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Abstract

This paper introduces two models of marked Cox point processes where the marks

are constructed by means of the intensity function in order to obtain correlations

between local point density and marks. Explicit expressions for various functional

second-order characteristics are derived.
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1 Introduction

Marked point processes provide a very useful tool in spatial statistics. They

represent a natural approach to the analysis of data where at random positions

random variables are observed. A sucessful model for marked point processes

is the random field model introduced by Mase (1996). It has two completely

independent components, a point process and a random field {Z(x)}, and

the mark of the point at location x is simply Z(x). But this model does not

assume any correlation between point density and marks which would e.g.

mean that in regions of high point density the marks are systematically large.

This may be a result of interaction between the points, in the biological context

of competition.

The present paper introduces two simple models with a close relationship

between point density and marks. They are density-dependent marked Cox

processes. For both models explicit expressions for the second-order charac-

teristics are given.

2 Summary characteristics for marked point processes

The fundamentals of the theory of marked point processes can be found in

Daley & Vere-Jones (2004) and Stoyan et al. (1995). Here only the facts needed

in the present paper are given. A marked point process is a random sequence
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Ψ = {[xn; mn]} with points xn ∈ Rd and marks mn in some mark space; here

only real-valued marks are considered. Throughout the paper it is assumed

that Ψ is stationary and isotropic.

The character Ψ also denotes the random measure, i.e. for any Borel set A in

Rd and any Borel set L in R, Ψ(A × L) denotes the number of points in A

with mark in L. The corresponding mean satisfies

E{Ψ(A× L)}= λν(A)M(L) , (1)

where λ is the intensity of the process, ν denotes the volume or Lebesgue

measure and M is the mark distribution. In the given case of real-valued

marks, M is described by the mark distribution function FM(m), FM(m) =

M((−∞,m]). The mean corresponding to M or FM(m) is denoted by µ and

called the mean mark.

Various second-order summary characteristics describe the variability and cor-

relations of Ψ, see Schlather (2001), Schlather et al. (2004), Stoyan (1984) and

Stoyan & Stoyan (1994). The first is the pair correlation function g(r), which

describes the variability of point distribution, ignoring the marks. The further

characteristics kmm(r), km·(r) and here γ(r) describe correlations between the

marks. The function kmm(r) is called the mark correlation function and can

be heuristically explained as

kmm(r) =
Eor{m(o)m(r)}

µ2
for r > 0 , (2)
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where Eor denotes the conditional mean under the condition that Ψ has points

in two deterministic points of distance r, which can be assumed to be the

origin o and any point r of distance r from o, and m(o) and m(r) are the

corresponding marks. Thus kmm(r) is the normalized mean of the product of

the marks of two points of distance r. A more rigorous definition can be found

in Stoyan & Stoyan (1994, pp. 262-263). As discussed in Schlather (2001), the

name “mark correlation function” is a bit misleading as there are other second-

order characteristics which are closer to the idea of a correlation function.

Furthermore, the function km·(r) is defined as

km·(r) =
Eor{m(o)}

µ
for r > 0 . (3)

It gives the mean of the mark of a point which has another point in distance

r. If there are correlations between points and marks in Ψ, the existence of an-

other point in distance r may have influence on the mean mark of a given point.

Schlather et al. (2004) showed that for Mase’s random field model km·(r) ≡ 1

and thus this function offers an excellent tool for testing the goodness-of-fit of

that model.

Finally, the mark variogram γ(r) is given by

γ(r) =
1

2
Eor{m(o)−m(r)}2 for r > 0 . (4)

In the case of the random field model, γ(r) equals the variogram of the random
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field {Z(x)}.

The above definitions are valid for positive r only. Schlather (2001) extended

the definition to include the case r = 0 such that

kmm(0) =

∞∫

−∞
m2dFM(m)/µ2 , km·(0) = 1 and γ(0) = 0 .

3 The models

Log Gaussian Cox process. The starting point of model building is the log

Gaussian Cox process (LGCP), see Møller et al. (1998) and Møller & Waage-

petersen (2004). This is a special Cox process where the leading measure has as

density function a positive random field {Λ(x)}. Each point process realization

is a realization of an inhomogeneous Poisson process with intensity function

{λ(x)}, where {λ(x)} is a realization of {Λ(x)}. The name ‘log Gaussian’

results from the assumption that Λ(x) = exp{S(x)}, where the ‘background

field’ {S(x)} is a Gaussian field with mean µS, variance σ2
S and correlation

function ρS(r).

It is known that the intensity and the pair correlation function of the LGCP

are

λ = exp

(
µS +

σ2
S

2

)
and g(r) = exp{σ2

SρS(r)} for r ≥ 0 .

The first formula results from λ = E{Λ(o)} and the second from λ2g(r) =
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E{Λ(o)Λ(r)}, where r is as in (2).

Intensity-marked Cox process. The log Gaussian assumption makes the corre-

lation functions of the following marked point process mathematically tractable.

Consider the intensity-marked Cox process (IMCP) with the points xn of the

LGCP above and marks m(xn) given as

m(xn) = a + bΛ(xn) + ε(xn), (5)

where Λ(xn) is the value of the intensity measure {Λ(x)} at xn and ε(xn) is

a random error with Gaussian distribution of mean 0 and variance τ 2. The

sequence {ε(xn)} consists of i.i.d. variables and is also independent of {Λ(x)},

while a and b are model constants. The case b = 0 means independent Gaussian

marks, and b > 0 models the case that the marks are large in regions of high

point density; conversely, b < 0 yields small marks.

Geostatistical model for preferential sampling. This model (GMPF), closely

related to IMCP, was developed independently by Menezes (2005) and is of

particular value for geostatistics, in cases where the sampling points depend

on the observed random field. Again the points of this model form an LGCP,

but Λ(x) has the form

Λ(x) = exp{α + βS(x)} , (6)

with real parameters α and β. The case β = 0 corresponds to a Poisson process

of intensity eα. This LGCP has
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λ = exp

(
α + βµS +

β2σ2
S

2

)
and g(r) = exp{β2σ2

SρS(r)} for r ≥ 0 .

For GMPF, the marks m(xn) are simply the values of the background field

perturbed by i.i.d. Gaussian errors:

m(xn) = S(xn) + ε(xn) , (7)

which corresponds to the case of geostatistical analysis of the background ran-

dom field {S(x)}. The definition of the marks is the main difference between

both models, since for Gaussian S(x) also α + βS(xn) is Gaussian.

4 Formulas for the two models

For both models, IMCP as well as GMPF, formulas can be given for all second-

order summary characteristics above. They are presented here together with

short proofs for some of them. Details can be found in Ho (2006).

• IMCP First and second moments of marks:

µ = a + bλ exp(σ2
S) (8)

and

µ2 = a2 + b2λ2 exp(3σ2
S) + τ 2 + 2abλ exp(σ2

S). (9)

Formula (8) shows clearly the effect of intensity marking. While the mean of

the intensity field {Λ(x)} is λ and a formal calculation of mean mark by (5)
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would yield a + bλ, the true mean mark is µ = a + bλ exp(σ2
S), which is for

b > 0 larger and for b < 0 smaller than a + bλ. This bias is quite natural since

in regions of high point density the marks are large for b > 0 and small for

b < 0.

Proof of (8) and (9): Consider first the particular case of a = 0, b = 1 and

τ = 0, with m(xn) = Λ(xn). Denote the lognormal distribution function of

Λ(o) by F (m), whose parameters are µS and σ2
S. Then the corresponding mark

distribution function FM(m) is obtained by the following calculation:

E{Ψ(A× (−∞,m])}= E

{
E

∑

x∈Φ

1A(x)1(−∞,m](Λ(x))|Λ
}

= E
{∫

1A(x)1(−∞,m](Λ(x))Λ(x)dx
}

=
∫

1A(x)E{1(−∞,m](Λ(x))Λ(x)}dx ,

where Φ is the non-marked point process obtained by stripping off the marks

of Ψ, A is a Borel set with ν(A) > 0. Because of stationarity the mean in the

last integral is independent of x, which leads to

∫
1A(x)E{1(−∞,m](Λ(o))Λ(o)}dx= ν(A)E{1(−∞,m](Λ(o))Λ(o)}

= ν(A)

m∫

−∞
xdF (x) .

Formula (1) yields FM(m) = 1
λ

∫ m
−∞ xdF (x) , and the corresponding mean is

µ =
E{Λ(o)}2

EΛ(o)
= λ exp

(
σ2

S

)
.
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More generally, if m(xn) = a + bΛ(xn) + ε(xn), the corresponding mean is

µ = E(a + bX + ε), where X has the distribution function FM(m) above, and

ε is an independent zero-mean error. Hence, (8) follows.

For calculating µ2, we use (5) to obtain µ2 = E(a + bX + ε)2 with ε ∼

N(0, τ 2) and X with distribution function FM(m), both random variables

being independent.

• Mark correlation functions:

kmm(r) =





a2 + 2abλ exp{σ2
S + σ2

SρS(r)}+ b2λ2 exp{2σ2
S + 3σ2

SρS(r)}
{a + bλ exp(σ2

S)}2
, r > 0,

a2 + 2abλ exp(σ2
S) + b2λ2 exp(3σ2

S) + τ 2

{a + bλ exp(σ2
S)}2

, r = 0.

(10)

Proof: The numerator of kmm(r) as given by (2) satisfies

Eor{m(o)m(r)}=
E{m(o)m(r)Λ(o)Λ(r)}

E(Λ(o)Λ(r))
, (11)

where

E{m(o)m(r)Λ(o)Λ(r)}= E
(
[a + b exp{S(o)}+ ε(o)][a + b exp{S(r)}

+ ε(r)] exp{S(o) + S(r)}
)

= a2E
[
exp{S(o) + S(r)}

]

+ b2E
[
exp{2S(o) + 2S(r)}

]

+ abE
[
exp{2S(o) + S(r)}

]

+ abE
[
exp{S(o) + 2S(r)}

]

= a2λ2 exp{σ2
SρS(r)}

+ b2λ4 exp{2σ2
S + 4σ2

SρS(r)}

9
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+ 2abλ3 exp{σ2
S + 2σ2

SρS(r)}.

Hence, (11) becomes

Eor{m(o)m(r)}= a2 + 2abλ exp{σ2
S + σ2

SρS(r)}
+ b2λ2 exp{2σ2

S + 3σ2
SρS(r)}.

On the other hand, it is known that kmm(0) = µ2

µ2 . Now, (10) can be obtained

immediately by formulas (8) and (9).

• The function km.(r):

km.(r) =





a + bλ exp{σ2
S + σ2

SρS(r)}
a + bλ exp(σ2

S)
, r > 0,

1, r = 0.

(12)

Proof: The numerator of km. as given in (3) satisfies

Eor{m(o)}=
E{m(o)Λ(o)Λ(r)}

E(Λ(o)Λ(r))
,

where

E{m(o)Λ(o)Λ(r)}= E
(
[a + b exp{S(o)}+ ε(o)] exp{S(o) + S(r)}

)

= aE
[
exp{S(o) + S(r)}

]
+ abE

[
exp{2S(o)}

]

= aλ2 exp{σ2
SρS(r)}+ bλ3 exp{σ2

S + 2σ2
SρS(r)}.

Hence, (12) follows.

10
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• Mark variogram function:

γ(r) =





b2λ2 exp{2σ2
S + 2σ2

SρS(r)}[exp(σ2
S)

− exp{σ2
SρS(r)}] + τ 2, r > 0

0, r = 0.

(13)

Proof: By definition of γ(r) in (4), Eor{m(o) −m(r)}2 is needed, which can

be obtained via

Eor{m(o)−m(r)}2 =
E[{m(o)2 + m(r)2 − 2m(o)m(r)}Λ(o)Λ(r)]

E{Λ(o)Λ(r)} , (14)

where

E{m(r)2Λ(o)Λ(r)}= E{m(o)2Λ(o)Λ(r)}
= E

(
[a + b exp{S(o)}+ ε(o)]2 exp{S(o) + S(r)}

)

= a2λ2 exp{σ2
SρS(r)}+ b2λ4 exp{3σ2

S + 3σ2
SρS(r)}

+ 2abλ3 exp{σ2
S + 2σ2

SρS(r)}+ τ 2λ2 exp{σ2
SρS(r)}

This together with the formula above for Eor{m(o)m(r)} yields (13).

GMPF • First and second moments of marks:

µ = µS + βσ2
S (15)

11



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

and

µ2 = σ2
S + (µS + βσ2

S)2 + τ 2. (16)

• Mark correlation functions:

kmm(r) =





σ2
SρS(r) + {µS + βσ2

S + βσ2
SρS(r)}2

(µS + βσ2
S)2

, r > 0,

σ2
S + (µS + βσ2

S)2 + τ 2

(µS + βσ2
S)2

, r = 0.

(17)

km.(r) =





µS + βσ2
S + βσ2

SρS(r)

µS + βσ2
S)

, r > 0,

1 r = 0.

(18)

• Mark variogram function:

γ(r) =





σ2
S + τ 2 − σ2

SρS(r), r > 0,

0, r = 0.

(19)

All proofs of formulas (15) − (18) (which are not given in Menezes, 2005)

follow the pattern of the proofs for the IMCP model and use the formula of

the moment generating function of a bivariate normal distribution as

12
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E{exp(t1X + t2Y )}= exp{(t1 + t2)µ +
(t21 + t22)σ

2

2
+ t1t2σ

2ρ(r)},

for all real values of t1 and t2, where (X, Y ) is a bivariate normal distribution

with mean µ, variance σ2 and correlation function ρ(·). In order to help to

unterstand the idea, here (15) is proved. It is

λµ = E{S(o)Λ(o)} = E
{
S(o) exp{α + βS(o)}

}
.

The right-hand mean is obtained as the derivative with respect to β of E
{

exp{α+

βS(o)}
}
, which is by means of the moment generation function S(o) equal to

(
µS + βσ2

S

)
exp

{
α + βµS +

β

2
σ2

S

}

Since the exponential term is the intensity λ, (15) is obtained.

As formula (19) shows, the mark variogram coincides (up to τ 2) with the

variogram of the background field {S(x)}. In contrast, for IMCP the mark

variogram differs from the field variogram. The formulas show that for both

models all correlation functions are controlled by the correlation function ρS(r)

of the background {S(x)}. This makes that all correlation functions have the

same range of correlation.

The paper Ho (2006) shows that the IMCP model can be fitted to a sample

of forestry data with clusters of trees with small stem disameter marks.
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[13] Stoyan. D. and Wälder, O. (2000), On variograms in point process statistics, II:

Models of markings and ecological interpretation. Biometrical J. 42, 171-187.

15


