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Consistency of the regression estimator with

functional data under long memory conditions
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Abstract

We study the nonparametric regression estimation when the explanatory variable
takes values in some abstract functional space. We establish some asymptotic results
and we give the (pointwise and uniform) convergence of the kernel type estimator
constructed from functional data under long memory conditions.

Key words: Nonparametric regression operator, Functional data, Long memory
process

1 Introduction

Since the beginning of the sixties, nonparametric statistical methods have
been developed intensively where a lot of scientists today collect samples of
curves and other functional observations. Functional data have become more
and more popular in modern statistics. For an introduction and applications
of this field, the books by Ramsay and Silverman (1997, 2002), Bosq (2000)
and Ferraty and Vieu (2006) provide some basic methods of analysis along
with diverse case studies in several areas including criminology, economics,
archeology, and neurophysiology. It should be noticed that the extension of
probability theory to random variables taking values in normed spaces (e.g.
Banach and Hilbert spaces), including extensions of certain classical theorems,
are very useful tools in the recent literature on functional data (Cf Chobanyan
et al. (1987), among others).

1 Corresponding author. E-mail: Karim.Benhenni@upmf-grenoble.fr
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In this work, we are interested in the problem of estimating the regression op-
erator when the explanatory data are of functional type, under long memory
dependent structure. The phenomenon of long memory was known long before
the development of the stochastic models. These processes are mainly of inter-
est for modeling dependence structure of processes, for which the usual weak
dependence assumptions (such as mixing or association conditions) are not
satisfactory. In fact, in many statistical applications, the correlation between
observations decreases to zero slower than in the classical models such as the
ARMA models. Models of long memory were first introduced by Mondelbrot
and Van Ness (1968) for fractional brownian motion. A good introduction of
dependent processes can be found in Beran (1994), among others. For a more
detailed discussion on long memory time series and their applications, one
can refer for example to Hidalgo (1997) for econometric models and Turcotte
(1994) for environmetrics or climatic studies.
Frequently, we say that a stationary process {Zt}t∈Z is a long memory process
if for some real γ ∈]0, 1], and some positive constant C, its autocorrelation
function satisfies

|fZ(j)| ∼ C |j|−γ as |j| → +∞ (1)

Other equivalent definitions of long memory process involving the spectral
density can be found for instance in Cox (1984). In the finite dimensional
framework, the problem of nonparametric regression estimation when the er-
ror is a long memory process, was extensively studied by many authors, such
as Hall and Hart (1990), Csörgö and Mielniczuk (1995), Masry (2001), Estévez
and Vieu (2003)...
In the infinite dimensional framework, the problem of functional estimation
for nonparametric regression operator under some strong mixing conditions on
the functional data was considered by Ferraty and Vieu (2004). They derived
the rates of convergence for a functional version of the kernel type estimator.
Rachdi and Vieu (2005, 2007) and Benhenni et al. (2007) constructed some
curve data-driven criterion for choosing automatically the smoothing parame-
ter for these estimators. More recently, Müller and Stadtmüller (2006) studied
general functional linear models.
In this paper, we consider the similar problem of nonparametric estimation
of the regression operator when the pairs (Xi, Yi) for i ∈ Z satisfy some long
memory conditions. We give two different ways of convergence, pointwise and
uniform convergence, for the estimator of the regression operator.
The organization of this paper is as follows. In section 2, we state the func-
tional regression model and we define the nonparametric estimator. In section
3, we set up the different assumptions and we give the convergence results of
the estimator through Theorem 3 and Theorem 4. The proofs of all the results
are presented in section 4.
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2 Problem of interest

Let (X, Y ) be a random vector valued in H × R with IE|Y | < ∞, and where
(H, d) is a semi-metric space equipped with the semi-metric d. The purpose
of this paper is to study the estimation of the regression operator r when we
observe identically distributed copies (X1, Y1), . . . , (Xn, Yn) of (X, Y ) in the
following model

Yi = r(Xi) + εi for i ∈ Z
The random errors ε1, . . . , εn are assumed to be centered with finite second
moments.
Most standard time series models assume that the non-summability covari-
ance sequences {f(i)}i∈Z captures the intuition behind long range dependence
(LRD) or long memory (see Estévez and Vieu, 2003):

+∞∑
τ=−∞

|f(τ)| = +∞

This assumption is not needed here.
The goal of this work is to estimate the unknown operator r(x) = IE (Y |X = x)
for x ∈ H. For this aim, we use the functional version of Nadaraya-Watson
kernel estimator (see Ferraty and Vieu, 2004)

r̂h(x) =


∑n

i=1 Yi K (d(x, Xi)/hn)∑n
i=1 K (d(x, Xi)/hn)

if K (d(x, Xi)/hn) 6= 0

0 if K (d(x, Xi)/hn) = 0

where K is a real valued function defined on R+ and h = hn is the bandwidth
parameter, such that: h ∈ R+ and lim

n→+∞
h = 0. In what follows, we will use

the following notations

r̂h(x) =
r̂h,2(x)

r̂h,1(x)

where

r̂h,1(x) =
1

n IE(∆1(x))

n∑
i=1

∆i(x) and r̂h,2(x) =
1

n IE(∆1(x))

n∑
i=1

Yi∆i(x)

with ∆i(x) = K (d(x, Xi)/h) .

The effect of the dependence of the pairs (Xi, Yi) for i = 1, . . . , n is controlled
by the following quantity:

Q(x) = max(|F (x)|, |G(x)|), for x ∈ H

3
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where

F (x) =
n∑

i6=j

f(i,j)(x) and G(x) =
n∑

i6=j

g(i,j)(x)

with

f(i,j)(x) = cov(∆i(x), ∆j(x)) and g(i,j)(x) = cov(Γi(x), Γj(x))

3 Main results

The following assumptions are needed for the statement of the results con-
cerning the asymptotic performance of the regression operator estimate r̂h.

About the kernel: we assume that K is strictly decreasing on (0, 1) and there
exist some positive constants c1 and c2 such that

c1 11(0,1)(t) ≤ K(t) ≤ c2 11(0,1)(t), for t ∈ R (2)

The kernel K has a first order derivative K ′ on (0, 1) such that for some
real constants c3 and c4

c3 ≤ K ′(t) ≤ c4, for t ∈ R (3)

About the concentration of X: we assume that the probability distribution
of the functional variable X can be written as

c5 ϕ(h) ≤ IP (X ∈ B(x, h)) ≤ c6 ϕ(h), for x ∈ H (4)

where c5 and c6 are real constants and B(x, t) denotes the closed ball of
center x and radius t, and ϕ(t) is a positive function such that

lim
t→0

ϕ(t) = 0 and lim
n→+∞

n ϕ(h) = +∞ (5)

About the regression operator: there exist some constants 0 < c7 < ∞ and
β > 0, such that

∀x, y ∈ H, |r(x)− r(y)| ≤ c7 d(x, y)β (6)

About the moments: the response variable Y satisfies

∀x ∈ H, IE(Y 2|X = x) ≤ σ(x) < ∞ (7)

where σ(.) is a continuous function at x.

This assumption allows us to deal with unbounded variables (Cf page 63 of
Ferraty and Vieu, 2006).

4
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About the dependence: we assume that,

lim
n→+∞

nϕ(h) = lim
n→+∞

inf
x∈S

n2ϕ2(h)

Q(x)
= +∞ (8)

for some compact set S of H

For instance, when f and g satisfy (1) with respectively some γ1 and γ2, we
have for all x ∈ H:

Q(x) ∼ cx

n∑
k=1

nk−γ ∼ cxn
2−γ where γ = γ1 or γ2

for some positive constant cx depending on the curve x. The condition (8)
is true if ϕ(h) = O(n−γ/3).

The following useful lemmas are needed in the proofs of Theorems 3 and 4.

Lemma 1 Under condition (6), we have

IE(r̂h,2(x))− r(x) = O
(
hβ
)
, as n → +∞

Lemma 2 Assume that conditions (2), (4), (5), (6), (7) and (8) are satisfied,
then we have as n → +∞

(i) r̂h,2(x) → IE(r̂h,2(x)), in probability
(ii) r̂h,1(x) → 1, in probability

The main results are stated in the following theorems.

Theorem 3 Under conditions of Lemma 2, we have for all x ∈ H

r̂h(x) → r(x), in probability, as n → +∞

The uniform convergence in probability of the estimator r̂h(x) is obtained by
the following result.

Theorem 4 If condition (2) is replaced by condition (3) in Theorem 3 and if
we assume that

∀ε1 > 0,∃c8 > 0 and ε < ε1 such that

ε∫
0

ϕ(u) du > c8 ε ϕ(ε), (9)

and for some compact set S of H there exist α > 0 such that : S ⊂ ∪l=ln
l=1 Bl

where Bl, l = 1, . . . , ln are balls of the functional space H, all having

the same radius tn with ln = t−α
n . (10)

Then we obtain uniformly on the compact set S that

sup
x∈S

|r̂h(x)− r(x)| → 0, in probability, as n → +∞ (11)

5
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It should be noticed that these results showed the convergence of the estima-
tors under long range. This result may be considered as an extension of the
results given by Ferraty and Vieu (2004) for short range dependence (under
strong mixing conditions) where rates of convergence are also obtained. How-
ever, the rates of convergence for long range dependence are not obtained by
these results and are still an open problem in the infinite dimensional case.
On the other hand, it may be possible to obtain rates of convergence by using
adapted large deviation inequalities (see Estévez and Vieu, 2003), but nothing
guarantees their optimality.

4 Proofs

In what follows, ηi’s for i = 1, 2, 3 denote some real positive constants.

Proof of Lemma 1. For a sample of identically distributed pairs (Xi, Yi) for
i = 1, . . . , n, we have

r(x)− IE(r̂h,2(x)) = r(x)− 1

n IE(∆1(x))

n∑
i=1

IE (Yi ∆i(x))

=
IE((r(x)− r(X1)) ∆1(x))

IE (∆1(x))

Because the support of the kernel function K is (0, 1), and from the definition
of ∆1(x), we have

|r(X1)− r(x)|∆1(x) ≤ sup
t∈B(x,h)

|r(t)− r(x)| ∆1(x)

then it follows from condition (6) that

IE(|r(X1)− r(x)|∆1(x))≤ c7 sup
t∈B(x,h)

d(x, t)β IE(∆1(x))

≤ c7 hβ IE(∆1(x)) (12)

and as lim
n→+∞

h = 0, we obtain the result of Lemma 1. 2

Proof of Lemma 2. The proof of the result (i) is based on the application of
Chebychev’s inequality. Indeed, because of:

for ε > 0, IP (|r̂h,2(x)− IE(r̂h,2(x))| > ε) ≤ var(r̂h,2(x))

ε2

6
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we need to show that

var(r̂h,2(x)) → 0 as n → +∞

For that we have:

var (r̂h,2(x)) =
1

n IE2(∆1(x))
var (Y1 ∆1(x))

+
1

n2 IE2(∆1(x))

∑
i6=j

cov (Yi ∆i(x), Yj ∆j(x))

:= I1,n + I2,n

For the first term, from (12) we have that

IE(∆1(x) Y1) = IE (IE(Y1 ∆1(x)|X1))

= IE((r(X1)− r(x)) ∆1(x)) + r(x)IE(∆1(x))

=
(
r(x) + O

(
hβ
))

IE(∆1(x))

then

I1,n =
1

n IE2(∆1(x))

(
IE(∆2

1(x) IE(Y 2
1 |X1))− (r(x) + O(hβ))2 IE2(∆1(x))

)

From condition (7), we have

I1,n ≤
1

n

(
IE(∆2

1(x))

IE2(∆1(x))
( sup
t∈B(x,h)

|σ(t)− σ(x)|+ sup
t∈B(x,h)

|σ(t)|)− (r(x) + O(hβ))2

)

The lower and upper bounds of conditions (2) and (4) give

IE(∆1(x)) ≥ c1 IP (X ∈ B(x, h)) ≥ c1 c5 ϕ(h)

and likewise IE(∆2
1(x)) ≤ c2

2 c6 ϕ(h), and using condition (5) we deduce that

I1,n ≤
1

n ϕ(h)

(
η1 − ϕ(h)

(
r(x) + O

(
hβ
))2

)
≤ η1

n ϕ(h)
+ o

(
1

n ϕ(h)

)

so that

I1,n = O

(
1

n ϕ(h)

)
(13)

The second term I2,n, can be directly written as

7
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I2,n = O

 1

n2ϕ2(h)

∑
i6=j

cov (Γi(x), Γj(x))


= O

(
1

n2ϕ2(h)
G(x)

)

Finally, using the condition (8), we obtain

var(r̂h,2(x)) → 0 as n → +∞

The result (ii) can be derived similarly as (i) by taking Yi = 1 and using the
fact that IE(r̂h,1(x)) = 1. 2

Proof of Theorem 3. The result follows by a direct application of the previous
Lemmas 1 and 2 together with the following decomposition

r̂h(x)− r(x) =
1

r̂h,1(x)
[(r̂h,2(x)− IE(r̂h,2(x)))− (r(x)− IE(r̂h,2(x))]

− r(x)

r̂h,1(x)
(r̂h,1(x)− 1) (14)

and, it remains to show that, there exists θ > 0 such that

IP (|r̂h,1(x)| ≤ θ) → 0. (15)

For this aim, since r̂h,1(x) converges to 1, in probability as n → +∞, we have

∀ε > 0, IP (|r̂h,1(x)− 1| > ε) → 0 (16)

and we can notice that

IP
[
|r̂h,1(x)| ≤ 1

2

]
≤ IP

[
|r̂h,1(x)− 1| > 1

2

]

By letting θ = ε = 1/2, the proof of (15) is achieved. 2

Proof of Theorem 4. If assumptions (3) and (9) are satisfied then, for h small
enough (see Lemma 4.4, page 44 in Ferraty and Vieu, 2006)

for x ∈ H, η2ϕ(h) ≤ IE

(
K

(
d(x, X)

h

))
≤ η3ϕ(h), (17)

8
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In order to prove (17), we can write

IE

(
K

(
d(x, Xi)

h

))
=

1∫
0

K(t) dIP
d(x,Xi)

h (t)

where dIP
d(x,Xi)

h denotes the image measure of the real random variable d(x, Xi)/h.

Now, since the first derivative of K exists, we have K(t) = K(0)+

t∫
0

K ′(u)du,

which implies, by applying the Fubini’s Theorem, that

IE

(
K

(
d(x, Xi)

h

))
=

1∫
0

K(0) dIP
d(x,Xi)

h (t) +

1∫
0

 t∫
0

K ′(u)du

 dIP
d(x,Xi)

h (t)

= K(0) ϕ(h) +

1∫
0

K ′(u) IP

(
u ≤ d(x, Xi)

h
≤ 1

)
du

and the fact that K(1) = 0 allows to write

IE

(
K

(
d(x, Xi)

h

))
= −

1∫
0

K ′(u) ϕ(hu)du

It suffices to use hypothesis (3) to show that, for h < ε1 and with η2 = −c1 c10

IE

(
K

(
d(x, Xi)

h

))
≥ η2 ϕ(h)

Concerning the upper bound, it suffices to remark that K is bounded with
support (0, 1) and uses hypothesis (3) by putting η3 = supt∈(0,1) K(t).
In order to complete the proof of this Theorem, we use first the decomposition
(14) and then (16). We notice that

sup
x∈S

|r̂h(x)− r(x)|

≤ sup
x∈S

|r̂h(x)− IE(r̂h(x))|+ sup
x∈S

|IE(r̂h(x))− r(x)|

≤ sup
x∈S

|r̂h,2(x)− r(x)|+ sup
x∈S

|r̂h,2(x)− IE(r̂h,2(x)|+ sup
x∈S

|r̂h,1(x)− 1|

According to Lemma 1, we claim immediately that

sup
x∈S

|r̂h,2(x)− r(x)| = O
(
hβ
)

(18)

On the other hand, from condition (10), it suffices to look at the uniform
convergence on the closest center to x among the balls centers {c1, . . . , cln},

9
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cj(x) = arg mincj∈{c1,...,cln} d(cj, x), (Cf pages 75-76 in Ferraty and Vieu (2006)).
We have

IP

(
sup
x∈S

|r̂h,2(cj(x))− IE(r̂h,2(cj(x)))| > ε

)

= IP
(

max
j=1,...,ln

|r̂h,2(cj)− IE(r̂h,2(cj))| > ε
)

≤ ln max
j=1,...,ln

IP (|r̂h,2(cj)− IE(r̂h,2(cj))| > ε)

Choosing ln = t−α
n with tn ∼ n−ζ , ζ > 0, and using the results of Lemma 2,

we obtain in probability

lim
n→∞

sup
x∈S

|r̂h,2(x)− IE(r̂h,2(x))| = 0 and lim
n→∞

sup
x∈S

|r̂h,1(x)− 1| = 0 (19)

From (18) and (19), we claim the final result (11). 2
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[7] G. Estévez and P. Vieu, Nonparametric estimation under long memory
dependence, J. Nonparametric Stat. 15 (2003), no. 4-5, 535–551.

10



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

[8] F. Ferraty and P. Vieu, Nonparametric analysis for functional data, with
application in regression method, J. Nonparametric Stat. 16 (2004), no. 1-
2, 111–125.

[9] F. Ferraty and P. Vieu, Nonparametric functional data analysis: Theory
and practice, Springer-Verlag, 2006.

[10] P. Hall and J. D. Hart, Nonparametric regression with long range depen-
dence, J. Stoch. Proc. and Their Appli. 36 (1990), 339–351.

[11] J. Hidalgo, Nonparametric estimation with strongly dependent multivari-
ate tiem series, J. Time Ser. Anal. 18 (1997), no. 2, 95–122.

[12] B.B. Mandelbrot and J.W. Van Ness , Fractional Brownian motions, frac-
tional noises and applications, SIAM Rev. 10 (1968), 422–437.

[13] E. Masry, Local linear regression estimation under long-range dependence:
Strong consistency and rates, IEEE Trans. on Inform. Theory 47 (2001),
no. 7, 2863–2875.

[14] H-G. Müller and U. Stadmüller, Generalized functional linear models,
Ann. Stat. 33 (2005), 774–805.
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