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We reformulate the standard conditions that allow reducing the study of extremes for dependent sequences to the classical extreme value theory. Essentially, we weaken the mixing type condition in such a way that, in the context of dynamical systems, it should follow from decay of correlations.

Introduction

Let (Ω, A, P ) be a probability space and X : Ω → R a random variable (r.v.) with distribution function (d.f.) given by F (x) = P (X ≤ x). Also, let E(•) denote expectation with respect to P so that E(X) = XdP = xdF (x). Consider a stationary stochastic process X 0 , X 1 . . . of r.v. defined on Ω with common d.f. F . For notational simplicity we assume that X = X 0 . For every i, j, n ∈ N, set M i,j = max {X i , X i+1 , . . . , X i+j-1 } and M n = M 0,n .

(1.1)

The study of the limiting behavior for maxima of a stationary process can be reduced, under adequate conditions on the dependence structure, to the Classical Extreme Value Theory for sequences of i.i.d. r.v. Hence, to the stationary process X 0 , X 1 , . . . we associate an independent sequence of r.v. denoted by Z 0 , Z 1 , . . . with common d.f. F . We also set for each n ∈ N Mn = max {Z 0 , . . . , Z n-1 } .

(1.2) Let us focus on the conditions that allow us to relate the asymptotic distribution of M n with that of Mn . Following [START_REF] Leadbetter | Extremes and related properties of stationary sequences and processes[END_REF] we refer to these conditions as D(u n ) and D ′ (u n ), where u n is a suitable sequence of thresholds converging to sup ω∈Ω X(ω) = 1, as n goes to ∞, that will be defined below. D(u n ) imposes a certain type of distributional mixing property. Essentially, it says that the dependence between some special type of events fades away as they become more and more apart in the time line. D ′ (u n ) restricts the appearance of clusters, that is, it makes the occurrence of consecutive 'exceedances' of the level u n an unlikely event.

The purpose of this work is to verify that condition D(u n ) can be stated in a weaker form and the result still prevails. The advantage of having this weaker requirement is that, in the context of Dynamical Systems, D(u n ) should follow from decay of correlations.

We say that an exceedance of the level u n occurs at time i if X i > u n . The probability of such an exceedance is 1 -F (u n ) and so the mean value of the number of exceedances occurring up to n is n(1 -F (u n )). The sequences of levels u n we consider are such that n(1 -F (u n )) → τ as n → ∞, for some τ ≥ 0, which means that, in a time period of length n, the expected number of exceedances is approximately τ .

Condition D(u n ) is a type of mixing requirement specially adapted to Extreme Value Theory. In this context, the events of interest are those of the form {X i ≤ u} and their intersections. Observe that {M n ≤ u} is just {X 0 ≤ u, . . . , X n-1 ≤ u}. Motivated by the work of [START_REF] Collet | Statistics of closest return for some non-uniformly hyperbolic systems[END_REF], we propose:

Condition (D(u n ))
. We say that D(u n ) holds for the sequence X 0 , X 1 , X 2 , . . . if for any integers ℓ, t and n

P ({X 0 > u n } ∩ {M t,ℓ ≤ u n }) -P ({X 0 > u n })P ({M ℓ ≤ u n }) ≤ γ(n, t),
where γ(n, t) is nonincreasing in t for each n and nγ(n, t n ) → 0 as n → ∞ for some sequence

t n = o(n), which means that t n /n → 0 as n → ∞.
We remark that the actual definition of D(u n ) appearing in [START_REF] Leadbetter | Extremes and related properties of stationary sequences and processes[END_REF], Section 3.2, is, in some sense, a stronger requirement.

The sequence u n is such that the average number of exceedances in the time interval {0, . . . , [n/k]} is approximately τ /k, which goes to zero as k → ∞. However, the exceedances may have a tendency to be concentrated in the time period following the first exceedance at time 0. To avoid this we introduce

Condition (D ′ (u n )). We say that D ′ (u n ) holds for the sequence X 0 , X 1 , X 2 , . . . if lim k→∞ lim sup n→∞ n [n/k] j=1 P ({X 0 > u n } ∩ {X j > u n }) = 0.
(1.3)

Notice that Condition 1.3 forbids the concentration of exceedances by bounding the probability of more than one exceedance in the time interval {0, . . . , [n/k]}. This guarantees that the exceedances should appear scattered through the time period {0, . . . , n -1}.

Our goal is to show that M n and Mn have the same asymptotic distribution under

D(u n ) and D ′ (u n ). Theorem 1. Let (u n ) n∈N be such that nP (X > u n ) = n(1 -F (u n )) → τ , as n → ∞, for some τ ≥ 0. Assume that conditions D(u n ) and D ′ (u n ) hold. Then lim n→∞ P (M n ≤ u n ) = lim n→∞ P ( Mn ≤ u n ).

Extremes on Dynamical Systems

In this section, we observe that the study of the partial maximum of deterministic processes arising from a certain dynamical system that possesses an invariant measure, with sufficient decay of correlations, can be reduced to prove D ′ (u n ) and investigate the domain of attraction of maximum of the associated independent process.

Let f : M → M be a smooth map on the manifold M admitting an invariant Borel probability measure µ. Assume that there exists a nonincreasing g : N → R such that for all ϕ, ψ : M → R with bounded variation, there is C > 0 independent of ϕ, ψ and n such that

ϕ • (ψ • f n )dµ -ϕdµ ψdµ ≤ CVar(ϕ) ψ ∞ g(n), ∀n ≥ 0, (2.1)
where Var(ϕ) denotes the total variation of ϕ and ng(t n ) → 0, as n → ∞ for some

t n = o(n).
Consider now the r.v. X : M → R of bounded variation on the probability space (M, B, µ), where B is the Borel σ-algebra on M, with d.f. F (x) = µ({X -1 (-∞, x]}). Define the stationary stochastic process X 0 , X 1 , X 2 , . . . by

X i = X • f i . Let M n = max{X 0 , . . . , X n-1 },
for each n ∈ N. Denote by Z 0 , Z 1 , Z 2 , . . . an independent sequence of r.v. with common d.f. F and set, for each n ∈ N, Mn = max{Z 0 , . . . , Z n-1 }.

Taking ϕ = 1 {X>un} and ψ = 1 {M ℓ ≤un} , then (2.1) implies that Condition D(u n ) holds with γ(n, t) = γ(t) = CVar(1 {X>un} ) 1 {M ℓ ≤un} ∞ g(t) ≤ C(Var(X) + 1)g(t) and for the sequence t n such that t n /n → 0 and ng(t n ) → 0 as n → ∞.

This means that if we are also able to prove D ′ (u n ) for the sequence X 0 , X 1 , . . . then the study of the limiting behavior of M n is reduced to study the domain of attraction for maximums of F using the usual tools of Classical Extreme Value Theory, available, for example, in Section 1.6 of [START_REF] Leadbetter | Extremes and related properties of stationary sequences and processes[END_REF]. This type of study, namely the proof of condition D ′ (u n ), was proved in the context of Benedicks-Carleson quadratic dynamical systems, in Freitas and Freitas (2007). We also mention the work of [START_REF] Haiman | Extreme values of the tent map process[END_REF] who obtained an extreme limiting law for the tent map using an approach relying on the linear property of the map.

Remark 2. Observe that often decay of correlations is know for Hölder continuous functions instead. In these situations one can use an Hölder continuous approximation of 1 {X>un} and try to prove that the error introduced does not affect much, just as [START_REF] Collet | Statistics of closest return for some non-uniformly hyperbolic systems[END_REF] did in Lemma 3.3.

Proof of the result

In this section, we prove Theorem 1 using the same type of approach used in Section 3 of [START_REF] Collet | Statistics of closest return for some non-uniformly hyperbolic systems[END_REF]. We begin by stating two abstract Lemmas.

Lemma 3.1. For any ℓ ∈ N and u ∈ R we have

ℓ-1 j=0 P (X j > u) ≥ P (M ℓ > u) ≥ ℓ-1 j=0 P (X j > u) - ℓ-1 j=0 ℓ-1 i =j,i=0 P ({X j > u} ∩ {X i > u})
Proof. This is a straightforward consequence of the formula for the probability of a multiple union on events. See for example first Theorem of Chapter 4 in [START_REF] Feller | An introduction to Probability Theory and its Applications[END_REF].

Lemma 3.2. Assume that t, r, m, ℓ, s are nonnegative integers. Then, we have

0 ≤ P (M r ≤ u) -P (M r+ℓ ≤ u) ≤ ℓ • P (X > u) (3.1)
and

P (M s+t+m ≤ u) -P (M m ≤ u) + s-1 j=0 P ({X > u} ∩ {M s+t-j,m ≤ u}) ≤ 2s s-1 j=1 P ({X > u} ∩ {X j > u}) + tP (X > u). (3.2) Proof. Obviously, 0 ≤ P (M r ≤ u) -P (M r+ℓ ≤ u) ≤ ℓ-1 j=0 (P (M r+j ≤ u) -P (M r+j+1 ≤ u)) .
By the law of total probability we have, for any i ≥ 0,

P (M i ≤ u) = P (M i+1 ≤ u) + P ({M i ≤ u} ∩ {X i > u}) ≤ P (M i+1 ≤ u) + P (X i > u)
and the first statement of the Lemma follows by stationarity.

For the second statement observe that

{M s+t+m ≤ u} = {M s ≤ u} ∩ {M s,t ≤ u} ∩ {M s+t,m ≤ u}.
Consequently,

({M s ≤ u} ∩ {M s+t,m ≤ u}) \ {M s+t+m ≤ u} ⊂ {M s,t > u}.
Thus, using the first inequality of Lemma 3.1 we obtain

P ({M s ≤ u} ∩ {M s+t,m ≤ u}) -P (M s+t+m ≤ u) ≤ tP (X > u) .
Using stationarity and the first inequality in Lemma 3.1 we have

P ({M s ≤ u} ∩ {M s+t,m ≤ u}) = P (M s+t,m ≤ u) -P ({M s > u} ∩ {M s+t,m ≤ u}) = P (M m ≤ u) -P ({M s > u} ∩ {M s+t,m ≤ u}) ≥ P (M m ≤ u) - s-1 j=0 P ({X j > u} ∩ {M s+t,m ≤ u}).
Now, by the second inequality in Lemma 3.1 and stationarity we have

P ({M s ≤ u} ∩ {M s+t,m ≤ u}) ≤ P (M m ≤ u) - s-1 j=0 P ({X j > u} ∩ {M s+t,m ≤ u}) + s-1 j=0 s-1 j =ℓ,ℓ=0 P ({X j > u} ∩ {X ℓ > u} ∩ {M s+t,m ≤ u}).
Finally, stationarity and the last three inequalities give

P ({M s ≤ u} ∩ {M s+t,m ≤ u}) -P (M m ≤ u) + s-1 j=0 P ({X > u} ∩ {M s+t-j,m ≤ u}) ≤ 2s s-1 j=1 P ({X > u} ∩ {X j > u}) ,
from which the result follows.

Proof of Theorem 1.

Let ℓ = ℓ n = [ n k ] where [ n k ]
is the integer part of n k . We begin by replacing P (M n ≤ u n ) by P (M k(ℓ+t) ≤ u n ) for some t > 1. According to (3.1) of Lemma 3.2, we have

P (M n ≤ u n ) -P (M k(ℓ+t) ≤ u n ) ≤ ktP (X > u n ).
(3.3) We now estimate recursively P (M i(ℓ+t) ≤ u n ) for i = 0, . . . , k. Using (3.2) of Lemma 3.2 and stationarity, we have for any 1

≤ i ≤ k P (M i(ℓ+t) ≤ u n ) -1 -ℓP (X > u n ) P (M (i-1)(ℓ+t) ≤ u n ) ≤ Γ n,i , where Γ n,i = ℓP (X > u n )P (M (i-1)(ℓ+t) ≤ u n ) - ℓ-1 j=0 P {X j > u n } ∩ {M ℓ+t,(i-1)(ℓ+t) ≤ u n } + tP (X > u n ) + 2ℓ ℓ-1 j=1 P ({X > u n } ∩ {X j > u n }) .
Using stationarity, D(u n ) and, in particular, that γ(n, t) is nonincreasing in t for each n we conclude

Γ n,i ≤ ℓ-1 j=0 P (X 0 > u n )P (M (i-1)(ℓ+t) ≤ u n ) -P {X 0 > u n } ∩ {M ℓ+t-j,(i-1)(ℓ+t) ≤ u n } + tP (X > u n ) + 2ℓ ℓ-1 j=1 P ({X > u n } ∩ {X j > u n }) ≤ ℓγ(n, t) + tP (X > u n ) + 2ℓ ℓ-1 j=1 P ({X > u n } ∩ {X j > u n }) . Define Υ n = ℓγ(n, t) + tP (X > u n ) + 2ℓ ℓ-1 j=1 P ({X > u n } ∩ {X j > u n }). Then for every 1 < i ≤ k we have P (M i(ℓ+t) ≤ u n ) -1 -ℓP (X > u n ) P (M (i-1)(ℓ+t) ≤ u n ) ≤ Υ n and for i = 1 P (M (ℓ+t) ≤ u n ) -1 -ℓP (X > u n ) ≤ Υ n .
Assume that k and n are large enough in order to have ℓP (X > u n ) < 2, which implies that 1 -ℓP (X > u n ) < 1. A simple inductive argument allows to conclude

P (M k(ℓ+t) ≤ u n ) -1 -ℓP (X > u n ) k ≤ kΥ n .
Recalling (3.3), we have

P (M n ≤ u n ) -1 -ℓP (X > u n ) k ≤ ktP (X > u n ) + kΥ n . (3.4) Since nP (X > u n ) = n(1 -F (u n )) → τ , as n → ∞, for some τ ≥ 0, we have lim k→∞ lim n→∞ 1 -[ n k ]P (X > u n ) k = lim k→∞ (1 -τ k ) k = e -τ . Now, observe that nP (X > u n ) = n(1 -F (u n )) → τ is equivalent to P ( Mn ≤ u n ) = (F (u n )) n → e -τ
, where the limits are taken when n → ∞ and τ ≥ 0 (see [START_REF] Leadbetter | Extremes and related properties of stationary sequences and processes[END_REF], Theorem 1.5.1] for a proof of this fact). Hence, Assume that t = t n where t n = o(n) is given by Condition D(u n ). Then, for every k ∈ N, we have lim n→∞ kt n P (X > u n ) = 0, since nP (X > u n ) → τ ≥ 0. Finally, we use D(u n ) and D ′ (u n ) to obtain that the two remaining terms in (3.6) also go to 0.

  [ n k ]P (X > u n )) k = lim n→∞ P ( Mn ≤ u n ).(3.5)It is now clear that, according to (3.4) and (3.5), M n and Mn share the same limiting distribution if limk→∞ lim n→∞ (ktP (X > u n ) + kΥ n = 0> u n ) + nγ(n, t) + 2n ℓ j=1 P ({X > u n } ∩ {X j > u n }) = 0.(3.6) 
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