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We adapt the Euler theorem for approximating solutions to differential equations
to the new mathematical framework of mutational equations, which aims to compute
derivatives of shape deformation in metric spaces. © 1995 Academic Press, Inc.

1. INTRODUCTION

Mutational equations [1, 2] are an extension of differential calculus for
maps from one metric space to another. Basic theorems of differential
equations (such as the Cauchy-Lipschitz and Peano equations) can be
adapted to this mathematical framework.

Mutational equations seem to be a relevant tool for describing the dynam-
ics of objects that are not naturally imbeded in a linear space, in particular
for describing dynamics of sets. This is important in many areas of applied
mathematics, such as optimal shape [12, 5], visual servoing [6, 4], and mathe-
matical morphology [8-11]. We refer to [2] for numerous motivations.
Accordingly, the issue of discretization and constructive approximation for
mutational equations, which is the aim of this paper, is of particular interest.
We adapt the Euler theorem, which allows us to approximate solutions by
a sequence of .points in metric space. We end this paper by giving an
example of an application for computing the evolution of tubes.

2. TRANSITIONS ON METRIC SPACES

Definitions given in this section and those that follow are quoted from [2].
Transitions adapt to metric spaces the concept of half-line x + Av starting
from x in the direction v by replacing it by “curved” half-lines 3(k, x).
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MUTATIONAL EQUATIONS 815
Indeed, the “linear” structure of half-lines in vector spaces is not really
needed to build a differential calculus. J

DernrTioN 1 [2].  Let X be a metric space for a distance d. A map &:
[0, 1] X X > satisfying

@ 90,x)=x

@) 9= sup LD FED) < 1o

d(8(h, x), 3(h,y))

sss ’l? = S < 4+

(i) 9 o prongy

(v) lim d(9(t + h, x), i(h, 3(h, §(t,x) _
—0+

is called a transition.

We denote by ®(X) the space of all transitions on X.
We define an equivalence relation ~, between transitions by

d(y(h, x), 9(h, %)) _
> )

Hh~h if and only if lim

h—0+

We say that (X, ©(X)) is a (complete) mutational space if X is a (com-

plete) metric space and ©(X) C ©(X) is a nontrivial subspace of transitions,
closed in €([0, 1] X X, X) supplied with the pointwise convergence.

One observes that the transitions 9(h, -) are Lipschitz uniformly with

respect to i € [0, 1] and that for every x € X, the maps 9(:, x) are Lipschitz.

We shall supply a space ®(X) of transitions with the distances d.. of

uniform convergence and Lipschitz semidistance defined, respectively, by

do(8,7):= sup d(h,z),7(h,2))
€[0,1],z6X

h

and

dA(ﬂ, ‘T) = sup d('ﬂ(h’ Z)a T(h’ Z)) .

hE(0,1].cEX h

3. MutaTioNAL EQUATIONS IN METRIC SPACES

Let x(-) be an application from [0, 1] onto X, and ¥: [0, 1] X X — X.
We say that ¢ is a mutation of x(¢) at time ¢ if

i 4O x@), X+ B) _

B0+ h
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In this case, we note
HOERA

Let us consider a mutational space (X, ®(X)) and a single-valued map
£ 0, o[ X X — ©(X) from X to its space of transitions. We say that a
function x(-) from [0, T] to X is a solution to the mutational equation
£ 3 f(t, x) if for all ¢ > 0, f(t, x(?)) is a mutation of x(¢) at time ¢, i.e., if

Vi€ [0, T], I OENL106)) 1)
or, equivalently, if

vizo,  fim dFEXOEIO).XCER)

A0+ h

3.1. Examples of Mutational Equations

Let us point out, through two examples, that the uniqueness of the
mutation is not ensured, which justifies the notation.

® First, consider the constant tube in X = R?
K(t) = B,

where B is the Euclidean unit ball.
It is clear that

0ok, Ve

But we can also check that the Lipschitz map defined by
o(x, y) = (_y7 x)

satisfies

e € K(®).

¢ et Fbeaset-valued map from a vector space onto itself. The reachable
map ¥ associated to the differential inclusion x'(f) € F(x(£)), x(0) = xo,
defined by 8(t, xo) := {{x(5)} | x'(s) € F(x(s)), x(0) = x0, s € [0, ¢]} is a
good choice for being a mutation of x(-) at time ¢ = 0. Let us notice that
in order for it to be mutation, it is not necessary that ¢ belong to ©(X).
Let us apply this remark to mathematical morphology.

Let X be the set of compacts of R* (which is a metric space for the




MUTATIONAL EQUATIONS 817

Hausdorff distance), K be an element of X, %:(¢, K) := {{x(s)} | x'(s) € B,
x(0) € K, s € [0, ¢]}, where B is the unit Euclidean ball, and (¢, K) :=
{x(s)} | x'(s) € Ng(x(s)) N B, x(0) € K, s € [0, 1]}, where N(x) is the
subnormal cone’! of the set K at point x for the Euclidean norm.

In [7] it is shown that the morphological tube K(f) := K © B = {k +
tb | k € K, b € B}, which corresponds to the dilation (the Minkowski sum)
of a compact K with respect to the Euclidean unit ball B, satisfies the two
mutational equations

vi=0, K@>3 ¥)
Vi=0, K@D, 3)

with K(0) = K. Equation (2) is natural, and Eq. (3) clearly establishes,
without any regularity assumptions on the compact set K, the intuitive idea
that the dilation transforms the initial set K in the direction of the normal
at any point of the set. Indeed, when the set K is a regular manifold, the
subnormal cone Nx(x) is reduced to the half-line spanned by the outward
normal n(x). But if 39, is a transition, this is not the case for &, since the
application 9,(¢, *) is not Lipschitz.

Peano’s Theorem, which states the existence of a solution x(-) to Eq.
(1), can be adapted to the case of mutational equations.

3.2. Peano’s Theorem for Mutational Equations
We give here Peano’s theorem for mutational equations.

THEOREM 2 [2]. Let (X, (X)) be a mutational space, and f [0, [ X
X +> O(X) be a uniformly continuous map bounded in the sense that

d(f(t, x)(h, y), f(t, X)(h, 7)) _

= Cy

Vi=0,Vxe X, | f(t, x)|a:= su
”f( )”A hE[O,l]g'séz d(y, Z)

! The external circatangent cone of K at x is
Cx(x) := {v | Cidlx, K)(x)(v) = 0},
and the external subnormal cone of K at x is the negative polar cone of Cx(x), i.e.,

Ng(x) = Cx(x)” = {p | Yv € Cx(x), {p, v} = O}

See [3] for more details.
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Fic. 1. Ilustration of Euler’s method for mutational equations.

and that

Vi=0,¥x € X,Vy € X, || f{t, x)(y)|| := sup d(fe, x)(hl’hy)’{c(lt’ x)(k. y)) =c.
kth -

Assume that the closed bounded balls of X are compact.
Then, from any initial state xo € X starts one solution to the mutational

equation % 3 f(t, x).
4. BEuLER METHOD FOR MUTATIONAL EQUATIONS
For the sake of simplicity, we consider a mutational equation with non-

explicit time dependence, but the following can be easily adapted to the
explicit time-dependent case. We thus consider the mutational equation

()3 f(x(®). 4

A natural way for approximating solutions to differential mutations is
the difference scheme to

Xj+1 += f(xj)(h’ xj)a

where & € 10, 1] is fixed.
We can interpolate the x;’s on the nodes jh by setting (Fig. 1)

() = fO)(¢ = hj, x), Ve € [jh, (j+ DAL

We shall prove that the function x,(-) converges in some sense to a solution
to the mutational equation (4).
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THEOREM 3. We consider a mutational space (X, ®(X)) and a single-

valued map f: X — O(X). We posit the assumptions of Theorem 2.
For h € 10, 1}, we set

X1 = f(x)(h, x;). )

Let x,(*) be a piecewise defined function which interpolates the x;’s on the
nodes jh and on a finite time interval [0, T1:

()= FO)E — k), VEE[jh, (j+ DAL=T. 6)

Then, starting from xo € X, the solution to the explicit difference scheme
(5) converges to a solution to the mutational equation

(03 fx(®) (7

where h — 0, in the sense that a subsequence of function x, converges
uniformly to a solution x(-) to (7) with x(0) = xo, on [0, T.

We set
do(1,% (1)) := inf du(r,0)
gEX(f)

We need the following lemma:

LemMA 4. We posit the assumptions of Theorem 3. Then, for all € > 0,
there exists H > 0 such that for h < H, we have, for allt > 0 and all s > 0,

() de(f()), 2u(t) =&
(ll) d(xh(t), xh(t + S)) = cSs.

®
Proof: We first note that
(1) D f(x), V€ [jh (j+ DA

because we have, for £ > 0 and 5 small,

d(f() (s, Xu(8)), 2a(t + ) = d(Fe) (s, F)(E — 1, %), f) (e = hj + 5,37))

=g

by Definition 1(iv).
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Then we have

do(f(en(0)), Za(D)) = du(f(xa(D)), £ (%))
= sup  d(fxa(®))(s 2), Fx) (s, 2))

s€[0,1],zX

and, by uniform continuity of f, for all £ > 0, there exists 7 > 0 such that
Vi € [jh, (j + DL, do(f(ua(®). f()) < &
as soon as d(x(t), x;) = n. But for all ¢ € [jh, (j + D)A[,

d(xh(t)a xj) = d(f(x])(t - h]’ xj)’ fx]')(O, xj))
=c(t — Hj)

= ch,

which proves inequality (8(i)).
Now, for ¢t € [jh, (j + 1)h[ and ¢ + s € [kh, (k + 1)h[, we have

d(xn(t + 5), x4(6)) =< d(F )t + s — hk, xi), f(x)(0, xi))
+ 2 d(f(x)(h, x.), f(x)(0, x,))

+ d(f(xj)(h’xj)’f(x]')(t - h]’ xj))
<c(t+s—hk)+ D, ch+c(h—t+ hj)

J<i<k
c(s+h(-k+k—-j-1)+j+1))

= cs,

which proves inequality (8(ii)).

Proof of Theorem 3. We continue as in the proof of Theorem 2. For
the sake of completeness, we give here the end of the proof.

Since the closed bounded balls of X are compact, and since the solutions
remain in such closed bounded balls of X, we deduce that x,(¢) remains in
a compact set of X.

Lemma 4, property (ii), implies that the sequence of continuous functions
%4(+) is equicontinuous. Therefore Ascoli’s theorem implies that a subse-
quence (again denoted by x,(+)) converges uniformly to x(-).

This limit is a solution since for any ¢ € [jh, (j + 1)A][,
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e+

Fic. 2. Trajectory of the dilation by a segment whose orientation relies on time of a
compact included in R% The initial set K(0) is in grey.

do(f(x(@)), 24(1)) = du(f(x(0)), F()) + du(F(x), Zu(0))-

But, f(x;) 2 X4(?), and f is uniformly continuous. Thus, for all £ > 0, there
exists 1 > 0 such that

do(f(x(D), £u(D)) = &
as soon as d(x,(f), x;) = ch = 1.

Hence the theorem is proved.

5. AN EXAMPLE OF APPLICATION TO TUBES

The main example of application is the evolution of tubes, which are
compact-valued maps K: R ~ X = R" Let us look at a morphological
example, which is the dilation of a compact by a segment of variable angle.
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We set f(t, K(t))(h; K() = K@) @ hO(¢) = {k + h8 | k € K(2), 0 € O(2)},
where O(¢) is a segment of angle . Theorem 3 amounts to saying that we
can approximate the solution to

K 3 f(t, K(2),
with K(0) = K, by the sequence
Kp1 = K; ® hO(hj).

Figure 2 shows an example of approximation of the solution to this
mutational equation.
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