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Geodesic Saliency of Watershed Contours
and Hierarchical Segmentation

Laurent Najman and Michel Schmitt

Abstract—The watershed is one of the latest segmentation tools developed in mathematical morphology. In order to prevent its
oversegmentation, the notion of dynamics of a minimum, based on geodesic reconstruction, has been proposed. In this paper, we
extend the notion of dynamics to the contour arcs. This notion acts as a measure of the saliency of the contour. Contrary to the
dynamics of minima, our concept reflects the extension and shape of the corresponding object in the image. This representation is
also much more natural, because it is expressed in terms of partitions of the plane, i.e., segmentations. A hierarchical segmentation
process is then derived, which gives a compact description of the image, containing all the segmentations one can obtain by the
notion of dynamics, by means of a simple thresholding. Finally, efficient algorithms for computing the geodesic reconstruction as

well as the dynamics of contours are presented.

Index Terms—Morphological segmentation, watershed, dynamics, hierarchical segmentation, geodesic reconstruction.

1 INTRODUCTION

S EGMENTATION and contour extraction are key points of
image analysis. There are numerous algorithms for do-
ing these operations, which have the drawback of produc-
ing an oversegmentation. Several techniques have been
developed to diminish this oversegmentation, the most
common one being hysteresis thresholding by Canny [5].
Combined with the noise reduction induced by the Gaus-
sian convolution, it has largely contributed to the success of
Canny’s extractor.

Mathematical morphology uses the watershed algo-
rithm, introduced for the purpose of segmentation by Lan-
tuéjoul and Beucher [3], and mathematically defined in [14],
[16]. See [12] for a definition from a more algorithmical
point of view. As the other techniques, the watershed pro-
duces an oversegmentation and until now, a procedure
similar to “hysteresis thresholding” has not existed. The
aim of this paper is to introduce such a procedure.

Watershed is often used in conjunction with geodesic re-
construction, a powerful tool developed by mathematical
morphology, which simplifies gradient images and pre-
vents oversegmentation. In this paper, we present a new
algorithm which aims at computing in one step all the seg-
mentations by watersheds that one can obtain by the use of
geodesic reconstruction, or, equivalently, by the concept of
dynamics [9]. The main advantage of our algorithm is that
it directly gives a hierarchical segmentation in which all
the contour arcs are evaluated by a measure of saliency
(and not the catchment basins, as originally proposed by
Grimaud), allowing one to choose the desired level of dy-
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namics after the segmentation process. This measure of the
saliency of the contour arcs will also be called “dynamics,”
because it is based on the same morphological tool, namely
the geodesic reconstruction. The result can then be used in
a similar way to the hysteresis thresholding, but in the
context of region based segmentation.

This paper presents the state of the art around ideas of
morphological segmentation, while mainly focusing on the
geodesic reconstruction, and placing these ideas in a new
unifying perspective which leads to the novel concept of
dynamics of contours. It is organized as follows: First, we
review the basic definition of the watershed. We then pres-
ent the usual ways to reduce oversegmentation, which all
rely on the geodesic reconstruction. Then we introduce the
principle of hierarchical segmentation. Under this frame-
work, we present a new concept of dynamics of contours,
which allows a valuation of watershed contours relying on
the gradient information and on the geodesic reconstruc-
tion. Then we discuss the interest of our concept, both from
a mathematical and a practical point of view, illustrated by
an application to shape recognition. Finally, we propose an
algorithm to compute this hierarchical segmentation effi-
ciently, together with a novel algorithm to compute the
geodesic reconstruction.

2 THE WATERSHED: A TOOL FOR SEGMENTATION

This section presents the standard definition of the water-
shed and can be skipped by the reader familiar with
mathematical morphology (see for instance [21]).

In mathematical morphology, it is usual to consider that
an image is a topographical surface. This is done by consid-
ering the gray level (the image intensity) as an-altitude.
Places of sharp changes in the intensity thus make a good
set in which one can search for contour lines. It is then
rather straightforward to estimate the variation from the
gradient of the image. For the purpose of segmentation, we
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then look for the crest lines of the gradient image. A way
to characterize these lines is to apply the watershed algo-
rithm to the modulus of the gradient image.

The idea of the watershed [6], [3] is to attribute an influ-
ence zone to each of the regional minima of an image
(connected plateau from which it is impossible to reach a
point of lower gray level by an always descending path).
We then define the watershed as the boundaries of these
influence zones.

Numerous techniques have been proposed to compute
the watershed. The major ones are reviewed in [23], [25].
The classical idea for building the watershed is illustrated
in one dimension (Fig. 1). Using a geographical analogy, we
begin by piercing the regional minima of the surface, then
slowly immerse the image into a lake. The water progres-
sively floods the basins corresponding to the various min-
ima (Fig. 1a). To prevent the merging of two different wa-
ters originating from two different minima, we erect a dam
between both lines (Fig. 1b). Once the surface is totally im-
mersed, the set of the dams thus built is the watershed of
the image. In one dimension, the location of the watershed
is straightforward: it corresponds to the regional maxima of
the function. In two dimensions (which is the case for gray-
scale images), this characterization is not so easy. The place
where two basins meet for the first time is a saddle point in
the image. One can say in an informal way that the water-
shed is the set of crest lines of the image, emanating from
the saddle points.

We present here the classical algorithm for com;)uting
the watershed, in the case of a function defined in R or on
a digital grid, with discrete range (step functions). The most
powerful implementation described in the literature ([25],
[24], [22], [4]) uses FIFO breadth-first scanning techniques
for the actual flooding.

Following the ideas mentioned above, the algorithm
consists in flooding the various basins, and in keeping as
the watershed the set of contact points between two differ-
ent basins. In the case where this contact is on a plateau, we
keep the (geodesic) middle line of this plateau. The water-
shed thus defined is of thickness one on the grid.

DEFINITION 2.1 Let A be a set, a and b two points of A. We call
geodesic distance d,(a, b) in A the lower bound of the
length of the paths y in A linking a and b.

Let B be a set included in A. The geodesic distance d 4(b, B)
from a point b to the set B is defined as usual by d4(b, B) :=
minge g d 0, ¢).

In the digital case, the distance d is deduced from the
one on the grid [20].

Let B = UB; c A, where B; are the connected components

of B. :

DEFINITION 2.2. The geodesic influence zone iz4(B;) of a con-
nected component B; of B in A is the set of the points of A
for which the geodesic distance to B; is smaller than the
geodesic distance to other connected components of B.

izg(B) =lae A Vje [1,kI\i}, dala, B) <da Bpl. (D

The points of A which do not belong to any influence zone
make up the skeleton by influence zone of B in A, denoted
by SKIZ A(B):
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(a) At time t, the dam is not yet constructed.

Barrage

(b) Attime t+ h, we construct a dame to separate water from CB, and
from CB3

Fig. 1. Building of the watershed: one-dimensional approach.

where IZA(B) = UiG [],k]iZA(Bi) .

The watershed algorithm on digital images by recur-
rence on the gray levels is [6]:

DEFINITION 2.3. Let f: R' — N be a bounded step function. We
note

1) h,u, = min fand h,,,, = max f,
2) [f]h the upper threshold of f at level I : [ﬂh =lae R

fla) <h},
3) Reg Min(f) the set of the regional minima of f at height h.

The set of catchment basins of f is the set X,  obtained
after the following recurrence:

i) Xhm,,, — fhmm

11) Xhﬂ =Re 8- Minhﬂ(f) U Izm"”(Xh)’ Vhe [hmin’hmax - 1]‘

The watershed of f is the complementary of X, (Fig. 2).
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B Gray-level 3
BB Gray-level 2
mm Gray-level 1

X1

Reg_Min1 Reg_Min2

X3

Watershed

Fig. 2. lllustration of the recurrence immersion process.

3 SUPPRESS THE OVERSEGMENTATION

The watershed produces an oversegmentation of the images,
but always contains contours which appear to be correct. The
main problem is to make a choice between all those “right”
contours. As in the case of Canny’s extractor, the saliency of a
contour can be evaluated by the value of the modulus of the
gradient. But the step of hysteresis thresholding is not
adapted to the watershed for three reasons:

1) Watershed produces a segmentation: Contours are
obtained as complementary to the set of regions, and
are consequently closed. Hysteresis thresholding is to
be applied on edges and usually produces nonclosed
contours. In other words, we start with a segmenta-
tion and get edges which do not necessarily build a
segmentation.

2) Hysteresis thresholding on watershed segmentation
produces barbs, which are small edges from adjacent
regions (see Fig. 3). Only complicated algorithms
could reliably eliminate these barbs.

3) The most important reason is probably that hysteresis
thresholding is not a morphological process: It relies on
the (local) neighborhood of the pixel, and not on the
structure of the image. Hysteresis thresholding is well
adapted to a local edge detector like Canny’s one, but not
to watershed segmentation, as it is the result of a process
which is global to the image (one cannot construct the
watershed segmentation only from local information).

Original image Watershed Hysteresis thresholding
Fig. 3. A hysteresis thresholding on the watershed, valuated by the

modulus of the gradient, yields non closed contours and small barbs.
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In mathematical morphology, we choose the contours by
smoothing the modulus of the image gradient || Vf || with
respect to various criteria. Indeed, we do not work directly
on the watershed, but come back to the original information
contained in the gradient image. For example, we can sup-
press some minima while preserving the position of the
watershed (this is done by using some markers), or we can
choose the contour by giving them a value which relies on
the values of the gradient and on the watershed (this is
what we call hierarchical segmentation).

All these morphological methods rely on an arbitrary
flooding process, and the theory of morphological simplifi-
cation of images can be deduced from a powerful tool: the
geodesic reconstruction.

3.1 Geodesic Reconstruction

The geodesic reconstruction was originally developed by
Beucher [2]. Let M and N be two closed sets of the plane.
We denote by d,, the geodesic distance in M, i.e., the lower
bound of the lengths of the paths in M linking a to b in M.

DEFINITION 3.1. We call geodesic dilation of infinite size of N
in M, or geodesic reconstruction of N in M, the (arc) dy-
connected components of M which contain at least one
point of N. These components correspond to the points at
finite dydistance of N. We denote this transformation by
D;\;(N ). The set N is called the marker set.

On the lattice, the notation Dy (N) is formally justified
by the formula

Dy(Ny=[(NeB) N M| 3)

where @ denotes the morphological dilation and B the unit
ball of the lattice.

With such a definition, the geodesic reconstruction is a
binary transform. The simplest way to extend a binary
transform to a gray-tone transform is to describe a function
f with the help of its lower threshold [fl1:= {a | fla) = A}.

Consider two functions f < g, the geodesic reconstruc-
tion of f in g is defined through its lower thresholds:

(D7), = oy () @

As in the binary case, we call D;'(f) (gray-scale) recon-

struction of f under g by dilation. The function f is often
called the marker function or markers. We focus our at-
tention on the dual of the geodesic dilation of infinite size,
the geodesic erosion of infinite size, or (gray-scale) recon-
struction of f over ¢ by erosion. The geodesic erosion be-
haves in a complementary way, that is to say we have to

write the functions using their upper threshold [f])“ = {x,
fx) < A}. We then have the following formula:

(B = o) ®

Here, the marker function is g. Using this formula, we have
derived a new algorithm for the geodesic erosion, which
proceeds by flooding. It is described in the last section de-
voted to algorithms. This formula is fundamental for the
understanding of the watershed. Eroding f over ¢ is done
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by flooding progressively the catchment basins of ¢ while
the meeting with f is not achieved (for more details, see
Section 6.1.3). Thus we understand why the smoothing by
geodesic erosion is so helpful for the segmentation by wa-
tershed: by calculating a geodesic reconstruction, we are
implicitly constructing a watershed.

Before explaining how to use geodesic reconstruction,
we need to state a theorem which has never been explicitly
written, but which was implicitly used by all the authors.

THEOREM 3.2. Let f and g be two functions from R to R, fzg
Each regional minimum of the geodesic erosion E; (f) con-
tains at least one regional minimum of f.

That is to say, if f > g, the geodesic erosion E;( f) can

only suppress or merge regional minima of f. As the main
problem in watershed segmentation is to suppress spurious
minima, we understand why geodesic erosion can be so
helpful.

3.2 The Technique of Markers:

A Geodesic Reconstruction by Erosion

of the Marker Function Over the Gradient
The oversegmentation produced by the coarse application
of the watershed is due to the fact that each regional mini-
mum gives rise to a catchment basin. However, all the
catchment basins do not have the same importance. There
are important ones, but some of them are induced by the
noise, others are minor structures in the image.

The first type of information one can extract is of a geo-
metrical nature. Suppose we know a connected set of points
belonging to an object (or a connected set for each object if
there is more than one object to segment), and a set of
points belonging to the background. We call these con-
nected components markers. If we could modify the image
on which to compute the watershed by imposing these sets
as regional minima, we then obtain a watershed which has
a loop around each object, as each catchment basin repre-
sents either the background or one unique object.

This is how to impose some regional minima M on an
image f. We construct the image:

ifxeM ©)

This image has the regional minima we want. To keep
the information of the original image and to put the water-
shed on the plateau at height  of g, we geodesically erode

g on function f A g, i.e., we compute E7 (g). Here, we de-

note f A g(@) = min(fa), g()). This image has the same
minima as g, for the geodesic erosion does not add any new
minima (Theorem 3.2). Furthermore, all the pixels which
are sufficiently high and not in an unselected regional
minimum are the same. We can then apply the watershed
algorithm on this new image. Fig. 4 illustrates this method
and Fig. 5 shows the results on the image of a cook-stove.
Note that we can choose any contrast images: here we have
replaced the usual gradient modulus by a top-hat transfor-

mation f - fp, where fz = (f© B) ® B.
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Geodesic recgristruction by erosioi

N e

ol e minttg)

Fig. 4. lilustration of the way to impose regional minima of g on the
image f.

Original image Markers (background + object)

Top-hat with imposed minima Watershed

Fig. 5. Constrained watershed: markers are imposed as regional min-
ima of the top-hat transformation.

We did not explain how to choose the markers. It is, in
general, the most complex part. The technique of con-
strained watershed allows us to look for the contour of the
objects with less exactitude and guarantees the number of
contours found: one around each marked object. All the
difficulty lies in determining the markers, ie., to a rough
localization of the objects.

In brief:

Segmentation by constrained watershed

1)- Find the markers, i.e., one connected component for
each object and one connected component for the
background. '

2) Compute the image on -‘which the watershed will be
constructed (usually a contrast image like the modu-
lus of the gradient).

3) Impose the minima by gray-scale geodesic recon-
struction.

4) Compute the watershed.

3.3 The Technique of Minima Dynamics: Geodesic
Reconstruction by Erosion of f, over f

The dynamics of a regional minimum is a contrast criterion.

Recall that a regional minimum is a connected set from

which it is impossible to reach a point with a lower height

without climbing. The minimal height of this climbing is

the valuation of the contrast of the regional minimum.
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DEFINITION 3.3. Let M be a regional minimum of the function f.
The dynamics (9], [10] of M is the number

mi_n{srl'[l(z)a,)l(]{f(y(s)) - f(y(O))}l y: [0, l] -
R, f(y(1)) < f(7(0)), 7(0) € M}

where y is a path linking two points.

One can notice that the dynamics is not defined for the
global minimum of the image. In practice, however, the
image f has a compact domain of definition, and we can
always suppose the global minimum is on the boundary of
this image, which allows the valuation of the global mini-
mum inside the domain of definition of f.

The concept of dynamics is illustrated in Fig. 6. It can be
used to find relevant markers: the minima with a great dy-
namics. Let us notice that in practice we do not impose
these minima by geodesic reconstruction of a marked func-
tion. On the contrary, we suppress the regional minima of f
with a dynamics lower than a given contrast value ¢. The
standard algorithm to do this operation is to compute the

geodesic reconstruction by erosion Ef(f,) of f; over f where

fia) =fa) +t (Fig. 7).

Watershed

Dynamics of 1

Fig. 6. lllustration of the concept of dynamics.

Dynamics of 30

Dynamics of 10

Fig. 7. Watershed constrained by a contrast criterion: the dynamics.
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Let us notice that the size and location of the minima
with a given dynamics is of little direct use: their catchment
basins do not reflect the final segmentation with this level
of dynamics (see, later, Fig. 10c). In what follows, we shall
explain how to use all the information contained in the map
of basins valuated by their dynamics.

The following section is the heart of the paper, in which
we create a saliency map from the watershed segmentation.

4 HIERARCHICAL SEGMENTATION

Until now, our aim has been to prevent the oversegmenta-
tion by choosing markers and, using homotopy modifica-
tion, to produce as many catchment basins as there are ob-
jects in the image. In this section, we present the notion of
hierarchical segmentation, originally developed by
Beucher [2], which, rather than preventing the overseg-
mentation, computes the importance of the contours with
respect to given criteria.

Let us first mathematically define what' we mean by a
hierarchy.

DEFRINITION 4.1. Let P, be a sequence of partitions of the plane.
The family (B, ); is called a hierarchy if h; 2 h; implies
B, 2B, , ie., any region of partition P, is a disjoint un-

; J ,

ion of regions of partition F, .
7

Every hierarchy can be assigned a saliency map, by
valuating each point of the plane by the highest value &
such that it appears in the boundaries of partition P, If we
interpret these partitions as segmentations, we have a nice
way of assigning importance to the contours. The problem
is to obtain such a family of segmentations.

4.1 Beucher’s Hierarchical Segmentation:
The Waterfall Algorithm

In segmentation with the help of markers, the final result
strongly depends on the first stage of marker determina-
tion. But we point out that marker determination is not an
easy process. Images are often noisy, and the objects we
want to detect are often complex and varied in shape, size
or intensity. Now, when we look at the result of a water-
shed segmentation, we notice that a lot of apparently ho-
mogeneous regions are shattered into small pieces. A natu-
ral idea is then to try to merge these regions. Mathematical
morphology suggests a solution to make this fusion, hierar-
chical segmentation which was introduced in this context
by Beucher [2] and Beucher and Meyer [4].

This fusion is done by automatically selecting some
markers, using a procedure called the waterfall algorithm
which relies on geodesic reconstruction by erosion. Let us
build a new function g by setting g(x) = f(x) if x belongs to
the watershed and g(x) = +ee if not. This function g is obvi-
ously greater than f. Let us now reconstruct f over g. It is
easy to see that the minima of the resulting image (Fig. 8)
are significant markers of the original image.

Some remarks should be made here. First of all, even if
this procedure allows the construction of a hierarchy by
repeating itself until convergence, it does not allow a
valuation of the contours thus obtained: The convergence is
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significant minima

Fig. 8. Reconstruction from watershed lines and detection of the sig-
nificant markers.

usually very fast, and only a few levels of hierarchy are
present in the result (typically half a dozen). Second, even if
we value the hierarchy in this way, the final valuation re-
sult does not rely on some gradient information: it is only a
way of giving a partial order relation on the various min-
ima. A example of such a valuation is given in Fig. 10b.

4.2 Hierarchical Segmentation Using Dynamics

The dynamics of minima notion presented above allows the
creation of another hierarchical concept which, by relying
on the minima dynamics concept, gives birth to the new
concept of dynamics of contour. Let us consider an image f.
If we suppose that two different minima and two different
saddle points are not on the same gray level (which does
not pose any problem in practice), the geodesic reconstruc-
tion does not move the contour obtained by watershed. It
can only suppress some contours. It is then sufficient to
valuate each arc of the watershed with the maximal value

of £ for which the arc belongs to the watershed of Ef'(f,). It

is easy to see that this depends only on the lowest saddle
point on the arcs which separate the two basins. Let 2 be the
(saddle) point of lower altitude on these arcs, we define

Bas(@):={b | 3y y(0) =4a, y(1) =b, Ay(s)) < fa) Vs € 10, 11} (7)

The set Bas(a) is a topological open set, and can be divided
in several open connected components B; (Bas(a) = U;B)).
We set

dyn(a) := min flgg);{f(a) ~ fla)} ®

We then valuate arcs which separate two basins by the

number dyn(a), which we call dynamics of contour. The
saliency map dyn which associates at each point z its con-
tour dynamics is then given by the formula

dyn(a) = f:?cws(z;’(ﬁ))(”)dt 9)

Whelre Xwsp(@) is the value at point 4 of characteristic func-
tion of the watershed of f.

This valuation is much more natural than the valuation
obtained by the waterfall algorithm, for it relies on the gra-
dient information.

In the last part of this paper, we give an algorithm which
directly computes the watershed with this valuation.

1. Which is equal to 1 if 2 belongs to the watershed and to 0 if @ does not
belong to the watershed.
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It is worth noting that contrary to the noise sensitivity of
the dynamics of a basin, the dynamics of a contour is much
more stable (yet the contour itself is sensitive to noise). This
is illustrated in Fig. 9.

Contour dynamics Contour dynamics

Basins dynamics
Basins dynamics

Fig. 9. Between right and left figure, basins CB; and CB, have ex-
changed their dynamics. But the dynamics of the contour which sepa-
rates these basins remains unchanged.

Fig. 10 shows the difference between a simple computa-
tion of dynamics (Fig. 10c) and an application of the contour
valuation algorithm. The basins of high dynamics do not
reflect the extension and shape of the region which could be
obtained by keeping only the regional minima of high dy-
namics. So, the dynamics of basins represent only an inter-
mediate result. Contrary to this, let us notice that the result of
our algorithm (Fig. 10d.) gives all the contour information we
can extract from the gradient image, that is to say, a threshold
of the result image at a given level will give the segmentation
which will be obtained by a geodesic reconstruction of the
same level. The only way to obtain other contours is to add
exterior information, either by the use of markers, either by
using other contour extractors (like Canny’s one) which we
combine to the watershed by use of a watershed algorithm
with anchor points [16], [15], [14].

(a) Original image

(c) Map of the basins valuated
by their dynamics
(white = low, black = high)

(d) Computation of the
dynamics of contours

Fig. 10. Difference between an application of the waterfall algorithm, a
computation of dynamics of basins and a computation of the dynamics
of contours.
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5 APPLICATION TO SHAPE RECOGNITION

In this section, we discuss the interest of our new segmen-
tation process. This-section is based first on mathematical
criteria used in contour detection, then on the robustness of
the arc saliency with respect to noise and finally on its use-
fulness in image segmentation, especially for the problem
of guessing “what are the # most important objects in an
image.”

5.1 Mathematical Arguments
Let f : R® - R be a smooth function, and set

fla) := E(;Tnff(:;ﬁ, where E(x) stands for the integer part of x.

It has been shown [14], [16] that under adequate hypothe-
sis, the limit of watershed of the f, is a subset of the maxi-
mal integral lines of the gradient of f (lines of steepest slope
on f) linking some particular critical points of f (where Vf(a)
= 0), typically a subset of saddle points and of maxima of f.
We can apply this result to show why the watershed is a
good edge detector.

Let g be the modulus of the gradient of an image f: g(a) :=
[VA@)|. One can say that an edge is a path where the change
in the intensity of f is maximum in the direction normal to
this path. As the intensity is computed by the modulus of
the gradient, we can write

d
a?g(u +tn)= <Hf(a)Vf,n> =0

where 7 is the normal to the path at point 4, and where H;(2)
is the Hessian (the matrix of the second derivatives) of f at
a. This equation gives an implicitly differential equation for
the edge path y:

(10)

¥ = H,Vf. an

This equation is not sufficient to characterize edges, be-
cause on any point in the plane where Vf # 0, there exists a
path ysatisfying (11). The union of all the paths which are
solutions to this differential equation covers the whole do-
main of f. It has been proved [16], [14] that the watershed
chooses the paths by imposing boundary conditions.

The boundary conditions imposed by the watershed are
such that it is possible to join the end points of the path
7 = H/Vf to two different minima by two different always

descending paths. So the watershed produces closed con-
tours, and finds exactly multiple points (intersection of
contours) which are of great importance in image analysis.

On the other hand, classical edge detectors like Canny's2
[5] solve the problem by estimating the normal # from the
gradient direction, i.e., by setting n = Vf (which is true on a
step edge, but not true on more complicated shapes and
especially at locations where many contours meet).

Finally, note that the watershed does not need the com-
plete gradient of f (Vf), but only its modulus (|| Vf |). This
feature is very important near contour junctions, where the
direction of the gradient computed with Canny’s method is
unreliable, yielding very few triple points in its contour
images. Some complex modifications have to be made in

2. Canny’s detector, or more exactly the extrema of the gradient in the di-
rection of the gradient, finds the zero crossings of Q(f) = (H Vf, V).

1169

order to detect the corner points correctly [7], [8]. On the
contrary, the watershed, using only the modulus of the
gradient, (which is reliable) gives triple points, accurately
positioned. This feature has been successfully applied for
corner detection in [17].

5.2 Noise Robustness

One kind of performance evaluation for a segmentation
algorithm is its small dependence to noise. Fig. 11 shows a
synthetic image with its watershed computed directly on it.
Due to the noise free image, all the watershed lines have the
same saliency and the four square shaped catchment basins
are very large. When adding a small negative Poisson noise,

we observe the birth of many small catchment basins cre-
ated by one pixel large regional minima corresponding to
negative noise. The noise has been chosen negative, because
at each modified point, it creates a small regional minimum
and, consequently, a new catchment basin. However, the
new added watershed lines have a very low saliency,
whereas the most contrasted watershed lines are very little
displaced. The small displacements we observe correspond
to noise pixels falling exactly on the watershed line. Also,
the junction point at the center of the image, where the four
major contours meet, is always preserved. Increasing the
noise values does not add new basins, but the-saliency of
their contours increases. Note however that the most salient

(e) U]

Fig. 11. Robustness of the dynamics of contours with respect to- noise.
(a) original noise .free image, (b) its watershed, (c) to (f) increasing
negative Poisson noise.
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contours, namely the desired contours, are still very little
affected. Finally, when the noise completely overwhelms
the signal (noise values similar to the signal values), the
most salient contours no longer really exist. In this case,
optimal linear smoothing techniques should be applied
prior to watershed extraction.

5.3 Real Image Segmentation

Let us now illustrate the concept of hierarchy on real im-
ages. Fig. 12 shows some indoor scene, where some of the
structures are very contrasted, whereas others are much
less so. These structures can be recognized on the saliency
map. The very low salient contours correspond to noise.
Note however that some structures like the upper part of
the desk exhibit a lower saliency than expected. This is due
to the criterion implemented by the watershed: the saliency
is governed by the altitude of the saddle point with respect
to the two neighboring catchment basins. The altitude of
this saddle point corresponds to a minimum on the contour
line. So, as soon as some parts of the contour are less con-
trasted, even for a few pixels (here at the left of the lamp),
the lower contrast value is propagated along the whole ob-
ject contour. In particular, objects which exhibit a low con-
trasted side are surrounded by a watershed line of low sali-
ency. This is due to the fact that the watershed always
closes the contours, yielding a region based segmentation.
Another example is presented in Fig. 13.

Fig. 12. Indoor scene and the saliency map obtained by the watershed
of the modulus of its gradient.

Fig. 13. Another example of the saliency map computed on an image
of a cook stove.

5.4 Finding n Objects

In this section, we give an example showing how to use the
dynamic hierarchical segmentation algorithm for shape
recognition.

Fig. 14 is a snapshot of an airplane. For military systems,
one of the key problems is airplane identification and atti-
tude estimation. With this in mind, we may construct a
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(a) Original image

(b) Dynamics of the contours

&

(c) Threshold at maximum of (d) The four regions of higher
the dynamics dynamics

Fig. 14. Some thresholds of the contour dynamics image.

three-dimensional model of the plane, which will be com-
pared to a database of three-dimensional models. More
simply, we may compare only the contour of the airplane to
a contour database, by extracting a small number of pa-
rameters which hopefully reflect the relevant features of the
shape [18], [19].

So, the first stage consists of finding the airplane con-
tours. Here the use of markers is very difficult: To obtain
the whole plane correctly, including the wings, the marker
should have the shape of the plane and, as a marker, it
should be included in the plane. In the same way, the use of
the highest dynamics will only extract one region in some
cases, and we will obtain only the airplane body (Fig. 14c).
We propose the use of the dynamic hierarchical segmenta-
tion to extract the right contours.

The image of the contour dynamics (Fig. 14b) clearly
shows that all the interesting contours are present in the wa-
tershed image. One has to introduce additional information
for extracting these right contours. For instance, if we choose
the object surface, the image of the contour dynamics will be
thresholded at a height corresponding to 7 catchment basins
of the expected surface. One can also consider applying crite-
ria for region growing [13], the initial step being a threshold
of the image of the contour dynamics. :

However, finding the airplane contour directly is futile.
On the other hand, one can guarantee that, in a small num-
ber of hypotheses, we will find this right segmentation. This
is done by successively merging regions to construct the
airplane shape. The algorithm is a good procedure for giv-
ing these hypotheses (four regions, Fig. 14d) and one can
identify the airplane.

In the same way, in the context of interactive segmenta-
tion, the hierarchical saliency map can be computed at
once. Then, the adjustment of the unique threshold, done
manually, allows a human operator to explore the various
possible segmentations.
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6  ALGORITHMS

6.1 Algorithms for Geodesic Reconstruction

6.1.1 Sequential Reconstruction

There exists a sequential algorithm [11], [23], [24] for geodesic
reconstruction which works by propagating information
downward in a raster scanning and then upward in an anti-
raster scanning. These raster and antiraster scannings have to
be iterated until stability is reached (usually no more than ten
complete image scannings). It is then very fast.

6.1.2 Beucher-Meyer Algorithm

The principle [4] is simple. The regional minima of g > f are
given as input. Starting from these minima, g is eroded pro-
gressively, while staying above f. The implementation of this
algorithm is easy with an ordered queue [4] or with a heap-
sort algorithm [1] (these two algorithms create a queue which
stays ordered when a new element is introduced): The pixels
are examined by increasing gray level of g. Graphically
speaking, the function g acts as a film which contracts on a
parcel which is the function f. The algorithm is optimal in the
sense that each point is processed only once.

6.1.3 New Algorithm
We now present a new algorithm for geodesic reconstruc-
tion which “dilates” f under g, and proceeds by flooding. It
is optimal in the same way as the Beucher-Meyer algorithm
presented above: Each point is processed only once. But
more important, it does not need the regional minima as an
input. The algorithm computes the regional minima during
the flooding, as in the classical watershed algorithm [25].

The basic idea is to use the flooding principle developed
by Vincent [23]. This principle is adapted to the geodesic
reconstruction of f under g, which corresponds to the geo-
desic erosion of g with respect to f.

In fact, we can reconstruct f by flooding the catchment
basins of f until they overflow, or until we meet g. When we
flood the catchment basins of f, two cases can appear.

e Fither the minimum of g on the basin is equal to the
height of flooding we have reached. In this case, we
stop flooding this basin (basin CBj; in Fig. 15a).

* Either we have filled the basin until one of its saddle
points (contact point between two basins) is reached.
This case is divided into two branches:

i) either the other basin has already stopped being
flooded. We then stop flooding the considered basin
at the height of the flooding (basin CB, in Fig. 15b);

ii) either the other basin has not yet been stopped. We
merge the two basins.

The watershed by flooding algorithm is easy to adapt to
this procedure which is fundamental for the computation of
constrained watersheds and for the computation of regional
maxima under constraints [22]. The advantage of this algo-
rithm with respect to the one of Beucher-Meyer is that the
new algorithm computes the regional minima directly.

6.2 Algorithm of Contour Valuation

We now give an-algorithm which computes the contour
valuation. During a first stage, we use Grimaud’s algorithm
[9] to-compute the watershed, the catchment basins and
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(a) At time ¢, the catchment basin CBg stops to be flooded.

(b) Final stage of the reconstruction.
Fig. 16. Geodesic reconstruction of funder g.

their dynamics. We then compute, for each point of the
watershed, a valuation by doing a kind of “gradient de-
scent” on the dynamics value of the catchment basins. It is
difficult to compute the valuation of the point during the
watershed construction, because when a point of the water-
shed is created, we do not dispose of the complete list of its
neighbors, and in particular triple points can end with a
wrong value. In fact, only one point on each arc of the wa-
tershed is of interest: the saddle point.

Let us briefly recall Grimaud’s dynamics algorithm
which is based on Vincent’s watershed algorithm. It con-
sists in flooding from the minima, level by level, until water
from one minimum meets water from another minimum.
The meeting point between two basins is a saddle point,
and is the point where we can compute the dynamics of
one of the two basins: the basin with the lowest minimum
floods the other one, and the dynamics of the basin with the
highest minimum is equal to the gray-value of the saddle
point minus the gray-value of the minima.



1172

(a) Example of function
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(b) Flooding list

Fig. 16. Determination of the basin which valuates the contour at which the pixel P belongs.

In our algorithm, the arc of the watershed containing this
saddle point is valued by this dynamics. Let us notice that,
in Grimaud’s algorithm, an arbitrary choice has to be made
if the two meeting basins have minima with the same gray-
value, but this choice does not change the value of the arc. This
is why we think that the dynamics of an arc is a better no-
tion than the dynamics of a catchiment basin.

" We now show how we can value the watershed arc. The
best way to explain the algorithm is to look at an example
(Fig. 16). Suppose we have applied Grimaud’s algorithm on
the function of Fig. 16a. We then have a list of watershed
pixels, and a list of catchment basins. During the flooding
process, we construct a list of catchment basins. Each
catchment basin keeps in memory:

e Its dynamics,
¢ A list of pointers on the catchment basins which have
flooded it. ‘

Let's have a look at a pixel p of the watershed (Fig. 16a).
This pixel is the connection point between two (or more,
three at most on the hexagonal grid) catchment basins. In
our example, they are catchment basins 6 and 4.

But basin 6 has been flooded by basin 5, and basin 5 has
been flooded by basin 3, which itself has been flooded by
basin 2. The basin which has flooded all the other basins is
the one with the lowest minimum, that is to say basin 1. In
the other way, basin 6 has been flooded by basin 3. This
flooding list is represented in Fig. 16b.

The pixel p is in fact flooded when basins 3 and 5 meet
and the dynamics of the contour can be computed. Another
way to choose the dynamics of the pixel p is to notice that
pixel p belongs to the interior of basin 3. So we can say that
the dynamics of pixel p is the highest dynamics of the ba-
sins. which precede basin 3 in the flooding list. So, all the
difficulty is to mark out basin 3. We propose a simple pro-
cedure for doing that operation. It consists of running
through the whole flooding list issued from the pixel p, and
in marking the basin by which we pass. The first basin
which has been passed over more than once contains the
pixel p in its interior, and is basin 3 in our example. So the
dynamics of the pixel p is the highest dynamics between
the dynamics of basins 5 and 6 (which precede basin 3 in
the flooding list), that is to say the dynamics of basin 5.

One could verify that the watershed arc which contains
pixel p disappears in a geodesic reconstruction of size equal
to the dynamics of basin 5.

7 CONCLUSION

Image segmentation is not a goal in itself. It should be done
by keeping in mind the real purpose of the image process-
ing. We have given an algorithm which is useful for inter-
active dynamics thresholding. The concept of dynamics of
contours allows the valuation of the contours produced by
the watershed. This resulting segmentation is identical to the
one obtained by watershedding the original gradient image
after a filtering by reconstruction with the same contrast
value. The advantage of the proposed algorithm is this : the
dynamic segmentation can be obtained for different con-
trast values by simply thresholding the valuated watershed
image. For instance it enables us to answer the question
“which are the n most contrasted objects?” by a simple
thresholding of the image (a problem which can be solved
in a more complicated way by examining the histogram of
dynamics of the image minima).

An example of image processing is identification. It is
almost impossible to obtain the right segmentation for
identification using only segmentation tools based on con-
trast. But we can guarantee that, in a small number of hy-
potheses, we will find this right segmentation, which can be
extracted by artificial intelligence tools (using for instance a
database). We expect our algorithm to be a good procedure
for giving these hypotheses.

8 NOTATIONS

a,b points in the R? plane

f g images, i.e., functions from R to R

Vf gradient of f i.e., vector of first derivatives
H; Hessian of f, i.e., matrix of second derivatives
(0 inner product

fag  pointwise minimum of fand g

fv /8 pointwise maximum of f and g

[fJ the upper threshold of fat level &, i, 1€ R" | fla) <k}

[fln the lower threshold of fatlevel i, ie., {ae R | fla) > 7}
f®B  dilation, i.e, max{f(y) | ye B,}

fOB  erosion, e, min{f(y) | y e B,}

D;’( f)  geodesic reconstruction of f into g by dilation f<g
E;( f)  geodesic reconstruction of f over g by erosion (f = g)

dpa, b) geodesic distance in M (Definition 2.1)
SKIZ 4(B) skeleton by influence zones of B according to the
geodesic distance in A (Definition 2.2)

influence zones of B according to the geodesic

distance in A (Definition 2.2)

Reg Miny, (f) regional minima of f ie., connected plateau
from which it is impossible to reach a point of
lower gray level by an always descending path

I1Z4(B)
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