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We study the nonparametric regression estimation when the explanatory variable takes values in some abstract functional space. We establish some asymptotic results and we give the (pointwise and uniform) convergence of the kernel type estimator constructed from functional data under long memory conditions.

Introduction

Since the beginning of the sixties, nonparametric statistical methods have been developed intensively where a lot of scientists today collect samples of curves and other functional observations. Functional data have become more and more popular in modern statistics. For an introduction and applications of this field, the books by Ramsay andSilverman (1997, 2002), [START_REF] Bosq | Linear processes in function space: theory and application[END_REF] and [START_REF] Ferraty | Nonparametric functional data analysis: Theory and practice[END_REF] provide some basic methods of analysis along with diverse case studies in several areas including criminology, economics, archeology, and neurophysiology. It should be noticed that the extension of probability theory to random variables taking values in normed spaces (e.g. Banach and Hilbert spaces), including extensions of certain classical theorems, are very useful tools in the recent literature on functional data (Cf [START_REF] Chobanyan | Probability distributions on banach spaces[END_REF], among others).
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In this work, we are interested in the problem of estimating the regression operator when the explanatory data are of functional type, under long memory dependent structure. The phenomenon of long memory was known long before the development of the stochastic models. These processes are mainly of interest for modeling dependence structure of processes, for which the usual weak dependence assumptions (such as mixing or association conditions) are not satisfactory. In fact, in many statistical applications, the correlation between observations decreases to zero slower than in the classical models such as the ARMA models. Models of long memory were first introduced by Mondelbrot and Van Ness (1968) for fractional brownian motion. A good introduction of dependent processes can be found in [START_REF] Beran | Statistics for long-memory processes[END_REF], among others. For a more detailed discussion on long memory time series and their applications, one can refer for example to [START_REF] Hidalgo | Nonparametric estimation with strongly dependent multivariate tiem series[END_REF] for econometric models and Turcotte (1994) for environmetrics or climatic studies. Frequently, we say that a stationary process {Z t } t∈Z is a long memory process if for some real γ ∈]0, 1], and some positive constant C, its autocorrelation function satisfies

|f Z (j)| ∼ C |j| -γ as |j| → +∞ (1)
Other equivalent definitions of long memory process involving the spectral density can be found for instance in [START_REF] Cox | Long-range dependence, A review[END_REF]. In the finite dimensional framework, the problem of nonparametric regression estimation when the error is a long memory process, was extensively studied by many authors, such as [START_REF] Hall | Nonparametric regression with long range dependence[END_REF], Csörgö and Mielniczuk (1995), [START_REF] Masry | Local linear regression estimation under long-range dependence: Strong consistency and rates[END_REF], [START_REF] Estévez | Nonparametric estimation under long memory dependence[END_REF]... In the infinite dimensional framework, the problem of functional estimation for nonparametric regression operator under some strong mixing conditions on the functional data was considered by [START_REF] Ferraty | Nonparametric analysis for functional data, with application in regression method[END_REF]. They derived the rates of convergence for a functional version of the kernel type estimator. Rachdi andVieu (2005, 2007) and [START_REF] Benhenni | Local smoothing regression with functional data[END_REF] constructed some curve data-driven criterion for choosing automatically the smoothing parameter for these estimators. More recently, Müller and Stadtmüller (2006) studied general functional linear models.

In this paper, we consider the similar problem of nonparametric estimation of the regression operator when the pairs (X i , Y i ) for i ∈ Z satisfy some long memory conditions. We give two different ways of convergence, pointwise and uniform convergence, for the estimator of the regression operator. The organization of this paper is as follows. In section 2, we state the functional regression model and we define the nonparametric estimator. In section 3, we set up the different assumptions and we give the convergence results of the estimator through Theorem 3 and Theorem 4. The proofs of all the results are presented in section 4.

Let (X, Y ) be a random vector valued in H × R with IE|Y | < ∞, and where (H, d) is a semi-metric space equipped with the semi-metric d. The purpose of this paper is to study the estimation of the regression operator r when we observe identically distributed copies (X 1 , Y 1 ), . . . ,

(X n , Y n ) of (X, Y ) in the following model Y i = r(X i ) + ε i for i ∈ Z
The random errors ε 1 , . . . , ε n are assumed to be centered with finite second moments.

Most standard time series models assume that the non-summability covariance sequences {f (i)} i∈Z captures the intuition behind long range dependence (LRD) or long memory (see [START_REF] Estévez | Nonparametric estimation under long memory dependence[END_REF]:

+∞ τ =-∞ |f (τ )| = +∞
This assumption is not needed here. The goal of this work is to estimate the unknown operator r(x) = IE (Y |X = x) for x ∈ H. For this aim, we use the functional version of Nadaraya-Watson kernel estimator (see [START_REF] Ferraty | Nonparametric analysis for functional data, with application in regression method[END_REF])

r h (x) =        n i=1 Y i K (d(x, X i )/h n ) n i=1 K (d(x, X i )/h n ) if K (d(x, X i )/h n ) = 0 0 if K (d(x, X i )/h n ) = 0
where K is a real valued function defined on R + and h = h n is the bandwidth parameter, such that: h ∈ R + and lim n→+∞ h = 0. In what follows, we will use the following notations

r h (x) = r h,2 (x) r h,1 (x) where r h,1 (x) = 1 n IE(∆ 1 (x)) n i=1 ∆ i (x) and r h,2 (x) = 1 n IE(∆ 1 (x)) n i=1 Y i ∆ i (x) with ∆ i (x) = K (d(x, X i )/h) .
The effect of the dependence of the pairs (X i , Y i ) for i = 1, . . . , n is controlled by the following quantity:

Q(x) = max(|F (x)|, |G(x)|), for x ∈ H where F (x) = n i =j f (i,j) (x) and G(x) = n i =j g (i,j) (x) with f (i,j) (x) = cov(∆ i (x), ∆ j (x)) and g (i,j) (x) = cov(Γ i (x), Γ j (x))

Main results

The following assumptions are needed for the statement of the results concerning the asymptotic performance of the regression operator estimate r h .

About the kernel: we assume that K is strictly decreasing on (0, 1) and there exist some positive constants c 1 and c 2 such that

c 1 1 1 (0,1) (t) ≤ K(t) ≤ c 2 1 1 (0,1) (t), for t ∈ R (2) 
The kernel K has a first order derivative K on (0, 1) such that for some real constants c 3 and c 4

c 3 ≤ K (t) ≤ c 4 , for t ∈ R (3) 
About the concentration of X: we assume that the probability distribution of the functional variable X can be written as This assumption allows us to deal with unbounded variables (Cf page 63 of [START_REF] Ferraty | Nonparametric functional data analysis: Theory and practice[END_REF].

c 5 ϕ(h) ≤ IP (X ∈ B(x, h)) ≤ c 6 ϕ(h), for x ∈ H (4 
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About the dependence: we assume that,

lim n→+∞ nϕ(h) = lim n→+∞ inf x∈S n 2 ϕ 2 (h) Q(x) = +∞ (8) 
for some compact set S of H For instance, when f and g satisfy (1) with respectively some γ 1 and γ 2 , we have for all x ∈ H:

Q(x) ∼ c x n k=1 nk -γ ∼ c x n 2-γ where γ = γ 1 or γ 2
for some positive constant c x depending on the curve x. The condition ( 8)

is true if ϕ(h) = O(n -γ/3 ).
The following useful lemmas are needed in the proofs of Theorems 3 and 4.

Lemma 1 Under condition (6), we have

IE( r h,2 (x)) -r(x) = O h β , as n → +∞
Lemma 2 Assume that conditions (2), ( 4), ( 5), ( 6), ( 7) and ( 8) are satisfied, then we have as n → +∞

(i) r h,2 (x) → IE( r h,2 (x)), in probability (ii) r h,1 (x) → 1, in probability
The main results are stated in the following theorems.

Theorem 3 Under conditions of Lemma 2, we have for all x ∈ H r h (x) → r(x), in probability, as n → +∞

The uniform convergence in probability of the estimator r h (x) is obtained by the following result.

Theorem 4 If condition (2) is replaced by condition (3) in Theorem 3 and if we assume that ∀ 1 > 0, ∃c 8 > 0 and < 1 such that

0 ϕ(u) du > c 8 ϕ( ), (9) 
and for some compact set S of H there exist α > 0 such that : S ⊂ ∪ l=ln l=1 B l where B l , l = 1, . . . , l n are balls of the functional space H, all having the same radius t n with l n = t -α n .

Then we obtain uniformly on the compact set S that

sup x∈S | r h (x) -r(x)| → 0, in probability, as n → +∞ (11) 
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It should be noticed that these results showed the convergence of the estimators under long range. This result may be considered as an extension of the results given by Ferraty and Vieu (2004) for short range dependence (under strong mixing conditions) where rates of convergence are also obtained. However, the rates of convergence for long range dependence are not obtained by these results and are still an open problem in the infinite dimensional case. On the other hand, it may be possible to obtain rates of convergence by using adapted large deviation inequalities (see [START_REF] Estévez | Nonparametric estimation under long memory dependence[END_REF], but nothing guarantees their optimality.

Proofs

In what follows, η i 's for i = 1, 2, 3 denote some real positive constants.

Proof of Lemma 1. For a sample of identically distributed pairs (X i , Y i ) for i = 1, . . . , n, we have

r(x) -IE( r h,2 (x)) = r(x) - 1 n IE(∆ 1 (x)) n i=1 IE (Y i ∆ i (x)) = IE((r(x) -r(X 1 )) ∆ 1 (x)) IE (∆ 1 (x))
Because the support of the kernel function K is (0, 1), and from the definition of ∆ 1 (x), we have

|r(X 1 ) -r(x)| ∆ 1 (x) ≤ sup t∈B(x,h) |r(t) -r(x)| ∆ 1 (x)
then it follows from condition (6) that

IE(|r(X 1 ) -r(x)| ∆ 1 (x)) ≤ c 7 sup t∈B(x,h) d(x, t) β IE(∆ 1 (x)) ≤ c 7 h β IE(∆ 1 (x)) (12) 
and as lim n→+∞ h = 0, we obtain the result of Lemma 1. 2

Proof of Lemma 2. The proof of the result (i) is based on the application of Chebychev's inequality. Indeed, because of:

for > 0, IP (| r h,2 (x) -IE( r h,2 (x))| > ) ≤ var( r h,2 (x))
we need to show that var( r h,2 (x)) → 0 as n → +∞ For that we have:

var ( r h,2 (x)) = 1 n IE 2 (∆ 1 (x)) var (Y 1 ∆ 1 (x)) + 1 n 2 IE 2 (∆ 1 (x)) i =j cov (Y i ∆ i (x), Y j ∆ j (x)) := I 1,n + I 2,n
For the first term, from [START_REF] Mandelbrot | Fractional Brownian motions, fractional noises and applications[END_REF] we have that

IE(∆ 1 (x) Y 1 ) = IE (IE(Y 1 ∆ 1 (x)|X 1 )) = IE((r(X 1 ) -r(x)) ∆ 1 (x)) + r(x)IE(∆ 1 (x)) = r(x) + O h β IE(∆ 1 (x))
then

I 1,n = 1 n IE 2 (∆ 1 (x)) IE(∆ 2 1 (x) IE(Y 2 1 |X 1 )) -(r(x) + O(h β )) 2 IE 2 (∆ 1 (x))
From condition (7), we have

I 1,n ≤ 1 n IE(∆ 2 1 (x)) IE 2 (∆ 1 (x)) ( sup t∈B(x,h) |σ(t) -σ(x)| + sup t∈B(x,h) |σ(t)|) -(r(x) + O(h β )) 2
The lower and upper bounds of conditions ( 2) and (4) give

IE(∆ 1 (x)) ≥ c 1 IP (X ∈ B(x, h)) ≥ c 1 c 5 ϕ(h)
and likewise IE(∆ 2 1 (x)) ≤ c 2 2 c 6 ϕ(h), and using condition [START_REF] Cox | Long-range dependence, A review[END_REF] we deduce that

I 1,n ≤ 1 n ϕ(h) η 1 -ϕ(h) r(x) + O h β 2 ≤ η 1 n ϕ(h) + o 1 n ϕ(h) so that I 1,n = O 1 n ϕ(h) (13) 
The second term I 2,n , can be directly written as
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Finally, using the condition (8), we obtain var( r h,2 (x)) → 0 as n → +∞

The result (ii) can be derived similarly as (i) by taking Y i = 1 and using the fact that IE( r h,1 (x)) = 1. 2

Proof of Theorem 3. The result follows by a direct application of the previous Lemmas 1 and 2 together with the following decomposition

r h (x) -r(x) = 1 r h,1 (x) [( r h,2 (x) -IE( r h,2 (x))) -(r(x) -IE( r h,2 (x))] - r(x) r h,1 (x) ( r h,1 (x) -1) (14) 
and, it remains to show that, there exists θ > 0 such that

IP (| r h,1 (x)| ≤ θ) → 0. ( 15 
)
For this aim, since r h,1 (x) converges to 1, in probability as n → +∞, we have

∀ > 0, IP (| r h,1 (x) -1| > ) → 0 (16) 
and we can notice that

IP | r h,1 (x)| ≤ 1 2 ≤ IP | r h,1 (x) -1| > 1 2 
By letting θ = = 1/2, the proof of ( 15) is achieved. 

for x ∈ H, η 2 ϕ(h) ≤ IE K d(x, X) h ≤ η 3 ϕ(h), (17) 
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In order to prove [START_REF] Ramsay | Functional data analysis[END_REF], we can write

IE K d(x, X i ) h = 1 0 K(t) dIP d(x,X i ) h (t)
where dIP d(x,X i ) h

denotes the image measure of the real random variable d(x, X i )/h. Now, since the first derivative of K exists, we have

K(t) = K(0) + t 0 K (u)du,
which implies, by applying the Fubini's Theorem, that

IE K d(x, X i ) h = 1 0 K(0) dIP d(x,X i ) h (t) + 1 0   t 0 K (u)du   dIP d(x,X i ) h (t) = K(0) ϕ(h) + 1 0 K (u) IP u ≤ d(x, X i ) h ≤ 1 du
and the fact that K(1) = 0 allows to write

IE K d(x, X i ) h = - 1 0 K (u) ϕ(hu)du
It suffices to use hypothesis (3) to show that, for h < ε 1 and with η

2 = -c 1 c 10 IE K d(x, X i ) h ≥ η 2 ϕ(h)
Concerning the upper bound, it suffices to remark that K is bounded with support (0, 1) and uses hypothesis (3) by putting η 3 = sup t∈(0,1) K(t).

In order to complete the proof of this Theorem, we use first the decomposition [START_REF] Müller | Generalized functional linear models[END_REF] and then [START_REF] Rachdi | Nonparametric regression estimation for functional data: automatic smoothing parameter selection[END_REF]. We notice that sup From ( 18) and ( 19), we claim the final result [START_REF] Hidalgo | Nonparametric estimation with strongly dependent multivariate tiem series[END_REF]. 2

) where c 5 5 ) 6 )

 556 and c 6 are real constants and B(x, t) denotes the closed ball of center x and radius t, and ϕ(t) is a positive function such that lim t→0 ϕ(t) = 0 and lim n→+∞ n ϕ(h) = +∞ (About the regression operator: there exist some constants 0 < c 7 < ∞ and β > 0, such that ∀x, y ∈ H, |r(x) -r(y)| ≤ c 7 d(x, y) β (About the moments: the response variable Y satisfies ∀x ∈ H, IE(Y 2 |X = x) ≤ σ(x) < ∞ (7) where σ(.) is a continuous function at x.

x∈S|

  r h (x) -r(x)| ≤ sup x∈S | r h (x) -IE( r h (x))| + sup x∈S |IE( r h (x)) -r(x)| ≤ sup x∈S | r h,2 (x) -r(x)| + sup x∈S | r h,2 (x) -IE( r h,2 (x)| + sup x∈S | r h,1 (x) -1| According to Lemma 1, we claim immediately that sup x∈S | r h,2 (x) -r(x)| = O h β(18)On the other hand, from condition[START_REF] Hall | Nonparametric regression with long range dependence[END_REF], it suffices to look at the uniform convergence on the closest center to x among the balls centers {c 1 , . . . , c ln }, c j(x) = arg min c j ∈{c 1 ,...,c ln } d(c j , x), (Cf pages 75-76 in[START_REF] Ferraty | Nonparametric functional data analysis: Theory and practice[END_REF]).We haveIP sup x∈S | r h,2 (c j(x) ) -IE( r h,2 (c j(x) ))| > = IP max j=1,...,ln | r h,2 (c j ) -IE( r h,2 (c j ))| > ≤ l n max j=1,...,ln IP (| r h,2 (c j ) -IE( r h,2 (c j ))| > ) Choosing l n = t -α n with t n ∼ n -ζ , ζ > 0,and using the results of Lemma 2, we obtain in probability lim n→∞ sup x∈S | r h,2 (x) -IE( r h,2 (x))| = 0 and lim n→∞ sup x∈S | r h,1 (x) -1| = 0 (19)

  [START_REF] Beran | Statistics for long-memory processes[END_REF] 

	Proof of Theorem 4. If assumptions (3) and (9) are satisfied then, for h small
	enough (see Lemma 4.4, page 44 in Ferraty and Vieu, 2006)
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