
HAL Id: hal-00622110
https://hal.science/hal-00622110v1

Submitted on 11 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Building the component tree in quasi-linear time
Laurent Najman, Michel Couprie

To cite this version:
Laurent Najman, Michel Couprie. Building the component tree in quasi-linear time. IEEE Transac-
tions on Image Processing, 2006, 15 (11), pp.3531-3539. �hal-00622110�

https://hal.science/hal-00622110v1
https://hal.archives-ouvertes.fr

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. ?, NO. ?, JANUARY 200? 1

Building the component tree in quasi-linear time
L. Najman and M. Couprie

Institut Gaspard-Monge

Groupe ESIEE, Laboratoire A2SI

BP99, 93162 Noisy-le-Grand Cedex France

{l.najman,m.couprie}@esiee.fr

Abstract— The level sets of a map are the sets of points with
level above a given threshold. The connected components of the
level sets, thanks to the inclusion relation, can be organized in
a tree structure, that is called the component tree. This tree,
under several variations, has been used in numerous applications.
Various algorithms have been proposed in the literature for
computing the component tree. The fastest ones (considering the
worst-case complexity) have been proved to run in O(n ln(n)).
In this paper, we propose a simple to implement quasi-linear
algorithm for computing the component tree on symmetric
graphs, based on Tarjan’s union-find procedure. We also propose
an algorithm that computes the n most significant lobes of a map.

Index Terms— Component tree, connected operators, mathe-
matical morphology, classification, disjoint sets, union-find, image
and signal processing, filtering

I. INTRODUCTION

The level sets of a map are the sets of points with level

above a given threshold. The connected components of the

level sets, thanks to the inclusion relation, can be organized

in a tree structure, that is called the component tree. The

component tree captures some essential features of the map.

It has been used (under several variations) in numerous

applications among which we can cite: image filtering and

segmentation [12], [11], [7], [14], video segmentation [21],

image registration [16], [18], image compression [21] and

data visualization [5]. This tree is also fundamental for the

efficient computation of the topological watershed introduced

by M. Couprie and G. Bertrand [7], [8], [3].

While having been (re)discovered by several authors for

image processing applications, the component tree concept

was first introduced in statistics [26], [13] for classification and

clustering. For image processing, the use of this tree in order to

represent the “meaningful” information contained in a numer-

ical function can be found in particular, in a paper by Hanusse

and Guillataud [12], [11]; the authors claim that this tree can

play a central role in image segmentation, and suggest a way

to compute it, based on an immersion simulation. Several

authors, such as Vachier [25], Breen and Jones [4], Salembier

et al. [21] have used some variations of this structure in order

to implement efficiently some morphological operators (e.g.

connected operators [22], granulometries, extinction functions,

dynamics [2]).

Let us describe informally an “emergence” process that will

later help us designing an algorithm for building the compo-

nent tree. Using topographical references, we see the map as

the surface of a relief, with the level of a point corresponding

to its altitude. Imagine that the surface is completely covered

by water, and that the level of water slowly decreases. Islands

(regional maxima) appear. These islands form the leafs of the

component tree. As the level of water decreases, islands grow,

building the branches of the tree. Sometimes, at a given level,

several islands merge into one connected piece. Such pieces

are the forks of the tree. We stop when all the water has

disappeared. The emerged area forms a unique component:

the root of the tree.

Various algorithms have been proposed in the literature

for computing the component tree [4], [21], [15], the latter

reference also contains a discussion about time complexity

of the different algorithms. The fastest ones (considering the

worst-case complexity) have been proved to run in O(n ln(n)),
where n denotes the number of pixels of the image. In this

paper1, we propose a quasi-linear algorithm for computing

the component tree of functions defined on general symmetric

graphs, based on Tarjan’s union-find [24] procedure. More

precisely, our algorithm runs in O(N × α(N)) where N
denotes the size of the graph (number of vertices + number

of edges) and α is a very slow-growing “diagonal inverse” of

the Ackermann’s function (we have α(1080) ≈ 4). We would

like to emphasize that this algorithm is simple to implement.

The paper is organised as follows: we first recall the defini-

tions of some basic graph notions and define the component

tree in this framework. We explain the disjoint set problem,

together with the solution proposed by Tarjan. Using a disjoint

set fomulation, we present our component tree algorithm,

and we describe its execution on an example. We then show

that the proposed algorithm is quasi-linear with respect to

the size of the graph, and compare it to one of the most

cited component tree algorithm. We illustrate the use of

the component tree for automatic detection of some image

features, based on a unique parameter which is the number of

features that we expect to find in the image.

II. VERTEX-WEIGHTED GRAPH AND COMPONENT TREE

A. Basic notions for graphs

Let V be a finite set of vertices (or points), and let P(V)
denote the set of all subsets of V . Throughout this paper,

E denotes a binary relation on V (that is, a subset of the

cartesian product V × V) which is anti-reflexive ((x, x) /∈ E)

and symmetric ((x, y) ∈ E ⇔ (y, x) ∈ E). We say that the

1A preliminary and reduced version of this paper appeared in conference
proceedings as [19]. This work has been partially supported by the CNRS.

2 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. ?, NO. ?, JANUARY 200?

pair (V,E) is a graph, and the elements of E are called edges.

We denote by Γ the map from V to P(V) such that, for all

x ∈ V , Γ(x) = {y ∈ V |(x, y) ∈ E}. For any point x, the set

Γ(x) is called the neighborhood of x. If y ∈ Γ(x) then we

say that y is a neighbor of x and that x and y are adjacent.

Let X ⊆ V . Let x0, xn ∈ X . A path from x0 to xn in X
is a sequence π = (x0, x1, . . . , xn) of points of X such that

xi+1 ∈ Γ(xi), with i = 0 . . . n− 1. Let x, y ∈ X , we say that

x and y are linked for X if there exists a path from x to y
in X . We say that X is connected if any x and y in X are

linked for X . We say that Y ⊆ V is a connected component

of X if Y ⊆ X , Y is connected, and Y is maximal for these

two properties (i.e., Y = Z whenever Y ⊆ Z ⊆ X and Z is

connected).

In the following, we assume that the graph (V,E) is con-

nected, that is, V is made of exactly one connected component.

B. Basic notions for vertex-weighted graphs

We denote by F(V,D), or simply by F , the set composed

of all maps from V to D, where D can be any finite set

equipped with a total order (e.g., a finite subset of the set of

rational numbers or of the set of integers). For a map F ∈ F ,

the triplet (V,E, F) is called a (vertex-)weighted graph. For

a point p ∈ V , F (p) is called the weight or level of p.

Let F ∈ F , we define Fk = {x ∈ V |F (x) ≥ k} with

k ∈ D; Fk is called a (cross-)section of F . A connected

component of a section Fk is called a (level k) component

of F . A level k component of F that does not contain a level

(k +1) component of F is called a (regional) maximum of F .

We define kmin = min {F (x)|x ∈ V } and kmax = max

{F (x)|x ∈ V }, which represent respectively, the minimum

and the maximum level in the map F .

Although the notions we are dealing with in this paper are

defined for general graphs, we are going to illustrate our work

with the case of 2D images that we model by weighted graphs.

Let Z denote the set of integers. We choose for V a subset of

Z
2. A point x ∈ V is defined by its two coordinates (x1, x2).

We choose for E the 4-connected adjacency relation defined

by E = {(x, y) ∈ V × V ; |x1 − y1| + |x2 − y2| = 1}.

Fig. 1.a shows a weighted graph (V,E, F) and four cross-

sections of F , between the level kmin = 1 and the level kmax =
4. The set F4 is made of two connected components which

are regional maxima of F .

C. Component Tree

From the example of Fig. 1.a, we can see that the connected

components of the different cross-sections may be organized,

thanks to the inclusion relation, to form a tree structure (see

also [2]).

Let F ∈ F . For any component c of F , we set h(c) =
max{k|c is a level k component of F}. Note that h(c) =
min{F (x)|x ∈ c}. We define C(F) as the set composed of all

the pairs [k, c], where c is a component of F and k = h(c). We

call altitude of [k, c] the number k. Remark that [k1, c] ∈ C(F)
and [k2, c] ∈ C(F) implies k1 = k2, in other words, any two

distinct elements of C(F) correspond to distinct sets of points.

1 1 1 1 1 1 1

1 3 3 2 3 4 1

1 3 3 2 3 4 1

1 1 1 1 1 3 1

1 3 3 2 1 1 1

1 4 3 2 2 2 1

1 1 1 1 1 1 1

F

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

F1

0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 1 1 1 1 0

0 0 0 0 0 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 0 0 0 0 0

F2
0 0 0 0 0 0 0

0 1 1 0 1 1 0

0 1 1 0 1 1 0

0 0 0 0 0 1 0

0 1 1 0 0 0 0

0 1 1 0 0 0 0

0 0 0 0 0 0 0

F3

0 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 1 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

F4

(a)

α1

α2 α3

α4 α5 α6

α8α7

Level 1

Level 2

Level 3

Level 4

(b)

α1 α1 α1 α1 α1 α1 α1

α1 α4 α4 α2 α5 α7 α1

α1 α4 α4 α2 α5 α7 α1

α1 α1 α1 α1 α1 α5 α1

α1 α6 α6 α3 α1 α1 α1

α1 α8 α6 α3 α3 α3 α1

α1 α1 α1 α1 α1 α1 α1

(c)

Fig. 1. (a) A vertex-weighted graph (V, E, F) and its cross-sections at
levels 1, 2, 3, 4. (b) The component tree of F . (c) The associated component
mapping. The component at level 1 is called α1, the two components at level
2 are called α2 and α3 (according to the usual scanning order), and so on.

Let F ∈ F , let [k1, c1], [k2, c2] be distinct elements of C(F).
We say that [k1, c1] is the parent of [k2, c2] if c2 ⊂ c1 and if

there is no other [k3, c3] in C(F) such that c1 ⊂ c3 ⊂ c2.

In this case we also say that [k2, c2] is a child of [k1, c1].
With this relation “parent”, C(F) forms a directed tree that

we call the component tree of F , and that we will also denote

by C(F) by abuse of terminology. Any element of C(F) is

called a node. An element of C(F) which has no child (a

maximum of F) is called a leaf, the node which has no parent

(i.e., [kmin, V]) is called the root.

We define the component mapping M as the map which

associates to each point p ∈ V the node [k, c] of C(F) such

that p ∈ c and F (p) = k. The component mapping is necessary

for using the component tree in applications.

Fig. 1.b shows the component tree of the weighted graph

depicted in Fig. 1.a, and Fig. 1.c shows the associated com-

ponent mapping. The component at level 1 is called α1, the

two components at level 2 are called α2 and α3 (according to

the usual scanning order), and so on.

NAJMAN et al.: BUILDING THE COMPONENT TREE IN LINEAR TIME 3

III. COMPONENT TREE QUASI-LINEAR ALGORITHM

A. Disjoint Sets

The disjoint set problem consists in maintaining a collection

Q of disjoint subsets of a set V under the operation of union.

Each set X in Q is represented by a unique element of X ,

called the canonical element. In the following, x and y denote

two distinct elements of V . The collection is managed by three

operations:

• MakeSet(x): add the set {x} to the collection Q, pro-

vided that the element x does not already belongs to a

set in Q.

• Find(x): return the canonical element of the set in Q
which contains x.

• Link(x, y): let X and Y be the two sets in Q whose

canonical elements are x and y respectively (x and y
must be different). Both sets are removed from Q, their

union Z = X ∪Y is added to Q and a canonical element

for Z is selected and returned.

Tarjan [24] proposed a very simple and very efficient

algorithm called union-find to achieve any intermixed se-

quence of such operations with a quasi-linear complexity.

More precisely, if m denotes the number of operations and

n denotes the number of elements, the worst-case complexity

is O(m×α(m,n)) where α(m,n) is a function which grows

very slowly, for all practical purposes α(m,n) is never greater

than four2.

The implementation of this algorithm is given below in

procedure MakeSet and functions Link and Find. Each set

of the collection is represented by a rooted tree, where the

canonical element of the set is the root of the tree. To each

element x is associated a parent Par(x) (which is an element)

and a rank Rnk(x) (which is an integer). The mappings ’Par’

and ’Rnk’ are represented by global arrays in memory. One of

the two key heuristics to reduce the complexity is a technique

called path compression, that is aimed at reducing, in the long

run, the cost of Find. It consists, after finding the root r of the

tree which contains x, in considering each element y of the

parent path from x to r (including x), and setting the parent

of y to be r. The other key technique, called union by rank,

consists in always choosing the root with the greatest rank to

be the representative of the union while performing the Link

operation. If the two canonical elements x and y have the same

rank, then one of the elements, say y, is chosen arbitrarily to

be the canonical element of the union: y becomes the parent of

x; and the rank of y is incremented by one. The rank Rnk(x) is

a measure of the depth of the tree rooted in x, and is exactly

the depth of this tree if the path compression technique is

not used jointly with the union by rank technique. Union by

rank avoids creating degenerate trees, and helps keeping the

depth of the trees as small as possible. For a more detailed

explanation and complexity analysis, see Tarjan’s paper [24].

Procedure MakeSet(element x)

Par(x) := x; Rnk(x) := 0;

2The precise definition of α, a “diagonal inverse” of the Ackermann’s
function, involves notions which are not in the scope of this paper, it can
be found in [24].

Function element Find(element x)

if (Par(x) 6= x) then Par(x) := Find(Par(x));
return Par(x);

Function element Link(element x, element y)

if (Rnk(x) > Rnk(y)) then exchange(x, y);

if (Rnk(x) == Rnk(y)) then Rnk(y) := Rnk(y) + 1;

Par(x) := y;

return y;

B. Illustration of union-find: labelling the connected compo-

nents

We can illustrate the use of the union-find algorithm on the

classical problem of finding the connected components of a

subset X of a graph (V,E). Algorithm 1 (ConnectedCom-

ponents) is given below. For a set X , this algorithm returns

a map M that gives for each point p, the canonical element

M(p) of the connected component of X which contains p.

Algorithm 1: ConnectedComponents

Data: (V,E) - graph

Data: A set X ⊆ V
Result: M - map from X to V
foreach p ∈ X do MakeSet(p);1

foreach p ∈ X do2

compp := Find(p);3

foreach q ∈ Γ(p) ∩ X do4

compq := Find(q);5

if (compp 6= compq) then6

compp := Link(compq, compp);7

foreach p ∈ X do M(p) := Find(p);8

During the first pass (loop 1), for each point p of the set X ,

the set {p} is added to the collection Q of disjoint subsets.

Then, loop 2 processes all points of X in an arbitrary order.

For each point p, we first find the canonical element of the set

it belongs to (line 3). Then, for each neighbor q of p such that

q ∈ X (line 4), we find the canonical element of the set which

contains q (line 5). If p and q are not already in the same set,

that is if the two canonical elements differ (line 6), then the

corresponding sets are merged (line 7), and one of the two

canonical elements is chosen to be the canonical element of

the merged set. At the end, a simple pass on all the elements

of X (loop 8) builds the map M .

Note that, if the vertices can be processed in some very specific

order (as the scanline order), the ConnectedComponents algo-

rithm becomes linear [10], [9]. Unfortunately, such a specific

strategy is not applicable for the component tree algorithm,

where the scanning order depends on the altitudes of the

vertices.

C. Component tree algorithm: high-level description

We are now ready to introduce our quasi-linear algorithm for

building the component tree C(F) from a weighted graph G =
(V,E, F).

4 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. ?, NO. ?, JANUARY 200?

The algorithm simulates the emergence process described

in the introduction, and maintains several data structures. The

main one is a forest, which initially consists of a set of mutu-

ally disconnected nodes, each node being associated (initially)

to a single vertex of the graph G. During the emergence

process, which is realized by scanning all the vertices of G
by decreasing order of altitude, the vertices which belong to

a same component and have the same altitude are grouped

together thanks to a disjoint set collection called Qnode. The

canonical element of such a set is called a canonical node.

Notice that the disjoint set collection Qnode has essentially the

same function as the disjoint set collection used by algorithm

ConnectedComponents (sec. III-B).

Simultaneously, the canonical nodes are progressively

linked together to form partial trees, each partial tree rep-

resents intuitively an emerged island. At the end of the

execution, a unique tree groups all the canonical nodes, each

one of these nodes represents a component of G, and the whole

tree constitutes the component tree of G. To reach a quasi-

linear time complexity, we have to maintain another collection

Qtree of disjoint sets, and an auxiliary map called lowestNode.

Given an arbitrary node P , the collection Qtree allows to find,

in quasi-constant time, a node T which “represents” the partial

tree which contains P . Due to the particular management of

Qtree, this node T cannot be guaranteed to be precisely the root

of the partial tree, this is why we also need to maintain the

map lowestNode which associates, to each canonical element

of Qtree, the root of the corresponding partial tree.

D. Component tree algorithm: detailed view

Algorithm 2 (BuildComponentTree) is given below. It uses

two auxiliary functions MakeNode and MergeNodes. To

represent a node of C(F), we use a structure called node

containing the level of the node, and the list of nodes which are

children of the current node. For building the component tree,

we do not need the reverse link, that is we do not need to know

the parent of a given node, but let us note that such information

is useful for applications, and can easily be obtained in a

linear-time post-processing step. In what follows, we are going

to show how to compute some attributes associated to each

node of the component tree; we thus need that the structure

node contains some fields that store those attributes, namely

level, area and highest. We defer both the precise

definition of the attributes and the explaination on how they

are computed until section VI, in order to concentrate on the

component tree itself.

Function node MakeNode(int level)

Allocate a new node n with an empty list of children;

n→ level := level; n→ area := 1; n→ highest := level;

return n;

After a preprocessing (line 1, achievable in linear time for

short integers [6]) which sorts the points by decreasing order of

level and which prepares the two union-find implementations

(line 2), we process the points, starting with the highest ones.

Function int MergeNodes(int node1, int node2)

tmpNode := Linknode(node1,node2);

if (tmpNode == node2) then
Add the list of children of nodes[node1]

to the list of children of nodes[node2];

tmpNode2 := node1;
else

Add the list of children of nodes[node2]

to the list of children of nodes[node1];

tmpNode2 := node2;

nodes[tmpNode]→area :=
nodes[tmpNode]→area + nodes[tmpNode2]→area;

nodes[tmpNode]→highest :=
max(nodes[tmpNode]→highest,

nodes[tmpNode2]→highest);

return tmpNode;

Let us suppose that we have processed a number of levels.

We have built all nodes of the component tree that are above

the current level, and we are building the nodes with exactly

the current level. For a given point p of the current level

(line 3), we know (through the collection Qtree) the partial tree

the node p belongs to (line 4). In each partial tree, there is only

one node with the current level, that we can obtain through

the auxiliary map lowestNode. We then find the associated

canonical node (line 5).

We then look at each neighbor q of p with a level greater

or equal to the current one (loop 6). Note that, as the graph

is symmetric, the “linking operations” between two points are

done when one of the two points is processed as a neighbor

of the other. Thus, we can use the order of scanning of the

points, and we only need to examine the “already processed”

neighbors of p. Such a neighbor q satisfies F (q) ≥ F (p).

Exactly as we have done for the point p, we search for the

canonical node corresponding to the point q (lines 7-8). If the

canonical node of p and the canonical node of q differ, that is

if the two points are not already in the same node, we have

two possible cases:

• either the two canonical nodes have the same level;

this means that these two nodes are in fact part of

the same component, and we have to merge the two

nodes (line 9 and function MergeNodes). The merging

of nodes of same level is done through the collection

Qnode of disjoint sets. The merging relies on the fact

that the Linknode function always chooses one of the two

canonical elements of the sets that are to be merged as

the canonical element of the merged set. This fact is used

in the sequel of the function.

Once the merging has been done, one of the nodes is

chosen to be the canonical element of the disjoint set.

Observe that the other node is not needed anymore.

Indeed, we only have to know to which disjoint set this

last node belongs to, and the answer to this question is

given by the Findnode function.

• or the canonical node of q is strictly above the current

level, and thus this node becomes a child of the current

NAJMAN et al.: BUILDING THE COMPONENT TREE IN LINEAR TIME 5

Algorithm 2: BuildComponentTree

Data: (V,E, F) - vertex-weighted graph with N points.

Result: nodes - array [0 . . . N − 1] of nodes.

Result: Root - Root of the component tree

Result: M - map from V to [0 . . . N − 1] (component mapping).

Local: lowestNode - map from [0 . . . N − 1] to [0 . . . N − 1].

Sort the points in decreasing order of level for F ;1

foreach p ∈ V do {MakeSettree(p); MakeSetnode(p); nodes[p]:= MakeNode(F (p)); lowestNode[p] := p;};2

foreach p ∈ V in decreasing order of level for F do3

curTree := Findtree(p);4

curNode := Findnode(lowestNode[curTree]);5

foreach already processed neighbor q of p with F (q) ≥ F (p) do6

adjTree := Findtree(q);7

adjNode := Findnode(lowestNode[adjTree]);8

if (curNode 6= adjNode) then

if (nodes[curNode]→level == nodes[adjNode]→level) then

curNode := MergeNodes(adjNode, curNode);9

else

// We have nodes[curNode]→level < nodes[adjNode]→level

nodes[curNode]→addChild(nodes[adjNode]);10

nodes[curNode]→area := nodes[curNode]→area + nodes[adjNode]→area;11

nodes[curNode]→highest := max(nodes[curNode]→highest, nodes[adjNode]→highest);12

curTree := Linktree(adjTree, curTree);13

lowestNode[curTree] := curNode;14

Root := lowestNode[Findtree(Findnode(0))] ;15

foreach p ∈ V do M(p) := Findnode(p);16

node (line 10).

In both cases, we have to link the two partial trees, this is done

using the collection Qtree (line 13). We also have to keep track

of the node of lowest level for the union of the two partial

trees, that we store in the array lowestNode (line 14).

At the end of the algorithm, we have to do a post-processing

to return the desired result. The root of the component tree can

easily be found (line 15) using the array lowestNode and the

two disjoint set structures Qtree and Qnode. The component

mapping M can be obtained using the disjoint set Qnode

(loop 16).

IV. ILLUSTRATION OF THE ALGORITHM

Let us illustrate the work of the algorithm on an example.

Consider the weighted graph of Fig. 2.a. The points are la-

belled according to their usual lexicographical order (Fig. 2.b).

At the beginning of the sixth step, we have already con-

structed parts of the component tree (Fig. 3.b). We show in

Fig. 3.a the maps Partree, Parnode, and lowestNode. For the

maps Partree and Parnode, the canonical elements appear in

white. It should be noted that the lowestNode mapping is

only used for the canonical elements of Partree: this explains

why the values of lowestNode for other elements (in grey)

are not updated.

We are going to process nodes at level 50. The first node

at level 50 is node 3. Node 0 is a neighbor of node 3. The

canonical node corresponding to 0 is node 1, the level of which

110 90 100

50 50 50

40 20 50

50 50 50

120 70 80

0 1 2

3 4 5

6 7 8

9 10 11

12 13 14

(a) (b)

Fig. 2. (a) Original vertex-weighted graph. (b) Points are labelled according
to the usual lexicographic order, but they will be processed by decreasing
level (that is: 12, 0, 2, 1, 14, 13, 3, 4, 5, 8, 9, 10, 11, 6, 7).

1 1 1

3 4 5

6 7 8

9 10 11

13 13 13

0 1 2

3 4 5

6 7 8

9 10 11

12 13 14

0 1 2

3 4 5

6 7 8

9 10 11

12 13 14

Partree Parnode lowestNode
(a)

[1] 90

[0] 110 [2] 100

[13] 70

[12] 120 [14] 80

(b)

Fig. 3. Beginning of step 6. (a) State of the maps Partree, Parnode and
lowestNode. (b) Partial trees constructed.

6 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. ?, NO. ?, JANUARY 200?

1 3 3

3 3 3

6 7 3

9 9 11

13 9 13

0 1 2

3 3 3

6 7 3

9 9 11

12 13 14

0 1 2

3 4 5

6 7 8

9 10 11

12 13 14

Partree Parnode lowestNode
(a)

[3] 50

[1] 90

[0] 110 [2] 100

[9] 50

[13] 70

[12] 120 [14] 80

(b)

Fig. 4. Beginning of step 11. (a) State of the maps Partree, Parnode and
lowestNode. (b) Partial trees constructed.

1 3 3

9 3 3

6 7 3

9 9 3

13 9 13

0 1 2

9 3 3

6 7 3

9 9 3

12 13 14

0 1 2

3 4 5

6 7 8

9 10 11

12 13 14

Partree Parnode lowestNode
(a)

[9] 50

[1] 90 [13] 70

[0] 110 [2] 100 [12] 120 [14] 80

(b)

Fig. 5. End of step 11. (a) State of the maps Partree, Parnode and
lowestNode. (b) Partial trees constructed.

is 90. Thus node 3 becomes the parent of node 1. Then, node 3

is linked for Qnode succesively with nodes 4, 5 and 8. Then

node 9 is examined, and is linked for Qnode with node 10,

the node 9 being chosen as the canonical one. Node 9 is

a neighbour of node 12, the canonical element of which is

node 13 (level 70). Thus, node 13 becomes a child of node 9.

We are then at the beginning of step 11, and this is illustrated

on Fig. 4.

Node 11 is a neighbor of both nodes 8 and 10. The canonical

node of node 8 is node 3 at level 50. Thus, node 11 and node 3

are linked for Qnode, and node 3 is chosen as the canonical

one. The canonical node of node 10 is node 9 at level 50.

Thus, nodes 9 and 3 are merged, that is, the corresponding

partial trees are merged into a single tree. Node 9 is chosen

as the canonical element of the level 50 component, and the

children of node 3 are transfered to node 9. We are in the

situation depicted in Fig. 5.

We then process node 6 at level 40, which becomes the

parent of node 9 at level 50. Node 9 and node 6 are linked

for Qtree, and node 9 is chosen as the canonical element

for the partial tree. The lowest node in this partial tree is

1 3 3

9 9 3

9 9 9

9 9 9

13 9 9

0 1 2

9 3 3

6 7 3

9 9 3

12 13 14

0 1 2

3 4 5

6 7 8

7 10 11

12 13 14

Partree Parnode lowestNode
(a)

[6] 40[7] 20

[9] 50

[1] 90 [13] 70

[0] 110 [2] 100 [12] 120 [14] 80

(b)

Fig. 6. End of step 14. (a) State of the map Partree, Parnode and lowestNode.
(b) Component tree.

node 6 at level 40. We use the map lowestNode to store

that information, by setting lowestNode[9] := 6. Then we

process node 7 at level 20, which becomes the parent of

node 6. Node 9 is chosen as the canonical element for the

partial tree, and thus we have to store the lowest node by

setting lowestNode[9] := 7. There is no node lower than 20,

and thus, the component tree is built. The final situation is

depicted in Fig. 6.

The collection Qtree of disjoint sets is not useful anymore:

indeed, each node of the graph has been examined, and they

are all linked for Qtree, the canonical element being the node 9.

The root of the component tree is the node 7. Each of the

canonical elements of the collection Qnode corresponds to a

component of F : observe in particular the level 50, whose

canonical node is node 9. The collection Qnode can be used to

compute the component mapping M .

V. COMPLEXITY ANALYSIS

Let n denote the number of points in V , and let m denote

the number of edges of the graph (V,E).
The sorting of the points (line 1) can be done in O(n)

if the weigths are small integers (counting sort [6]), and in

O(n log(log(n))) if each weight can be stored in a machine

memory word (long integers or floating point numbers [1]).

Loop 2 is the preparation for the union-find algorithm. It is

obviously O(n).
In the function MergeNodes, the merging of the lists of

children can be done in constant time, because we can merge

two lists by setting the first member of one list to be the one

that follows the last member of the other list. This requires the

two lists to be disjoint, which is the case (we are dealing with

disjoint sets), and an adequate representation for lists (chained

structure with pointers on both first and last element).

The amortized complexity of line 6 is equal to the number m
of edges of the graph (V,E). The amortized complexity of all

calls to the union-find procedures is quasi-linear (in the sense

explained in section III-A) with respect to m. The building of

the component mapping M is obviously linear.

NAJMAN et al.: BUILDING THE COMPONENT TREE IN LINEAR TIME 7

0 0 0 69 0 50 0 59 0 55

37 0 25 0 20 0 62 0 34 0

0 84 0 6 0 40 0 87 0 31

98 0 8 0 90 0 10 0 92 0

0 50 0 87 0 33 0 69 0 55

36 0 3 0 85 0 9 0 87 0

0 44 0 43 0 60 0 92 0 66

39 0 43 0 65 0 92 0 94 0

0 30 0 59 0 78 0 33 0 80

94 0 6 0 85 0 97 0 88 0

Fig. 7. An example of an artificially generated image of size N*N, where
values of pixel (x1, x2) with x1 +x2 odd are uniformly distributed between
0 and N ∗N , and where the other half of the pixels are 0. Using a series of
such images, one can verify that the component tree algorithm of Salembier
et al. is quadratic.

Thus the complexity of the algorithm 2 (BuildComponent-

Tree) is quasi-linear if the sorting step is linear.

Note that the memory for the lowestNode array is not

necessary: we can easily modify the code so that we store

the content of lowestNode as negative values in Partree for the

canonical element of Qtree. In this case, for an element x ∈ V ,

Findtree(x) still returns the canonical element c for Qtree, but

lowestNode(c) = −Partree(c). The modifications that have to

be made to MakeSet, to Find, and to BuildComponentTree

are straightforward and do not change the complexity of the

algorithm.

For comparison purpose, one can prove that the most cited

component tree algorithm, the Salembier et al. algorithm [21]

is quadratic. More precisely, although there is no complexity

analysis in [21], one can verify that the Salembier et al.

algorithm has a worst-case time complexity in O(n× h + m)
where h is the number of levels of the image. The worst

case can be attained using a series of artificially generated

images such that half of the pixels are maxima of the images

(an example of an image of the series is provided in Fig. 7).

However, this worst case is rare in practice. We observe that,

when the level of a point is a short integer (between 0 and

255), the Salembier et al. algorithm is generally twice as fast

as our algorithm. This can be explained by the fact that, for

each point of the image, we have to access the two union-find

data structures, while this is not the case for the Salembier et

al. algorithm.

VI. ATTRIBUTES

A major use of the component tree is for image filtering:

for example, we may want to remove from an image the

“lobes” that are not “important enough” or “negligible”. Such

an operation is easy to do by simply removing the “negligible”

components of the component tree. To make such an idea

practicable, it is necessary to quantify the relative importance

of each node of the component tree. We can do that by

computing some attributes for each node.

Among the numerous attributes that can be computed, three

are natural: the height, the area, and the volume (Fig. 8).

Let [k, c] ∈ C(F). We define

height([k, c]) = max{F (x) − k + 1|x ∈ c}

area([k, c]) = card(c)

h

Height

a

Area

v

Volume

Fig. 8. Illustration of the height, the area and the volume of a component.

volume([k, c]) =
∑

x∈c

(F (x) − k + 1)

The area is easy to compute while building the component

tree. Each time two components merge (i.e. in the function

MergeNodes) or each time a component is declared the parent

of another one (i.e. line 11 of algorithm 2 BuildComponent-

Tree), we keep as the new area the sum of the areas of the

two components.

For computing the highest level in the component, we do

as we did for the area, replacing the sum by the maximum

(see line 12 of algorithmm 2 BuildComponentTree and the

function MergeNodes). From this highest level, the height of

a component n can easily be computed by setting height(n) =
(n→highest) − (n→level)+1.

To compute the volume, we first need the area. We then

apply the recursive function ComputeVolume on the root of

the tree. The complexity of this function is linear with respect

to the number of nodes.

Function int ComputeVolume(int n)

vol := nodes[n]→area;

foreach c child of nodes[n] do
vol := vol + ComputeVolume(c) +

c→area * (c→level - nodes[n]→level);

nodes[n]→volume := vol ;

return vol;

VII. EXAMPLE OF APPLICATION AND CONCLUSION

We have mentioned a simple use of the component tree for

filtration (removing nodes of the tree whose attribute is below

a given threshold). A more advanced use consists in finding

the most significant lobes of a given weighted graph F . More

precisely, we want to find the N most significant components

with respect to either the height, area or volume criterion.

By using the tree, this task reduces to the search of the N
nodes that have the largest attribute values and are not bound

with each other (even transitively) by the inclusion relation.

Algorithm 3 (Keep_N_Lobes) performs this task. Its time

complexity is in O(sort(n) + m), where m is the number of

vertices in the graph, n is the number of component tree nodes

and sort(n) is the complexity of the sorting algorithm. At the

end of the algorithm, the remaining leaves (more precisely, the

pixels which are associated to these leaves) mark the desired

significant lobes. For this algorithm, each node must include

fields to store its parent and its number of children (but the

list of children of a given node is not necessary).

Fig. 9 illustrates this algorithm. Fig. 9.a is an image of cell,

in which we want to extract the ten bright lobes. Fig. 9.b shows

8 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. ?, NO. ?, JANUARY 200?

Algorithm 3: Keep_N_Lobes

Data: A vertex-weighted graph (V,E, F), its component

tree T with attribute value for each node, and the

associated component mapping M
Data: The number N of wanted lobes.

Result: The filtered map F
Sort the nodes of T by increasing order of1

attribute value;

Q := ∅; L := number of leaves in T ;2

forall n do nodes[n]→mark := 0;3

while L > N do4

Choose a (leaf) node c in T with smallest5

attribute value;

p := nodes[c]→parent ;6

nodes[p]→nbChildren := nodes[p]→nbChildren-1;7

if (nodes[p]→nbChildren > 0) then L := L-1;8

nodes[c]→mark := 1 ; Q := Q ∪ {c};9

while ∃c ∈ Q do10

Q := Q \ {c}; RemoveLobe(c);11

foreach x ∈ V do F (x) := nodes[M[x]]→level;12

Function int RemoveLobe(int n)

if (nodes[n]→mark == 1) then
nodes[n] := nodes[RemoveLobe(nodes[n]→parent)];

return n;

that the image 9.a contains numerous maxima. Fig. 9.c is the

filtered image obtained by using algorithm 3 with the volume

attribute and with parameter value 10, and Fig. 9.d shows the

maxima of this filtered image. Note that a similar result could

be obtained with this image by performing attribute based

operations using several volume threshold values, following

e.g. a dichotomic method, until the desired number of maxima

is reached. This latter approach is not only less efficient

than the proposed algorithm, but it may also fail to find the

precise number of maxima required by the user, in the case of

components having precisely the same attribute value. In such

cases, the proposed algorithm always makes a choice in order

to fulfill the user’s requirement.

The component tree allows the efficient implementation of

complex image and signal filtering, based for example on

the use of criteria such as area, volume or depth, or even

the use of non-increasing criteria [21]. Although some of

these filters may be computed using specific and sometimes

(a) (b) (c) (d)

Fig. 9. (a) Original image. (b) Maxima of image (a), in white. (c) Filtered
image. (d) Maxima of image (c), which correspond to the ten most significant
lobes of the image (a).

faster algorithm (in particular area filtering [17]), using the

component tree is in general the simplest and the most efficient

way to compute these filters. Moreover, once the component

tree of a function is computed, any of these filters, with any

parameter value, can be computed at a very low cost. The

component tree is also a key element of an efficient algorithm

for the topological watershed [8]. New classes of filters,

such as second-order connected operators [23] have been

recently introduced to generalize connected operators [22].

Those operators can also be efficiently implemented using

the component tree [20]. In this paper, we have proposed a

simple-to-implement quasi-linear algorithm for computing the

component tree. We hope that such an algorithm will facilitate

the extensive practical use of such operators.

REFERENCES

[1] A. Andersson, T. Hagerup, S. Nilsson, and R. Raman. Sorting in linear
time? In STOC: ACM Symposium on Theory of Computing, 1995.

[2] G. Bertand. On the dynamics. Image and Vision Computing. Submitted.
[3] G. Bertrand. On topological watersheds. JMIV, 22(2-3):217–230, 2005.
[4] E.J. Breen and R. Jones. Attribute openings, thinnings and granulome-

tries. Comp. Vision and Image Und., 64(3):377–389, Nov. 1996.
[5] Y.-J. Chiang, T. Lenz, X. Lu, and G. Rote. Simple and optimal output-

sensitive construction of contour trees using monotone paths. Comp.

Geometry: Theory and Applications, 30(2):165–195, 2005.
[6] T. H. Cormen, C. L. Leiserson, and R. L. Rivest. Introduction to

Algorithms. MIT Press, Cambridge, MA, 1990.
[7] M. Couprie and G. Bertrand. Topological grayscale watershed transform.

In SPIE Vision Geom. V Proc., volume 3168, pages 136–146, 1997.
[8] M. Couprie, L. Najman, and G. Bertrand. Quasi-linear algorithms for

the topological watershed. JMIV, 22(2-3):231–249, 2005.
[9] M.B. Dillencourt, H. Samet and M. Tamminen. A general approach

to connected-component labeling for arbitrary image representations.
Journal of the Assoc. Comput. Mach., 39(2):253–280, 1992.

[10] Ch. Fiorio and J. Gustedt. Two linear Union-Find strategies for image

processing. Th. Computer Science 154:165-181, 1996.
[11] P. Guillataud. Contribution à l’analyse dendroniques des images. PhD

thesis, Université de Bordeaux I, 1992.
[12] P. Hanusse and P. Guillataud. Sémantique des images par analyse

dendronique. In 8th RFIA, volume 2, pages 577–588, 1992
[13] J.A. Hartigan. Statistical theory in clustering. Journal of Classification,

2:63–76, 1985.
[14] R. Jones. Component trees for image filtering and segmentation. In

NSIP’97, 1997.
[15] J. Mattes and J. Demongeot. Efficient algorithms to implement the

confinement tree. In LNCS:1953, pages 392–405. Springer, 2000.
[16] J. Mattes, M. Richard, and J. Demongeot. Tree representation for image

matching and object recognition. In LNCS:1568, pages 298–309, 1999.
[17] A. Meijster and M.H.F. Wilkinson. A comparison of algorithms for

connected set openings and closings. IEEE Trans. on PAMI, 24(4):484–
494, April 2002.

[18] P. Monasse. Morphological representation of digital images and appli-

cation to registration. PhD thesis, Paris-Dauphine Univ., June 2000.
[19] L. Najman and M. Couprie. Quasi-linear algorithm for the component

tree. In SPIE Vision Geometry XII, Vol. 5300 pages 98–107, 2004
[20] G.K. Ouzounis and M.H.F. Wilkinson. Second-order connected attribute

filters using max-trees. In Mathematical morphology: 40 years on, pages
65–74. Springer, 2005.

[21] P. Salembier, A. Oliveras, and L. Garrido. Anti-extensive connected
operators for image and sequence processing. IEEE Trans. on Image

Proc., 7(4):555–570, April 1998.
[22] P. Salembier and J. Serra. Flat zones filtering, connected operators and

filter by reconstruction. IEEE Tr. on Im. Proc., 3(8):1153–1160, 1995.
[23] J. Serra. Connectivity on complete lattices. JMIV, 9:231–251, 1998.
[24] R.E. Tarjan. Efficiency of a good but not linear set union algorithm.

Journal of the ACM, 22:215–225, 1975.
[25] C. Vachier. Extraction de caractéristiques, segmentation d’images et

Morphologie Mathématique. PhD thesis, ENSMP, 1995
[26] D. Wishart. Mode analysis: A generalization of the nearest neighbor

which reduces chaining effects. In A.J. Cole, editor, Numerical Taxon-

omy, pages 282–319, London, 1969. Academic Press.

