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On fake Brownian motions

Krzysztof Oleszkiewicz ∗†

Institute of Mathematics, Warsaw University, Banacha 2, 02-097 Warsaw, Poland

Abstract

Recently Albin constructed an example of a continuous martingale
different from the classical Brownian motion but with the same marginal
distributions, thus improving on the result of Hamza and Klebaner. We
present a simpler solution to this problem.

Keywords: continuous martingale, Gaussian marginals, Brownian motion

Let (Xt)t≥0 be a real-valued random process and let (Mt)t≥0 be a natural filtra-
tion associated to the process, Mt = σ((Xs)0≤s≤t). We will say that (Xt)t≥0 is a fake
Brownian motion if it satisfies the following four conditions: (Xt,Mt)t≥0 is a martin-
gale, it is continuous, Xt is a Gaussian random variable with mean zero and variance
t for every t ≥ 0 and, finally, the process (Xt)t≥0 does not have the same distribution
as the classical Brownian motion (Bt)t≥0. Clearly, instead of the last condition we
can just require that (Xt)t≥0 is not a Gaussian process, since the other conditions
easily imply that it has the same covariance structure as (Bt)t≥0. It is natural to ask
whether such processes exist. Hamza and Klebaner proved recently that there exists
a large family of non-Gaussian martingale processes having the same marginal dis-
tributions as (Bt)t≥0. However, they were not able to ensure the continuity of these
martingales, thus leaving the question about existence of fake Brownian motions open.
The question was answered affirmatively by Albin soon, but his construction of a fake
Brownian motion was rather involved. In this note we describe a new and quite simple
construction.

Throughout the paper we assume that G1, G2, (Bt)t≥0 and (Wt)t≥0 are indepen-
dent, and that G1 and G2 have distribution N (0, 1) whereas (Bt)t≥0 and (Wt)t≥0 are
standard Brownian motions. By ‖ · ‖ we denote the standard Euclidean norm.

Given a ≥ 0 let us define a filtration F (a)
t = σ(G1, G2, (Ws)0≤s≤a+ln t) for t ≥ e−a.

Let

X
(a)
t =

√
t
(
G1 cosWa+ln t +G2 sinWa+ln t

)
for t ≥ e−a. Then

(
X

(a)
t ,F (a)

t

)
t≥e−a

is a continuous martingale and X
(a)
t ∼ Bt for

every t ≥ e−a. It is easy to check that X
(a)
e −X(a)

1 is not Gaussian, so that (X
(a)
t )t≥e−a
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cannot be a Gaussian process. Another way to see that it cannot be extended to a
Brownian motion is by noting that lim supt→∞ |X(a)

t |/
√
t ≤ |G1|+|G2| <∞ a.s., while

lim supt→∞ |Bt|/
√
t = ∞ a.s., by the law of iterated logarithm.

Let a > b > 0 and let (Vs)s≥0 be given by Vs = Wa−b+s −Wa−b, so that (Vs)s≥0

is a standard Brownian motion and (Vs)s≥0, Wa−b, G1 and G2 are independent. Let
G′1 = G1 cosWa−b + G2 sinWa−b and G′2 = G2 cosWa−b − G1 sinWa−b. Then for
t ≥ e−b ≥ e−a we have

(X
(a)
t )t≥e−b =

(√
t(G1 cosWa+ln t +G2 sinWa+ln t)

)
t≥e−b

=(√
t(G1 cos(Wa−b + Vb+ln t) +G2 sin(Wa−b + Vb+ln t))

)
t≥e−b

=(√
t((G1 cosWa−b+G2 sinWa−b) cosVb+ln t+(G2 cosWa−b−G1 sinWa−b) sinVb+ln t)

)
t≥e−b

=
(√

t(G′1 cosVb+ln t +G′2 sinVb+ln t)
)

t≥e−b

and the last process has the same distribtion as (X
(b)
t )t≥e−b since (G′1, G

′
2, (Vs)s≥0)

has the same distribution as (G1, G2, (Ws)s≥0). Thus the above construction can be
extended to all t > 0. The arguments are quite standard but we present them for the
sake of completeness. For t1 < t2 < . . . tn and e−a ≤ t1 let

µt1,t2,...,tn = L
(
(X

(a)
t1
, X

(a)
t2
, . . . , X

(a)
tn

)
)
.

In view of the above µt1,t2,...,tn does not depend on a. Also, it is clear that the mea-
sures (µt1,t2,...,tn)n∈N ,0<t1<t2<...tn are consistent since for any two of them some a > 0
may be chosen such that both of them are finite dimensional distributions of the pro-
cess (X

(a)
t )t≥e−a . By the Kolmogorov consistency (extension) theorem there exists a

stochastic process (X̃t)t>0 such that the measures introduced above are its finite di-
mensional distributions. Hence (X̃t)t>e−a has the same finite dimensional distributions

as (X
(a)
t )t>e−a for every a > 0. Let Xt = X̃t for t ∈ Q+ and Xt = lims→t,s∈Q+ Xs for

t ∈ (0,∞) \Q+. Random events {path of (X
(k)
s )s∈[e−k,k]∩Q+

is uniformly continuous}
and {lims→t,s∈[e−k,∞)∩Q+

X
(k)
s = X

(k)
t } for k ∈ N and t ∈ (e−k,∞)\Q+ depend only

on countably many of the random variables and belong to the cylindrical σ-field of the
process (X

(k)
s )s≥e−k . Thus

IP (path of (X̃s)s∈[e−k,k]∩Q+
is uniformly continuous) =

= IP (path of (X(k)
s )s∈[e−k,k]∩Q+

is uniformly continuous) = 1

and
IP (Xt = X̃t) = IP ( lim

s→t,s∈[e−k,∞)∩Q+

X(k)
s = X

(k)
t ) = 1.

There are only countably many k ∈ N , so that (Xt)t>0 has paths continuous a.s. and
it is a stochastic modification of (i.e. it has the same finite dimensional as) (X̃t)t>0.

Now we set X0 = 0. The continuity a.s. of paths at t = 0 (in fact, even some much
stronger regularity condition) follows by a direct argument. Note that for C > 0 and
a > 0 one has

IP ( sup
t≥e−a

|X(a)
t |/

√
t > C) ≤ IP (|G1|+ |G2| > C) ≤ 2IP (|G1| > C/2) ≤ 4e−C2/8.
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Hence, for a > n+ 1,

IP (∃t∈[e−n−1,e−n] |Xt| > Cne
−n/2) ≤ IP ( sup

t∈[e−n−1,e−n]

|X(a)
t |/

√
t > Cn) ≤ 4e−C2

n/8.

Let us set Cn = eεn/2 for ε ∈ (0, 1). The Borel-Cantelli lemma yields |Xt|/t
1
2−ε t→0+

−→ 0
a.s. for every ε > 0. Note that so far we have extended the process (Xt) only. Now
we may also define a new filtration (Mt)t≥0 with Mt = σ((Xs)s∈[0,t]). To check that
IE(XT |Mt) = Xt for 0 < t < T, let us consider a multiplicative system (π-system) At

consisting of random events of the form {Xs1 ∈ B1, . . . , Xsk ∈ Bk} for k = 1, 2, . . . ,
0 < s1, . . . , sk ≤ t and B1, . . . , Bk ∈ B(IR). One can easily see that σ(At) = Mt, so by
the lemma on π- and λ-systems it suffices to prove that IEXT 1A = IEXt1A for every
A ∈ At. For a > 0 such that e−a = mini≤k si let Ã = {X(a)

s1 ∈ B1, . . . , X
(a)
sk ∈ Bk}.

Then we have
IEXT 1A = IEX

(a)
T 1Ã = IEX

(a)
t 1Ã = IEXt1A.

We have proved that (Xt)t≥0 is a fake Brownian motion.
To avoid technicalities of the preceding construction one may prefer to set Yt = Bt

for t ∈ [0, 1] and Yt =
√
t
(
B1 cosWln t +G2 sinWln t

)
for t ≥ 1. Then (Yt)t≥0 is a fake

Brownian motion as well - the only point which perhaps needs some extra explanation
is the martingale structure: observe first that (Yt,Ft)t≥0 is a martingale for a filtration
given by Ft = σ((Bs)0≤s≤t) for t ∈ [0, 1) and Ft = σ(G2, (Bs)0≤s≤1, (Ws)s∈[0,ln t]) for
t ≥ 1. Now just recall that if (Yt,Gt)t≥0 is a martingale for some filtration (Gt)t≥0 then
also (Yt,Mt)t≥0 is a martingale, for Mt = σ((Ys)0≤s≤t).

There is also another simple way to construct fake Brownian motions. Let us
consider a unit sphere Sn−1 ⊆ IRn, n ≥ 2, and let (Ut)t∈IR be a stationary IRn-
valued Brownian motion on the sphere such that Ut is uniformly distributed on Sn−1

for every t ∈ IR, see for example Skipper (2007), Ex. 3.3.2 of Hsu (2002) or Ito
and McKean (1974), p.269. The time range as stated there is t ≥ 0 but it may
be easily extended to t ∈ IR in a similar way as we did for the process Xt above.

Clearly, IE
(
UT

∣∣∣σ((Us)s≤t)
)

= ψ(T − t)Ut for T > t, for some function ψ : (0,∞) −→
(−1, 1) because of the strict convexity of the Euclidean ball (expectation is taken in
IRn), rotation invariance and time homogeneity. One easily observes that ψ(x+ y) =
ψ(x)ψ(y) for all x, y > 0 and therefore ψ(t) = e−κt for some κ > 0 - the noncontinuous
solutions of the Cauchy functional equation are excluded here since ψ is bounded. Up
to an appropriate linear change of time we may and will assume that κ = 1. Let R be
a nonnegative random variable with χn distribution (standard chi distribution with n

degrees of freedom, with a density 21−n
2 Γ(n/2)−1rn−1e−r2/21(0,∞)(r)), independent

of the process (Ut)t∈IR. A Gaussian N (0, Idn) random vector G = ‖G‖ · (G/‖G‖)
(note that the factors are independent) has the same distribution as R · Ut for every
t, so that R · p(Ut) ∼ N (0, 1), where p denotes a projection to the first coordinate:
p(x1, . . . , xn) = x1. Hence (Zt)t≥0 defined by Z0 = 0 and Zt =

√
tR · p(U(ln t)/2)

for t > 0 is a fake Brownian motion (with obvious analogy to (Xt)t≥0 if n = 2).
Now it is also clear that lim supt→0+ |Zt|/

√
t < ∞ a.s. Certainly, (Zλt)t≥0 has the

same distribution as (
√
λZt)t≥0 for any fixed λ > 0. Since the process (Ut)t∈IR has

the same distribution as (U−t)t∈IR we easily deduce that the process (Zt)t>0 has the
same distribution as (tZ1/t)t>0, which is another property it shares with the standard
Brownian motion.

One can also consider a projection q : IRn −→ IRn−2 to the first n− 2 coordinates:
q(x1, . . . , xn) = (x1, . . . , xn−2) (now n ≥ 3). Then it is well known that q(Ut) is
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uniformly distributed on the unit ball of IRn−2 - it is obviously a simple exercise
in analysis but it may also be proved in the following probabilistic way. Certainly,
q(Ut) is rotation invariant. Hence it suffices to prove that ‖q(Ut)‖ has the same
distribution as ‖J‖, where J is uniformly distributed on the unit ball of IRn−2. Since
both q(Ut) and J are bounded it is enough to prove that IE‖q(Ut)‖p = IE‖J‖p for
p > 0. Let G be an IRn-valued N (0, Idn) Gaussian vector. Then G = ‖G‖ · (G/‖G‖)
has the same distribution as R·Ut, and consequently q(G) has the same distribution as
R · q(Ut), where R has distribution χn and is independent of q(Ut). Note that ‖q(Ut)‖
has distribution χn−2. Thus

IE‖q(Ut)‖p = IE‖q(G)‖p/IERp =
Γ((p+ n− 2)/2)

Γ((n− 2)/2)

Γ(n/2)

Γ((p+ n)/2)
=

=
n− 2

p+ n− 2
=

∫ 1

0

(n− 2)rn−3rp dr = IE‖J‖p

which ends the proof.
Using the fact that every rotation invariant unimodal density may be expressed

as a mixture of indicator functions of centrally symmetric Euclidean balls, i.e. as a
density of W · q(U0) for some nonnegative random variable W independent of the
process (Ut)t≥0, we can easily modify the reasoning we have used to construct a fake
Brownian motion, to obtain other martingales with marginals being dilates of some
rotation invariant unimodal distribution, and with paths continuous a.s. In this way
we can construct a fake IRn−2-valued rotation invariant α-stable process (α ∈ (0, 2]).
For α ∈ (0, 2) it also can be obtained in a simpler way, as Qt =

√
S ·Bt2/α , where S

is a nonnegative α/2-stable random variable independent of the (n − 2)-dimensional
rotation invariant Brownian motion (Bt)t≥0. The case α = 2 easily follows from the
first construction described in this note if we replace random variables G1 and G2 by
N (0, Idn−2) Gaussian vectors.

The method seems to have potential for further extensions. For example, if (Xt)t≥0

is a fake Brownian motion and (X ′
t)t≥0 is its independent copy then (X̂t)t≥0 given by

X̂t = Xt cosβ +X ′
t sinβ for some fixed β ∈ [0, 2π) is a fake Brownian motion as well.

Certainly, X̂t≥0 is not a Gaussian process, by Cramer’s theorem.

Acknowledgements I would like to thank Professor Tomasz Bojdecki for intro-
ducing me with the problem. Professor Michel Ledoux pointed out the Hsu’s book.

References

[1] Albin, J.M.P., A continuous non-Brownian motion martingale with Brownian mo-
tion martingale distributions, to appear in Statist. Probab. Lett.

[2] Hamza, K. and Klebaner, F.C., A family of non-Gaussian martingales with Gaus-
sian marginals, to appear in J. Appl. Math. Stoch. Anal.

[3] Hsu, E.P., Stochastic Analysis on Manifolds, Graduate Studies in Mathematics
38, AMS, Providence, 2002

[4] Ito, K. and McKean, H.P., Jr., Diffusion processes and their sample paths,
Springer-Verlag, Berlin, 1974

[5] Skipper, M., Limit Theorems for Projections of High Dimensional Spherical Brow-
nian Motion and Random Walk on a Hypercube, Transfer Thesis, available on-line
at www.maths.ox.ac.uk/ skipper/Research.htm, 2007

4


