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ALGEBRAIC POLYNOMIALS WITH RANDOM
NON-SYMMETRIC COEFFICIENTS

K. FARAHMAND AND C. T. STRETCH

Abstract. This paper provides an asymptotic formula for the expected num-

ber of zeros of a polynomial of the form a0(ω)+a1(ω)
(n
1

)1/2
x+a2(ω)

(n
2

)1/2
x2+

· · · +an(ω)
(n
n

)1/2
xn for large n. The coefficients {aj(ω)}nj=0 are assumed to

be a sequence of independent normally distributed random variables with fixed

mean µ and variance one. It is shown that for µ non-zero this expected num-

ber is half of that for µ = 0. This behavior is similar to that of classical
random algebraic polynomials but differs from that of random trigonometric

polynomials.

1. Introduction

There has been much interest in the study of the behavior of random algebraic
polynomials. These are defined as

Qn(x) =
n∑
j=0

aj(ω)xj , (1.1)

where {aj(ω)}nj=0, ω ∈ Ω, is a sequence of independent random variables defined on
a fixed probability space (A,Ω,Pr). Suppose the aj(ω) are identically distributed
with E(aj(ω)) = µ and var(aj(ω)) = 1. Let Nn(a, b) be the number of real zeros of
Qn(x) in (a, b). For many classes of distributions it has been shown that for µ = 0
the expected number of real roots, ENn(−∞,∞), is asymptotic to (2/π) log n. For
µ non-zero Ibragimov and Maslova [13] show that this asymptotic value is reduced
by half. Their results, based on [12], remain valid for a wide class of distributions
of the coefficients. A recent work of Wilkins [18], shows that in fact the error term
in the above asymptotic formula is small.

For the random trigonometric polynomial,

Tn(θ) =
n∑
j=0

aj(ω) cos jθ,

the number of real roots behaves differently. From Dunnage [4] we know for µ = 0
that ENn(0, 2π) ∼ 2n/

√
3. This shows they have significantly more zeros than

algebraic polynomials. This number remains the same when we pass to the case of
non-zero µ, see [7] or [17].

In this paper we consider random algebraic polynomials whose coefficients are
independent but not identically distributed. Instead they can be written in the

2000 Mathematics Subject Classification. Primary 60G99, Secondary 60H99.
Key words and phrases. Number of real roots, random algebraic polynomials, Kac-Rice

formula, random variables,
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2 K. FARAHMAND AND C. T. STRETCH

form

Pn(x) =
n∑
j=0

(
n

j

)1/2

aj(ω)xj , (1.2)

where the aj(ω) have identical distributions. Physical applications of these polyno-
mials can be found in Ramponi [15]. The mathematical behaviour of Pn(x) defined
in (1.2) was presented for the first time by Edelman and Kostlan in their interesting
work [5], which includes many of the original approaches to the study of random
algebraic polynomials. In the latter it is shown that Pn(x) has significantly fewer
zeros than trigonometric polynomials but more than algebraic ones. In particular
for normally distributed coefficients with µ = 0 we have ENn(−∞,∞) ∼

√
n. Our

interest is in the case of normally distributed coefficients with non-zero µ. The
mathematical significance of non-zero mean coefficients is explained in [2] or [8,
page 52]. The latter includes a review of the recent developments of properties of
Pn(x), Qn(x), Tn(x) and other related polynomials. In a similar direction the case
of the polynomial Qn(x) with non-identically distributed coefficients is discussed in
the recent work of [9] and [10].

In the following theorem we show that, like the case of classical algebraic random
polynomials Qn(x) and unlike that of random trigonometric polynomials Tn(x), the
asymptotic value of ENn(−∞,∞) for Pn(x) for non-zero µ is half of that for µ = 0.
We prove:

Theorem 1. If the coefficients aj(ω) of Pn(x) in (1.2) have identical normal dis-
tributions with µ 6= 0 and unit variance, then for large n

ENn(−∞,∞) ∼
√
n

2
.

2. Primary Analysis

The Kac-Rice formula, Rice [16] or Kac [14], gives the expected number of real
zeros of Pn(x). We will use a generalization of this formula from [8, page 43]. Using
the notation from this source we put

A2 = var(Pn(x)) =
n∑
j=0

(
n

j

)
x2j = (x2 + 1)n (2.1)

B2 = var(P ′n(x)) =
n∑
j=1

j2
(
n

j

)
x2j−2 = n(x2 + 1)n−2(nx2 + 1) (2.2)

C = cov(Pn(x), P ′n(x)) =
n∑
j=1

j

(
n

j

)
x2j−1 = nx(x2 + 1)n−1 (2.3)

α = E(Pn(x)) = µ
n∑
j=0

(
n

j

)1/2

xj (2.4)

β = E(P ′n(x)) = µ
n∑
j=1

j

(
n

j

)1/2

xj−1 (2.5)

we also need

∆2 = A2B2 − C2 = n(x2 + 1)2n−2 (2.6)
and
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S2 = var(βPn(x)− αP ′n(x)) = α2B2 + β2A2 − 2αβC. (2.7)

Note that all the terms defined as squares are positive. A and ∆ are taken to
be the positive square roots. The binomial theorem gives (2.1). (2.2) and (2.3) are
obtained by differentiation of (2.1).

We can now give the extension of the Kac-Rice formula as in [8, page 43] by

ENn(a, b) =
∫ b

a

∆
πA2

exp
(
− S2

2∆2

)
dx

+
∫ b

a

√
2|βA2 − Cα|

πA3
exp

(
− α2

2A2

)
erf
(
|βA2 − Cα|√

2A∆

)
dx

= In(a, b) + Jn(a, b), say, (2.8)

where erf(x) =
∫ x
0

exp(−t2) dt.
In order to prove the theorem we need to estimate these two integrals, the first

of which gives the required number of zeros while the second is small. To estimate
In we need asymptotic expansions for the sums (2.4) and (2.5). These are quite
delicate and the statement and proof is relegated to Appendix A.

To show Jn is small requires a change of variable to u = α
A . To do this we need

to identify the critical points of u, which is also delicate and provides the contents
of Appendix A.

3. Proof of the theorem

We first consider In(−∞,∞) defined in (2.8). From (2.1) and (2.6) we see

∆
πA2

=
√
n

π(x2 + 1)
.

Using (2.6), (2.7), (A.1) and (A.2) for x > 0 we obtain

S2

∆2
= µ2(8πn)1/2

x

x2 + 1
+O(n−1/2).

In order to obtain this we need to use the first two terms of the expansions of α
and β as the terms involving n3/2 cancel.

For x < 0 using (2.6), (2.7), (A.3) and (A.4) we obtain for any ν

S2

∆2
= o(n−ν).

Since the term in the exponential is always negative we see the integrand of 1√
n
In(−

∞,∞) is dominated by 1
π(x2+1) . Hence we can apply the dominated convergence

theorem to obtain

lim
n→∞

1√
n
In(−∞,∞) =

∫ ∞
−∞

lim
n→∞

e−
S2

2∆2

π(x2 + 1)
dx

=
∫ 0

−∞

1
π(x2 + 1)

dx =
1
2
.

(3.1)

Now we wish to obtain an upper bound for Jn in (2.8). Since erf(x) <
√
π

2 we
see

Jn(−∞,∞) ≤
∫ ∞
−∞

(
|βA2 − Cα|√

2πA3

)
exp

(
− α2

2A2

)
dx.
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This integral can be estimated by substituting u =
α

A
. First note that

du

dx
=
βA2 − Cα

A3
=
β(x2 + 1)− nxα

(x2 + 1)n/2+1
.

To complete the estimate we need to identify the critical points of u.

Lemma 1. For n > 0, u can only have critical points at ±1.

Now substitution gives∫ ∞
−∞

(
|βA2 − Cα|√

2πA3

)
exp

(
− α2

2A2

)
dx

≤ 3√
2π

∫ ∞
−∞

exp
(
−u

2

2

)
du = 3 (3.2)

which together with (3.1) completes the proof of the theorem.
As the location of the roots of u will take considerable effort we give an example

to show that it is necessary. First note that the definitions in Section 2 can be car-
ried out for any random polynomials R(x) with independent normally distributed
coefficients. In this generality u has a simple interpretation as

u(x) = Φ−1Prob(R(x) > 0) (3.3)

where Φ is the cdf of the standard normal distribution.
Suppose f(x) =

∑n
j=0 µjx

j is a polynomial of degree n with n real roots. Let
R(x) be a random polynomial where the coefficients aj(w) are independently nor-
mally distributed with mean µj and variance ε2

(
n
j

)
. If we take ε small enough the

the expected number of roots will be close to n and (3.3) shows u has at least n−1
critical points.

We can now apply our previous analysis. We get an upper bound

In(−∞,∞) <
√
n

so most of the expected roots must come from the second integral.
The analysis of the second integral proceeds as before and shows

In(−∞,∞) < k + 1

where k is the number of turning points of u. Thus in this example the critical
points of u and the integral Jn(−∞,∞) give most of the expected real roots.

Appendix A. The Asymptotic Expansions

To complete the estimation of In we need the following lemma. This gives
asymptotic estimates for large n to α and β for both x > 0 and x < 0.

Lemma 2. For fixed x > 0 and any ν we have asymptotic expansions:

n∑
j=0

(
n

j

)1/2

xj

= (8πn)1/4(x2 + 1)(n−1)/2x1/2
(
a0 + a1n

−1 + a2n
−2 + · · ·

)
(A.1)
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where a0 = 1, a1 = −x
4 + 1
16x2

;

n∑
j=0

j

(
n

j

)1/2

xj

= (8π)1/4n5/4(x2 + 1)(n−3)/2x5/2
(
c0 + c1n

−1 + c2n
−2 + · · ·

)
(A.2)

where c0 = 1, c1 = −x
4 + 8x2 − 7

16x2
;

n∑
j=0

(−1)j
(
n

j

)1/2

xj = o
(

(1 + x2)n/2n−ν
)

; (A.3)

n∑
j=0

(−1)jj
(
n

j

)1/2

xj = o
(

(1 + x2)n/2n−ν
)
. (A.4)

Put

bj =
(
n

j

)
pjqn−j with q = 1− p.

If we put p = x2

1+x2 then q = 1
1+x2 and x2 = p

q , thus

bj =
(
n

j

)
|x|2j(1 + x2)−n.

We need to show

n∑
j=0

b
1/2
j = (8πnpq)1/4

(
a0 + a1n

−1 + a2n
−2 · · ·

)
(A.5)

n∑
j=0

jb
1/2
j = (8πnpq)1/4np

(
c0 + c1n

−1 + c2n
−2 · · ·

)
(A.6)

n∑
j=0

(−1)jb1/2j = o
(
n−ν

)
(A.7)

n∑
j=0

(−1)jjb1/2j = o
(
n−ν

)
. (A.8)

We will apply the central limit theorem in the form of the normal approximation
to the binomial. In order to get a sufficiently accurate estimate of the binomial
coefficients we need to use a form of the central limit theorem from [3, page 231].
This result is for lattice valued distributions; we state the result for one dimensional
lattices:

Lemma 3. Suppose Xj are independent identically distributed random variables
with unit variance and mean µ taking values in a discrete one dimensional lattice
L. Suppose the expectation of |X1 − µ|s is finite for all s.
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6 K. FARAHMAND AND C. T. STRETCH

There are polynomials Pr(y), with P0 = 1, depending on the distribution so that
if we put:

pn = P(X1 + · · ·+Xn = α)

y = n−1/2(α− nµ)

φ(y) =
1√
2π
e−

1
2y

2

qn = ln−1/2
s−2∑
r=0

n−r/2Pr(y)φ(y) s ≥ 2

where l is the determinant of the lattice, then:

sup
α∈L

((1 + |y(α)|s)|pn − qn(y)|) = o(n−
s−1

2 ).

We can drop the |y(α)|s. Take X1 to be the distribution taking values 0 and
(pq)−1/2 with probabilities q and p. Then L = {j(pq)−1/2}, l = (pq)−1/2 and
µ =

√
p
q . Putting α = j(pq)−1/2 we get pn = bj . Also putting Ln = {j(pq)−1/2|j =

0, · · · , n} and

q̄n =
{
qn qn > 0
0 qn ≤ 0

gives

|p1/2
n − q̄1/2n | =

|pn − q̄n|
|p1/2
n + q̄

1/2
n |

<
Kn−(s−1)/2

|p1/2
n + q̄

1/2
n |

for some constant K. Let Yν be the subset of Ln where |p1/2
n + q̄

1/2
n | < n−(ν+2),

then ∑
α∈Ln

|p1/2
n − q̄1/2n | <

∑
α∈Yν

|p1/2
n − q̄1/2n |+

∑
α∈Ln−Yν

|p1/2
n − q̄1/2n |

< n−(ν+1) +Knν+3−(s−1)/2.

Taking s large enough we get∣∣∣∣∣∣
n∑
j=0

b
1/2
j −

∑
α∈Ln

q̄1/2n

∣∣∣∣∣∣ < Kνn
−(ν+1).

Similar results hold for the other three sums. Now since the Pr(y) are poly-
nomials we can find positive C and w depending on s so that if |y| < Cnw we
have

∣∣∣∑s−2
r=1 n

−r/2Pr(y)
∣∣∣ < 1

2 . The φ(y) term in the expression for qn ensures

sup|y|>Cnw |qn| = o(n−k) for any k, and so sup|y|>Cnw |q̄
1/2
n | = o(n−k) for any k.

We now use an Euler-McLaurin summation formula [1]:

B∑
j=A

f(j) =
∫ B

A

f(t)dt+
m∑
k=1

(−1)k
Bk
k!

(f (k−1)(B)− f (k−1)(A))

+
(−1)m−1

m!

∫ B

A

Bm(t− [t])f (m)(t)dt (A.9)
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where

f(t) = (pqn)−1/4

√√√√s−2∑
r=0

n−r/2Pr(y)φ(y)

and y = n−1/2(α− nµ) and α = t(pq)−1/2. We take A and B to be the largest and
smallest integers between 0 and n for which |y| < Cnw. Changing variables in the
first integral∫ B

A

f(t)dt = (npq)−1/4

∫ y(B)

y(A)

√√√√s−2∑
r=0

n−r/2Pr(y)(2π)−1/4e−
1
4y

2√
pqndy

= (npq)1/4(2π)−1/4

∫ y(B)

y(A)

√√√√s−2∑
r=0

n−r/2Pr(y)e−
1
4y

2
dy.

y(B) differs from Cnw in that the corresponding j is an integer and not greater
than n. The integrality changes the value by less than (npq)−1/2 and the limit of
n restricts it to

√
nq/p. So y(B) tends to infinity with n. Similarly y(A) tends to

minus infinity.
By our choice of limits the term in the square root is bounded away from zero.

Let Fs,t(n, y) be the expansion of the square root in powers of n down to n−t/2.
Taking the limit of the integral as n→∞ using the dominated convergence theorem
gives, using P0 = 1,

lim
n→∞

∫ y(B)

y(A)

√√√√s−2∑
r=0

n−r/2Pr(y)e−
1
4y

2
dy

=
∫ ∞
−∞

Fs,t(n, y)e−
1
4y

2
dy +O(n−(t+1)/2).

The remaining terms of the summation formula tend to zero. This gives the as-
ymptotic expansion in (A.5) except that the expansion is in powers of n−1/2. We
can get the other three expansions similarly. For (A.6) we put j =

√
pqny+np and

f(t) = (pqn)−1/4 (
√
pqny + np)

√√√√s−2∑
r=0

n−r/2Pr(y)φ(y)

in the summation formula. For the expansions of the alternating sums we split the
sums into odd and even parts, apply the summation formula modified to go up in
steps of two, and note that the expansions for the two parts are equal and opposite.

To proceed further we need to know the Pr(y). The recipe for calculating them
from the moments of the distribution is given in [3]. In our case they are:

P0 = 1

P1 =
q − p
6
√
pq

(
y3 − 3y

)
P2 =

1− 4pq
72pq

(
y6 − 15y4 + 45y2 − 15

)
+

1− 6pq
24pq

(
y4 − 6y2 + 3

)
.
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The Pr(y) are even functions of y for even r and odd for odd r. This ensures that
the asymptotic expansions are in powers of n−1 rather than n−1/2. We can now
expand the square root√√√√s−2∑

r=0

n−r/2Pr(y) = 1 +
1
2
P1n

− 1
2 +

(
1
2
P2 −

1
8
P 2

1

)
n−1 +O(n−

3
2 )

= Fs,2(n, y) +O(n−
3
2 ). (A.10)

Substituting and integrating gives∫ ∞
−∞

Fs,2(n, y)e−
1
4y

2
dy = 2

√
π − 1− 2pq

8pq
√
πn−1 +O(n−2)

and∫ ∞
−∞

(
√
pqny + np)Fs,2(n, y)e−

1
4y

2
dy

= 2
√
πpn− p2 + 8pq − 7q2

8q
√
π +O(n−1), (A.11)

which completes the proof of Lemma 2.

Appendix B. Proof of Lemma 1

Recall αn(x) =
∑n
j=0

(
n
j

)1/2
xj and un(x) =

αn(x)
(x2 + 1)n/2

. We first list some

elementary properties of un(x):

un(1/x) = sign(x)nun(x) x 6= 0; (B.1)

u′n(x) =
(x2 + 1)α′n(x)− nxαn(x)

(x2 + 1)n/2+1
; (B.2)

=

∑n
j=0(j + 1)

(
n
j+1

)1/2 − (n− j + 1)
(

n
n−j+1

)1/2
(x2 + 1)n/2+1

; (B.3)

u′n(0) =
√
n; (B.4)

u′n(1) = 0; (B.5)
u′n(−1) = 0 n even. (B.6)

Using (B.1) it is sufficient to show that u′n(x) > 0 for x ∈ (−1, 0) and x ∈ (0, 1).
First consider x ∈ (0, 1). Put

cj =
√

(j + 1)(n− j)−
√
j(n− j + 1)

in order to write

u′n(x) =
n∑
j=0

(
n

k

)1/2

cjx
j .

We can check cn−j = −cj and cj > 0 for j < n/2 which gives the required result.
For x ∈ (−1, 0) we consider the function

h(s) =
∞∑
j=0

sj√
j!
.
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We will show that h(−s) is completely monotonic, that is h(k)(s) > 0 for all real x
and k ≥ 0. Equivalently h(−s) is the Laplace transform of a probability distribution
on [0,∞). We will construct this distribution starting from the standard Gumbel
distribution with density function ψ1(y) = e−y−e

−y
and characteristic function

Γ(1− iz).
First note from [6] that for <(z) > 0 we have

log Γ(z) =
∫ ∞

0

[
(z − 1)− 1− e−(z−1)t

1− e−t

]
e−t

t
dt.

Differentiating and putting z = 1 gives

−γ =
∫ ∞

0

[
1− t

1− e−t

]
e−t

t
dt

which by subtraction and substitution shows that for =(z) > −1 we have

log Γ(1− iz) = izγ +
∫ ∞

0

(
eizt − 1− izt

) e−t

(1− e−t)t
dt.

This is a Lévy-Kintchine equation and we conclude from [11] that the Gumbel
distribution is infinitely divisible, that is for all p > 0 there are distributions Ψp

with characteristic functions Γ(1− iz)p. As |Γ( 1
2 + iy)|2 ≤ 2πe−|y| we see Ψp has a

density function ψp(y). Put φp(x) = ψp(− log x)/x and substitute y = − log x and
w = 1− iz to get ∫ ∞

0

xw−1φp(x) dx = Γ(w)p,

that is φp(x) is a density function with Mellin transform Γ(w)p. Taking p = 1
2 we

see that the moments of φ1/2 are µ′j =
√
j! and the Laplace transform of φ1/2 is

h(−s). From the definition of h(s) we can obtain the expansions

h(s)h(sx) =
∞∑
n=0

1√
n!
αn(x)sn

and

h(
s√

1 + x2
)h(

sx√
1 + x2

) =
∞∑
n=0

1√
n!
un(x)sn.

Also from the Laplace transform description we obtain

h(
s√

1 + x2
)h(

sx√
1 + x2

) =
∫ ∞

0

∫ ∞
0

es(v+xw)/
√

1+x2
φ1/2(v)φ1/2(w) dvdw.

Differentiating with respect to x and taking the coefficient of sn gives

u′n(x)√
n!

=
∫ ∞

0

∫ ∞
0

(w − vx)(v + wx)n−1

(1 + x2)n/2+1(n− 1)!
φ1/2(v)φ1/2(w) dvdw.

Symmetrizing it is sufficient to show that for x ∈ (−1, 0)∫ ∞
0

∫ ∞
0

cnφ1/2(v)φ1/2(w) dvdw > 0

where cn = (w − vx)(v + wx)n−1 + (v − wx)(w + vx)n−1. Note cn satisfies the
recurrence relation

cn+2 = (v + w)(1 + x)cn+1 − (v + xw)(w + xv)cn.
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We have c1 = (v + w)(1 − x) and c2 = 2vw(1 − x2). Suppose v + w > 0 then
(v+xw)+(w+xv) = (v+w)(1−x) > 0. Thus at least one of v+xw and w+xv is
positive. If both are positive, the definition shows cn > 0. If exactly one is positive
the recurrence relation shows cn > 0. Thus as φ1/2 is not supported at the origin
the required integral is positive.
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