a mesoscopic scale[END_REF] in his micro-directional model which considers particle contact density at the meso-level to enrich the micro level kinematics. As such, it is the multiplicity of micro/meso interactions described by simple physics that gives way to complex macro properties such as anisotropy in macroscopic strength as those discussed in this paper.

The duality between the two approaches can be verified in Fig. 9 where the two models are juxtaposed for qualitative comparison only. In the micro-directional model, the same macroscopic distribution as that introduced to describe the friction angle (Eq. 3a) was used to describe the statistics of meso-scale particle contact density, while the inter-particle friction was kept constant. This is based on the assumption that particle contact density correlates directly with macroscopic friction angle. The trends of the two models are generally similar, except that in the micro-directional model, the strength (macroscopic friction) does not go through a minimum value as captured by the macro model and experiments. This discrepancy is due to the meso-structure (hexagons) used in the micro-directional model that cannot express distortion which would give rise to failure along a plane of weakness as shown in the macro-model earlier in the paper. The micro-directional model describes the material by a Supprimé : the same macroscopic friction angle distribution directional (not a spatial) distribution of hexagons, and cannot therefore give way to any geometric localization. This is by no means a shortcoming for the micro-directional model as the meso-structure can be further enriched to encompass other local failure mechanisms. In conclusion, the above discussion seems to validate (although not formally) the idea of enriching simple models like Mohr-Coulomb with directionally dependent strength parameters to capture experimentally observed anisotropic characteristics of structured materials. Although the work presented in this paper was limited to 2D stress states, the extension to 3D stress configuration can be readily carried out and thereafter integrated into elasto-plasticity framework to arrive at a tangential constitutive tensor with embedded anisotropy. It would be then of interest to explore under what anisotropic conditions would the constitutive tensor be prone to instability phenomena such as localization and diffuse failure.
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 1 illustrates the 'peanut' shape of the proposed strength distribution such that the maximum and minimum values of strength occur at θ
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 1 Figure 1. Schematic representation of strength distribution with respect to applied principal stresses Figure 2 further illustrates the effect of parameter λ on the shape of the strength distribution for 30 β
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 2 Figure 2. Effect of λ on strength distribution shape
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 3 Figure 3 illustrates an example of the search for failure conditions for a given strength distribution (with 0 /2 β π < <) where two mathematically possible solutions occur as plausible failure plane orientations. These are not conjugate solutions as in the isotropic case, given that they occur at distinct externally applied stress levels. Here, the solution with the smaller stress ratio is chosen, this being first encountered during loading history. It turns out that the chosen solution refers to a failure plane whose orientation f

Figure 3 .

 3 Figure 3. Polar representation of failure conditions for an anisotropic case (φ max =π/4,c=0, ω=0.5, λ=0.8, and β=6°) 
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 456 Figure 4. Deviatoric stress ratio at failure in negative and positive shear zone versus β for an anisotropic example (φ max =π/4, c=0, ω=0.5, λ=0.8, and β=6°)
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  β there is a switch from failure near a plane of weakness to one in the intact material as marked by the sharp drop in failure plane orientation(Figs. 5 & 6d) and at the kink in Fig.4.
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 7 Figure 7. Effect of λ on deviatoric stress at failure
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 8 Figure 8. Comparisons between model prediction and experimental data from[START_REF] Donath | Experimental study of shear failure in anisotropic rocks[END_REF] and[START_REF] Liao | Triaxial residual strength of an anisotropric rock[END_REF] 

Figure 9 .

 9 Figure 9. Comparison between (a) proposed macro model with (b) micro-directional model

Table 1 .

 1 Calibrated model parameters for experimental data sets

		K 0	ω	C 0`	ω c	λ=λ c
	Donath (1961)	0.61	0.316	24.26	0.796	0.90
	Liao and Hsieh (1999)	0.39	0.095	7.43	0.472	0.65
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