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The paper deals with the renewal risk model. A precise large deviation result in the case of subexponential claim sizes is proved. As a special case, the example of Pareto distributed claim sizes and inter-occurence times is investigated.

Introduction

In this paper we investigate the precise large deviations for the renewal risk model (total claim amount process), having the following structure:

Assumption H 1 The claim sizes Z 1 , Z 2 , . . . form a sequence of independent identically distributed (i.i.d.) nonnegative random variables with a common distribution function (d.f.) B(u) = P(Z 1 ≤ u), which has a finite mean a = EZ 1 and a finite second moment EZ 2 1 < ∞. Assumption H 2 The inter-occurrence times θ 1 = T 1 , θ 2 = T 2 -T 1 , θ 3 = T 3 -T 2 , . . . are i.i.d. non-negative random variables with mean 1/λ and finite second moment Eθ 2 1 < ∞. In addition, θ 1 , θ 2 , . . . are mutually independent of Z 1 , Z 2 , . . .. In the special case, where θ 1 , θ 2 , . . . have exponential distribution, this model is called a Poisson model.

The random variables T k = k i=1 θ i , k = 1, 2, . . . constitute a renewal counting process N (t) = #{k = 1, 2, . . . : T k ∈ (0, t]}, t ≥ 0 with a mean function λ(t) = EN (t), for which λ(t) ∼ λt as t → ∞. Define a random walk process S n = n k=1 Z k , n ≥ 1, S 0 = 0. We are interested in a precise large deviation result for random sums (total claim amount process) S N (t) under the assumption that claim sizes' distribution B is heavy-tailed. A natural class of heavy-tailed distributions is the class of subexponential distributions. Recall that the

d.f. B(x) on [0, ∞) is called subexponential and is denoted B ∈ S ) if the tail B = 1 -B satisfies equality lim u→∞ B * B(u)/B(u) = 2,
where B * B denotes the Stieltjes convolution of B with itself. The precise large deviations for random sums S N (t) in special cases of S were studied in [START_REF] Klüppelberg | Large deviations of heavy-tailed random sums with applications in insurance and finance[END_REF], [START_REF] Tang | Large deviations for heavy-tailed random sums in compound renewal model[END_REF] (the tails B are of extended regular variation), [START_REF] Ng | Precise large deviations for sums of random variables with consistently varying tails[END_REF] (B has a consistent variation). They prove that, under corresponding regularity conditions, it holds

P(S N (t) > x + aλ(t)) ∼ λB(x), t → ∞ uniformly for x ≥ γλ(t) for every γ > 0, i.e. lim t→∞ sup x≥γλ(t) P(S N (t) > x + µλ(t)) λ(t)B(x) -1 = 0. (1.1)
For applications of the precise deviation results in insurance and finance see, e.g., [START_REF] Klüppelberg | Large deviations of heavy-tailed random sums with applications in insurance and finance[END_REF], [START_REF] Mikosch | Large deviations of heavy-tailed sums with applications in insurance[END_REF], among others.

In our paper we prove that, under mild additional assumptions on the subexponential d.f. of the claim size Z 1 and on the d.f. of the inter-occurrence time θ 1 , for every nonnegative µ ≥ 0, the relation

P(S N (t) > x + (a + µ)λt) ∼ λtB(x + µλt), x → ∞ (1.2)
holds uniformly for all t ∈ [f (x), γx/Q(x)] in case µ > 0, and for all t

∈ [f 1 (x), o(x/Q(x))]
in case µ = 0, where f (x), f 1 (x) are arbitrary infinitely increasing functions and γ > 0 is an arbitrary positive constant. Note that, in general, the zones of uniform convergence in (1.1) and

(1.2) are different. The relation in (1.2) with respect to x → ∞ is more natural for studying the asymptotics of the finite time ruin probabilities, where the initial capital of an insurance company, x, tends to infinity. The rest of the paper is organized as follows. Additional assumptions on the distribution B and on the renewal process N (t), together with the main theorem are formulated in Section 2. The proof of the theorem is given in Section 3. An example of the Pareto distributed claim sizes and inter-occurence times is presented in Section 4.

Additional assumptions and main result

To formulate our main result we need to introduce some additional notations and assumptions.

Let Q(u) = -log B(u), u ∈ R + be the hazard function of distribution B. We assume also that there exists a non-negative function q : R +

→ R + such that Q(u) = u 0 q(v)dv, u ∈ R + .
The function q is called the hazard rate of d.f. B. Denote by

r := lim sup u→∞ uq(u)/Q(u) (2.1)
a hazard ratio index. The next two assumptions A and B are essential for our purposes.

Assumption A The distribution B is subexponential and satisfies the following conditions:

r < 1/2; lim inf u→∞ uq(u) ≥ 2 if r = 0, 4/(1 -r) if r = 0.
Assumption B For any positive δ > 0 there exists a positive > 0 such that k>(1+δ)λt

P(N (t) ≥ k)(1 + ) k → 0 as t → ∞.
(2.2) 

Remark
P(N (t) ≥ k)(1 + ) k ≤ k>(1+δ)λt (λ(1 + )t) k k! 1 + 1 1 + δ + 1 (1 + δ) 2 + . . . ≤ 1 + δ δ (λ(1 + )t) [(1+δ)λt]+1 ([(1 + δ)λt] + 1)! 1 + 1 + 1 + δ + 1 + 1 + δ 2 + . . . (1 + δ) 2 δ(δ -) exp δ + (1 + δ) ln 1 + 1 + δ λt 1 λt(1 + δ) , if < δ.
In general case, the verification of Assumption B is more complicated. As conjectured by [START_REF] Klüppelberg | Large deviations of heavy-tailed random sums with applications in insurance and finance[END_REF] (see Lemma 2.3 therein) Assumption B can be satisfied if the following stochastic ordering relation holds:

P(θ 1 ≤ u) ≤ P(E 1 ≤ u), u ∈ R + ,
for some exponential random variable E 1 , implying

P(N (t) ≥ k) = P(θ 1 + . . . + θ k ≤ t) ≤ P(E 1 + . . . + E k ≤ t) = P( Ñ (t) ≥ k), (2.3)
where Ñ (t), t ≥ 0 is a homogenous Poisson process. However, the last inequality is not sufficient for Assumption B to hold. For example, take i.i.d. Pareto(2) random variables θ 1 , θ 2 , . . ., i.e.

P (θ 1 > u) = 1 1 + u 2 , u ≥ 0. Obviously, P (θ 1 ≤ u) = 1 -e -2 log(1+u) ≤ 1 -e -2u = P (E 1 ≤ u), u ≥ 0,
where E 1 ∼ Exp(2). Then inequality (2.3) reads as

P(N (t) ≥ k) ≤ P( Ñ (t) ≥ k) = e -2t (2t) k k! + (2t) k+1 (k + 1)! + . . . . (2.4) Since λ = (Eθ 1 ) -1 = 1, for fixed 0 < δ ≤ 1/2 and every > 0 we have k>(1+δ)t P( Ñ (t) ≥ k)(1 + ) k = e -2t k>(1+δ)t (2t) k k! + (2t) k+1 (k + 1)! + . . . (1 + ) k > e -2t (2t) [2t] [2t]! (1 + ) [2t] ∼ e -2t (2t) [2t] [2t] [2t] e -[2t] [2t] (1 + ) [2t] → ∞
by Stirling formula, so that (2.2) does not hold when N (t) is replaced by Ñ (t). This difficulty was also noted in Tang et al. (2001, p. 92). The reason for this discrepancy lies in the "shifted" set of summation indices. In this example, instead of summation with respect to k > (1 + δ)2t

(because E Ñ (t) = 2t) as in (2.2), the set of summation indices is k > (1 + δ)t. More precise verification of (2.2) in the Pareto(β) (β > 2) case is given in Section 4.

The main result of our paper is the following theorem.

Theorem 2.1 Let assumptions H 1 , H 2 , A and B be satisfied. Then, for every positive µ > 0, it holds

P(S N (t) > x + (a + µ)λt) ∼ λtB(x + µλt) as x → ∞ uniformly for all t ∈ [f (x), γx/Q(x)],
where f (x) is an arbitrary infinitely increasing function and γ > 0 is arbitrary positive constant. (Note that x/Q(x) is nondecreasing function for sufficiently large x, see Lemma 3.3 (i).)

The proof of the theorem is given in Section 3. In case µ = 0 we have:

Corollary 2.1 Under assumptions H 1 , H 2 , A and B it holds

P(S N (t) > x + aλt) ∼ λtB(x), as x → ∞ uniformly for all t ∈ [f 1 (x), f 2 (x)],
where f 1 (x) is an arbitrary infinitely increasing function and f 2 (x) = o(x/Q(x)).
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Proof. It follows from Theorem 2.1 and Lemma 3.4 that with some fixed positive µ

P(S N (t) > x + aλt) ≥ P(S N (t) > x + (a + µ)λt) ≥ (1 -o(1))λtB(x) B(x + µλt) B(x) = (1 -o(1))λtB(x) exp - x+µλt x q(u)du ≥ (1 -o(1))λtB(x) 1 - x+µλt x uq(u) Q(u) Q(u) u du ≥ (1 -o(1))λtB(x) 1 -O tQ(x) x ≥ (1 -o(1))λtB(x) as x → ∞ and t ∈ [f 1 (x), f 2 (x)].
On the other hand, for such fixed positive µ, 1)). Hence, similarly we can obtain that for sufficiently large x

P S N (t) > x + aλt ≤ P S N (t) > x * + (a + µ)λt , where x * = x -µλf 2 (x) = x -o(1)x/Q(x) = x(1 -o(
P(S N (t) > x + aλt) ≤ (1 + o(1))λtB(x * + µλt) ≤ (1 + o(1))λtB(x) B(x * ) B(x) B(x * + µλt) B(x * ) ≤ (1 + o(1))λtB(x) exp Q(x * ) x * (x -x * + µλt) ≤ (1 + o(1))λtB(x) uniformly for t from interval [f 1 (x), f 2 (x)]. 2 
3 Proof of main theorem

The statement of Theorem 2.1 follows from Theorem 3.1, Lemma 3.3 below and the estimate 

B(x + µλt(1 -∆)) B(x + µλt) = exp x+µλt x+µλt(1-∆) q(u)u Q(u) Q(u) u du ≤ exp ∆µλtQ(x) x provided 0 < ∆ < 1
P(S N (t) > x + (a + µ)λt) λtB(x + µλt) ≥ 1 -∆ 1 lim inf x→∞ inf t∈D B(x + µλt(1 -∆ 2 )) B(x + µλt) . A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT implying Q(u) ≤ Q(u ) u r+ u r+ = c u r+ for large u. 2
Since Q(u)/u does not increase for sufficiently large u, it follows from lemmas 3.2-3.3 and Assumption A that for t = t(x) ∈ [f 2 (x), ∞),

I 1 ≤ P(S [(1-ε(t))λt] > x + (µ + a)λt) k∈D 1 P(N (t) = k) ∼ (1 -(t))λtB(x + µλt + λta (t)) k∈D 1 P(N (t) = k) ≤ λtB(x + µλt) P(N (t) < (1 -(t))λt) = λtB(x + µλt) P N (t) -λt √ λ 3 tVar θ 1 < - t 2 (t) λVar θ 1 = o(1)tB(x + µλt) (3.3)
by assumption t 2 (t) → ∞ and the central limit theorem for the renewal process (see, e.g., Theorem 2.5.13 in [START_REF] Embrechts | Modeling Extremal Events[END_REF]:

N (t) -λt √ λ 3 tVar θ 1 d -→ N(0, 1). (3.4)
Consider the term I 2 . We can apply the large deviation Lemma 3.2 once again for term I 2 to obtain, by the dominated convergence theorem, that for t ∈ [f 3 (x), ∞)

I 2 = k∈D 2 P (N (t) = k)P(S k -ES k > x -ka + (µ + a)λt) ∼ k∈D 2 P(N (t) = k)kB(x -(k -λt)a + µλt) ≤ B(x -δaλt + µλt) k∈D 2 P(N (t) = k)k.
Let the positive δ > 0 be such that δa < ∆µ. Similarly as in the estimate of term I 1 we have

I 2 ≤ (1 + o(1))(1 + δ)λtB(x + µλt(1 -∆))P(N (t) > (1 + (t))λt) ≤ (1 + o(1))(1 + δ)P N (t) -λt √ λ 3 tVar θ > t 2 (t) λ Var θ λtB(x + µλt(1 -∆)) = o(1)tB(x + µλt(1 -∆)). (3.5)
Using the property of subexponential distribution B (see, e.g., Lemma 1.3.5 in [START_REF] Embrechts | Modeling Extremal Events[END_REF] we have that for each > 0 there exists a constant K( ) such that

P(S n > x) ≤ K( )(1 + ) n B(x), x ≥ 0.
Therefore, applying Assumption B and taking into account the equivalence of (2.2) to (see Remark (ii) on p. 296 in [START_REF] Klüppelberg | Large deviations of heavy-tailed random sums with applications in insurance and finance[END_REF])

k>(1+δ)λt P(N (t) = k)(1 + ) k → 0,
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we obtain

I 3 ≤ K( ) k∈D 3 P(N (t) = k)(1 + ) k B(x + λ(µ + a)t) ≤ K( )B(x + µλt) k∈D 3 P(N (t) = k)(1 + ) k = o(1)B(x + µλt).
(3.6)

The proof of the lemma follows from (3.1) and the estimates (3. 

P(N (t) = k)P(S k > x + λ(µ + a)t) = B(x + µλt) |k-λt|≤ (t)λt P(N (t) = k)ϕ(x, t) P(S k > x + λ(µ + a)t) B(x -(k -λt)a + µλt) ,
where ϕ(x, t) = B(x-(k-λt)a+µλt)

B(x+µλt)

. Using Lemma 3.2 we obtain

P(S k > x + λ(µ + a)t) = P(S k -ES k > x -(k -λt)a + µλt) ∼ kB(x -(k -λt)a + µλt) (3.7)
uniformly for |k -λt| ≤ (t)λt. We will show that lim

x→∞ ϕ(x, t) = 1 (3.8) uniformly for t ∈ [f 4 (x), ∞). Let (k -λt)a ≥ 0.
Then, applying the mean value theorem, rewrite

ϕ(x, t) = exp{Q(x + µλt) -Q(x -(k -λt)a + µλt)} = exp{(k -λt)aq(ξ)} ≥ 1, where x + λt(µ -ε(t)) ≤ x + µλt -(k -λt)a ≤ ξ ≤ x + µλt. By (2.1), we have q(ξ) = ξq(ξ) Q(ξ) Q(ξ) ξ ≤ (r + ) Q(ξ) ξ
for every > 0 and sufficiently large x. Therefore

ϕ(x, t) ≤ exp (r + )(k -λt)a Q(ξ) ξ (3.9) A C C E P T E D M A N U S C R I P T
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for sufficiently large x. The function Q(u)/u does not increase for sufficiently large u. Hence, by inequality (k -λt)a ≤ λt (t) = λc 1 √ t log t, we obtain from (3.9) that

ϕ(x, t) ≤ exp c 1 (r + ) √ t log t Q(x + λt(µ -(t))) x + λt(µ -(t)) ≤ exp c 2 log t Q(λµt/2) √ t
for sufficiently large x. Since r < 1/2, we obtain for large t 

Q(λµt/2) log t √ t ≤ c (λµt/2) r+ log t √ t = c * log t t 1/2-r-→ 0 by (3.2), choosing > 0 such that r + < 1/2. If (k -λt)a < 0,
B(u) = P(Z 1 > u) = 1 1 + u α , P(θ 1 > u) = 1 1 + u β , u ≥ 0
with α > 2 and β > 2. Obviously, assumptions H 1 and H 2 are satisfied and a

= EZ 1 = (α-1) -1 , EZ 2 1 = 2(α -1) -1 (α -2) -1 , λ = (Eθ 1 ) -1 = β -1, Eθ 2 1 = 2(β -1) -1 (β -2) -1 . It is well-known that Pareto distribution is subexponential. Moreover, in our case Q(u) = α log(1 + u), q(u) = α(1 + u) -1 , implying r = lim sup u→∞ uq(u) Q(u) = 0 < 1 2 and lim inf u→∞ uq(u) = α > 2.
Hence, Assumption A is satisfied. The most complicated is the verification of Assumption B. First we will estimate P(N (t) ≥ k) = P(θ 1 + . . . + θ k ≤ t) showing that for k > (1 + δ)(β -1)t and every δ > 0 the following inequality holds:

P(θ 1 + . . . + θ k ≤ t) ≤ C σ * ,δ,β exp - σ * δk (1 + δ)(2 + δ)(β -1) , (4.1)
where σ * is specified in (4.3) below.
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The Laplace-Stieltjes transform of d.f. P

(θ 1 ≤ u) is θ(s) = ∞ 0 e -us dP(θ 1 ≤ u) = β ∞ 0 e -us (1 + u) β+1 du.
Obviously, θ(s) is analytic function for Re s > 0. 

(s) = ∞ 0 e -us dP(θ 1 ≤ u) = 1 -sEθ 1 + O(s 2 Eθ 2 1 ) = 1 - s β -1 + O(s 2 ) = exp - s β -1 + O(s 2 ) .
Therefore, for any real positive s

θ(s) ≤ exp - s β -1 + c β s 2 β -1 = exp - 2s (2 + δ)(β -1) exp s β -1 2 2 + δ -1 + c β s . Since 2 2+δ -1 + c β s → -δ 2+δ < 0, s → 0, there exists a small number σ * > 0, such that θ(σ * ) ≤ exp - 2σ * (2 + δ)(β -1) . (4.3)
From (4.2), for such σ * we obtain 

P(θ 1 + . . . + θ k ≤ t) ≤ 1 2π ∞ -∞ |e t(σ * +iy) -1| σ 2 * + y 2 | θ(σ * + iy)| k dy ≤ 1 2π ∞ -∞ |e t(σ * +iy) -1| σ 2 * + y 2 θk-1 (σ * )| θ(σ * + iy)|dy ≤ 1 2π (e tσ * + 1) θk-1 (σ * ) ∞ -∞ | θ(σ * + iy)| σ 2 * + y 2 dy ≤ 1 π e tσ * - 2σ * (k-1) (δ+2)(β-1)

ACCEPTED MANUSCRIPT

For k > (1 + δ)(β -1)t, from (4.4) and (4.5) we obtain 

P(θ 1 + . . . + θ k ≤ t) ≤ C β π exp σ * k (1 + δ)(β -1) - 2σ * (k -1) (2 + δ)(β -1) = C β π exp σ * k β -1 1 1 + δ - 2 2 + δ exp 2σ * (2 + δ)(β -1) = C σ * ,δ,β exp - σ * δk (1 + δ)(2 + δ)(β -
(1 + ) k exp -k σ * δ (1 + δ)(2 + δ)(β -1) → 0 as t → ∞, since σ * δ (1 + δ)(2 + δ)(β -1) -log(1 + ) → σ * δ (1 + δ)(2 + δ)(β -1)
> 0, when ↓ 0.

Therefore, Assumption B is satisfied.

To conclude the section, we recall that the main theorem of the paper says that, for every positive µ,

P S N (t) > x + β -1 α -1 + µ t ∼ (β -1)t 1 + x + µ α-1 t α , x → ∞,
uniformly for t ∈ [f (x), γx/ ln x] with arbitrary infinitely increasing function f (x) and arbitrary positive constant γ.

  u) β+2 du implies | θ(σ * + iy)| ≤ C β |σ * +iy| = C β √ σ 2 * +y 2 and therefore ∞ -∞ | θ(σ * + iy)| σ 2 * + y 2 dy ≤ C β

  and x is sufficiently large. Under assumptions H 1 , H 2 , A and B, for every positive µ > 0, ∆ 1 , ∆ 2 (∆ 2 < 1)

	Theorem 3.1 and any domain D ⊂ [f 1 (x), ∞), where f 1 (x) is an infinitely increasing function, it holds
	lim sup x→∞	sup t∈D	P(S N (t) > x + (a + µ)λt) λtB(x + µλt)	≤ 1 + ∆ 1 lim sup x→∞	sup t∈D	B(x + µλt(1 -∆ 2 )) B(x + µλt)
	and					
	lim inf					

x→∞ inf t∈D

  Assume that assumptions H 1 , H 2 and A are satisfied. Then for every positive µ > 0

	3), (3.5), (3.6).	2
	Lemma 3.4	

|k-λt|≤ (t)λt

P(N (t) = k)P(S k > x + λ(µ + a)t) ∼ λtB(x + µλt) as x → ∞ uniformly for t > f 4 (x),

where f 4 (x) is arbitrary infinitely increasing function, (t) = c 1 log t/ √ t and c 1 > 0 is any positive constant. Proof. Rewrite |k-λt|≤ (t)λt

  In this section we will show that assumptions H 1 , H 2 , A and B are satisfied in case of claim sizes and inter-occurence times having heavy-tailed Pareto distribution. Assume that i.i.d. claim sizes Z 1 , Z 2 , . . . and inter-occurence times θ 1 , θ 2 , . . . have the Pareto(α) and Pareto(β) distributions, respectively:

	the proof of (3.8) is similar.	
	Hence, by the dominated convergence theorem, we have from (3.7)-(3.8) that	
	P(N (t) = k)P(S k > x + λ(µ + a)t)	
	|k-λt|≤ (t)λt	
	∼ λtB(x + µλt)P(|N (t) -λt| ≤ (t)λt) ∼ λtB(x + µλt)	
	according to relation (3.4). The proof of the lemma is complete.	2
	4 Example of Pareto distribution	
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The statement of this theorem follows from lemmas 3.1 and 3.4 below.

Lemma 3.1 Let assumptions H 1 , H 2 , A and B be satisfied and let (t) be a monotonically vanishing function satisfying lim t→∞ t 2 (t) = ∞. Then for every µ > 0 and 0

where

First we estimate the therm I 1 . For this we use the next large deviation result (see Theorem 4.1 of Baltrūnas et al. ( 2004)) and auxiliary Lemma 3.3. Lemma 3.2 Assume that random variables Z 1 , Z 2 , . . . satisfy assumptions H 1 and A. Then

as n → ∞ uniformly for τ ≥ τ n , where τ n is any infinitely increasing sequence satisfying

Lemma 3.3 Suppose that the hazard function Q(u) satisfies condition r < 1. Then: (i) Q(u)/u does not increase for sufficiently large u;

(ii) for every > 0 there exists positive u and c , such that

Proof of Lemma 3.3. (i) The proof easily follows from the proof of Lemma 2.1 in [START_REF] Baltrūnas | Second order behaviour of ruin probabilities in the case of large claims[END_REF].

(ii) We have