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ABSTRACT

We introduce the homotopic alternating sequential filtea agw method for smoothing 2D and 3D objects in binary images.
Unlike existing methods, our method offers a strict guagardf topology preservation. This property is ensured byethe
clusive use of homotopic transformations defined in the &aork of digital topology. Smoothness is obtained by theafse
morphological openings and closings by metric discs orsbaflincreasing radius, in the manner of an alternating setiple
filter. The homotopic alternating sequential filter opesateth on the object and on the background, in an equilibrated

It takes an original imag& and a control imag€ as input, and smoothes “as much as possible” while respecting the
topology ofX and geometrical constraints implicitly representedyBased on this filter, we introduce a general smoothing
procedure with a single parameter which allows to contreldigree of smoothing. Furthermore, the result of this pfoce
presents small variations in response to small variatidiiseparameter value. We also propose a method with no paeame
for smoothing zoomed binary images in 2D or 3D while presegtopology.

Keywords: Shape smoothing, digital topology, homotopy, mathemhtizaphology, alternating sequential filters.

1. INTRODUCTION

Shape smoothing plays an important role in image processidgattern recognition. For example, the analysis or neitiog
of a shape is often perturbed by noise, thus the smoothingjetbboundaries is a necessary pre-processing step. s
zooming or warping binary digital images, one obtains a ef&ted result that must be smoothed for better visualinafidhe
smoothing procedure can also be used to extract some shageetdristics: by making the difference between the oalgamd
the smoothed object, salient or carved parts can be detantktheasured.

Many different approaches have been proposed for smooshiapes:
- Ad hoc transformation rules applied to chain-coded objecindaries (2D onlyj.
- Morphological filtering applied directly to the shape.
- Morphological filtering applied to a curvature plot of theject’s contour (2D onlyf.
- Filtering of the medial axié.
- Filtering of a multiple scale boundary representation (@Brphological scale space).
- Linear filtering. The most popular algorithm to performear filtering is the Laplacian smoothing (well suited to 28ctor
or 3D-mesh representatiorfsy
- Diffusion equations: partial differential equationandar to the classical heat equation, are used to model tbleitien of a
curve or a surface in space-tinig!1

In all previous works, it was always assumed that the shape tmoothed is a single object, in other words, its boundary i
a simple closed curve (in 2D) or surface (in 3D). What happiens want to apply the smoothing to a whole scene composed
of several objects? If we apply any of the proposed schemeadb object independently and then merge the results, ithere
no guarantee that the images of two disjoint objects will lsfotht. More generally, little attention has been paid tobgl
topological properties of smoothing procedures. Even wéngplied to a single object, there is no formal proof that know
smoothing schemes preserve the object’s topological ctarstics (humber of connected components and cavitieaper of
tunnels in 3D), with the remarkable exception of a resultaawning the evolution of a 2D plane curve under the heat équat
which has been proved to shrink towards one péint.

We introduce a new method for smoothing 2D and 3D objectsiafyiimages while preserving topology. Here, objects are
defined as sets of grid points, and topology preservationssired by the exclusive use of homotopic transformatiofiaele
in the framework of digital topology® Smoothness is obtained by the use of morphological operingslosings by metric



discs or balls of increasing radius, in the manner of altémgasequential filterd#1> All these morphological filters do not
preserve topology, this is why we introduce new operatossadtopic cutting and homotopic filling, which combine a fiitegy
effect with the guarantee of topology preservation. The bimpic alternating sequential filter is a composition of luapic
cuttings and fillings by balls of increasing radius. It tal@soriginal imageX and a control imag€ as input, and smoothes
“as much as possible” while respecting the topologXadnd geometrical constraints implicitly representedbyBased on
this filter, we introduce a general smoothing procedure witingle parameter which allows to control the degree of ghing.
Furthermore, the result of this procedure presents smaktians in response to small variations of the parametkrevaWe
also propose a method with no parameter for smoothing zodmmedly images in 2D or 3D while preserving topology.

2. BASIC NOTIONSOF MATHEMATICAL MORPHOLOGY

In this section, we recall some basic notions of mathemiaticaphology for binary image¥3:1°> and the definition of alternat-
ing sequential filterd* For the sake of simplicity, we restrict ourselves to the miai set of notions that will be useful for our
purpose. In particular, we consider only morphologicalrapars based on structuring elements which are balls inghsesof
the Euclidean distance, in order to obtain the desired shingeffect.

We denote byZ the set of relative integers, and Eythe discrete plan&2. A pointx € E is defined by(xy,x2) with x; € Z.
Letx € E, r € N, we denote byB, (x) the ball of radiug centered orx, defined byB; (x) = {y € E,d(x,y) <r}, whered is
a distance oit. We denote byB, the map which associates to eacim E the ballB,(x). The Euclidean distanagon E is
defined byd(x,y) = [(x1 — y1)? + (x2 — y2)?]*/2. Unless explicitly stated, the choice of the Euclideanadise will be assumed.

An operator on Eis a mapping fromP(E) into P(E), where?(E) denotes the set of all the subsetskf Letr be
an integer, thailation by B is the operatod, defined by:vX € P(E), & (X) = Uyex Br(X). The ballB; is termed as the

structuring elemenbof the dilation. For any operatar, we define thedual operatorxa by: VX € P(E), xa(X) = a(X),
whereX denotes the complementary sedoin E.

The erosion by B is the operatog, defined by duality:e, = x&. Theopening by Bis defined byy, = & o€, and the
closing by B is defined byp. = & 0 8;. Notice that opening and closing are dual to each othergdiksion and dilation. It is
well known that for anyr, the opening operatof is increasing{X,Y subsets o€, X CY = y(X) C v (Y)), anti-extensive
(VX CE, yr(X) C X), and idempotentyX C E, v (v (X)) = vr(X)). Also, the closing operatap is increasing, extensive
(VX C E, X C @ (X)), and idempotent.

Let us now recall the notion of medial axis (see &lsd). LetX C E, x€ X, r € N. A ball By (x) C X is maximal for Xif it
is not strictly included in any other ball includedX Themedial axis of X denoted by MAX), is the set of the centers of all
the maximal balls foKX (see Fig. 4e).

@ (b) (c) (d)

Figure 1. (a): a selX; (b): ASR3(X); (c): ASRy(X); (d): the contour oKX, superimposed to ASE(X).

Alternating sequential filters were introduced by Stergbtand were extensively studied by SetPa. Although these
filters are useful both for binary and greyscale images, mé bur presentation to the binary case for simplicity. Ateatating
sequential filter is a composition of openings and closingkdlls of increasing radius:

ASFh=@hoYnoh-10¥n-10...Qroy1
As illustrated in Fig. 1, an alternating sequential filten & used to smooth the contour of an object. Fig. 1d showsAX
superimposed to the contour of the Xegiven in Fig. 1a. We can notice that AgfFX) is neither a superset nor a subseXof



In most cases, applying the same alternating sequentaltfilthe complementary of the object would give approxitydte
the same result (up to the complementation). But in somécpédat cases, the results of AgEnd those of its dualASF, can
be very different, see Fig. 2. This problem occurs when theatand the background are imbricated together and have the
same thickness. This kind of configuration may appear iragereal-world images, such as binarized fingerprintimages

(@) (b) ()

Figure 2. (a): a seiX (the line is one pixel thick); (b): ASFEX); (c): *ASF1(X).

In many applications we need to smooth an object while pvasgits topology. In such a case, the alternating sequientia
filter does not provide satisfactory results, as illusiaite Fig. 3. Also, it may be noticed that the result of an alétimgy
sequential filter ASF may change dramatically for a small variation of the parane{for example, Great Britain suddenly
vanishes from the Europe map betweesa 22 andn = 23).

dx Ja2 ¥y
A

(d)

Figure3. (a): aselX; (b): ASRKs(X); (c): ASR(X); (d): ASF,5(X). Natice the changes in the number of connected components
of bothX andX.

3. BASIC NOTIONSOF DIGITAL TOPOLOGY

In this section, we recall some basic notions of digital fogg for binary images® For the sake of simplicity, we limit
this presentation to the 2D case. We consider the two neitlolbds relation$ s and s defined by, for each point € E:
Fa(X) ={y€E;|y1—x1|+|y2—x2| <1}, Tg(X) = {y € E;max(|y1 —xa|,|y2—*2|) < 1}. In the following, we will denote by
a number such that= 4 orn= 8. We defind };,(x) = (x) \ {x}. The pointy € E is n-adjacento x € E if y € ['};(x). An
n-pathis a sequence of poinig . .. xx with x; n-adjacentto_; fori=1...k.

We say that two pointg, y of X aren-connected in Xf there is ann-path inX between these two points. This defines
an equivalence relation. The equivalence classes for ¢fdgion are then-connected componera$ X, or n-componentf
short. A subseX of E is said to ben-connectedf it consists of exactly ona-connected component. The set composed of all
n-connected components ¥fwhich aren-adjacent to a point is denoted byCy[x, X].

In order to have a correspondence between the topoloxyemid the topology oX, we have to consider two different kinds
of adjacency foX andX*3: if we use then-adjacency foiX, we must use the-adjacency foiX, with (n,n) = (8,4) or (4,8).
For the sake of simplicity, we assume in the sequel that aacadgy pair has been chosen (€mgn) = (8,4)) and we do not
write the subscriph unless necessary.

Informally, a simple poinp of a discrete objecX is a point which is “inessential” to the topology ®f In other words,
we can remove the poirg from X without “changing the topology oX”. The notion of simple point is fundamental to the

*In fact the dual of the operator AGRs not equal to ASFitself, but toyno@ghoyn-—10@h-10...y1o@1.



definition of topology-preserving transformations in diete spaces. We give below a definition and a local charaetésh of
simple points irE = Z2.

The pointx € X is simple (for X)if eachn-component ofX contains exactly ona-component ofX \ {x} and if eachn-
component oK U {x} contains exactly onB-component oK. Let X C E andx € E, the twoconnectivity numberare defined
as follows (# stands for the cardinality of):

T (%, X) =#Cq[x,[5(X) N X]; T(x,X) = #Crlx, T§(X) N X].
The following property allows us to locally characterizengie pointst®1° hence to implement efficiently topology preserving
operators:

x € E is simple forX C E < T(x,X) =1 andT (x,X) = 1.

Let X be any finite subset dt. The subseY of E is lower homotopic to Xf Y = X or if Y may be obtained fronX by
iterative deletion of simple points (see Fig. 4a-b). TheYs& upper homotopic to Xf Y is lower homotopic toX, in other
words, there is a duality between lower and upper homotogy 9. 4c¢).

Let X be any finite subset &. We say that a subs¥tof X is ahomotopic ultimate skeleton of iKY is lower homotopic
to X and if there is no simple point fof (see Fig. 4d). LeX be any finite subset &, and letC be a subset oX. We say tha¥
is ahomotopic ultimate skeleton of X constrained bif C C Y, if Y is lower homotopic toX and if there is no simple point
forY in Y\ C (see e.g%?). The seC is called theconstraint setelative to this skeleton. A particularly useful consttagt is
the medial axis oK. A homotopic ultimate skeleton &f constrained by its medial axis is called@ntered skeleton of.Xsee
Fig. 4e-f).

(b)

(d)

Figure 4. (a): a setX (in white); (b): a set which is lower homotopic ¥; (c): a set which is upper homotopic ¥ (d): a
homotopic ultimate skeleton of; (e): medial axis oi; (f): centered skeleton of. In (b,d,e,f) the original seX appears in
dark gray for comparison.

Clearly, there may exist several different ultimate slabstfor a same set, depending on the order in which simple points
are selected. Several strategies have been proposed tatmhgnotopic skeletons which are well centered with retsjoetbe
original object, se# for a survey. We will denote bl (X,C) a homotopic ultimate skeleton &fconstrained by obtained by



following one of these strategies, and we will datimotopic constrained thinnirtyis operatoH. For the illustrations of this
paper, we choose a strategy which consists in selectingeipgints in increasing order of their distance to the backgd,
thanks to a pre-computed quasi-Euclidean distance?hap.

By duality, we also define the operataf, calledhomotopic constrained thickenings follows: for any finite subsét

of E, and for any finite supersé of X, xH(X,C) = H(X,C). This operator thickens the s¥tby iterative addition of points
which are simple foX and which belong to the s&, until stability.

4. TOPOLOGICALLY CONTROLLED OPERATORS

Our goal is to propose a smoothing filter which: (i) presetegslogy, (ii) preserves the main geometrical featuresefbject,
(i) has a parameter specifying the “smoothness” of thaltgév) has a continuous behaviour with regard to this paster, and
(v) smoothes the object and its complementary in an eqatiforway. To achieve these goals, we will combine morpholdgi
operators, which provide the desired smoothing effect,taordotopic transformations, which guarantee topologyqmedion.
In this section, we focus on the requirements (i), (i) anijl. (Requirements (iv) and (v) will be considered in sect®nThe
requirement (i) will be achieved by the use of the previoustsoduced homotopic operatét (and its duakH). The compli-
ance to requirement (ii) and the smoothing effect will beaitdd by constraining the homotopic operators by morphio&dg
dilations and erosions. The size of the structuring elenfiemtthe radius of the ball) for these morphological opersiwill
allow to fullfil requirement (iii).

Let us first consider a “homotopic equivalent” of the erosioe an operator which shrinks an object while preserviag i
topology. Such an operator may be defined as a particularafabe homotopic constrained thinniry, taking as constraint
set the erosion of the original objextby a ballB; (see Fig. 5). We obtain a result which is homotopic to theinabobject,
and which has been shrinked according to the size param@téren not in contradiction with topology preservation).

(@) (b) (€) (d)

Figureb. (a): a seiX; (b): e5(X); (c): e5(X) superimposed t&; (d): H(X,e5(X)).

Like the erosion, this operation is anti-extensive, bus ot increasing, as shown by Fig. 6.

(@) (b) (€)

Figure 6. (a): a setX; (b): a setY C X; (c): the union ofH (X,g0(X)) andH (Y,e20(Y)). We see thaH (Y,ex(Y)) is not
included inH (X, g20(X)).

Now suppose we want to have a “homotopic equivalent” of thenapy operator. The opening operator consists in an
erosion followed by a dilation of the same size. This dilati@as the effect of “reconstructing” some parts of the objédth



have not been completely deleted by the erosion. If we wanbtain a homotopic operator similar to the opening, several
choices may be considered. First, we could use the openitigeodriginal set as a constraint for the operdtbr Fig. 7b
shows the drawback of this approach: the parts of the rdsaititave been kept in order to fullfil the topological pres¢ion
requirement are not properly reconstructed, they congigtio lines or isolated points. Intuitively, for such an oator, we
want any shape element to be either completely deleted opletety preserved. A second idea is to apply the thickening
operatorH after the application of the thinnning operatbr We see in Fig 7(c) that the result is not satisfactory: tisellteng
operator is not anti-extensive, contrary to the opening.

(@) (b) (©) (d)

Figure 7. (a): a setX (same as in Fig. 5); (b)H(X,d20(€20(X))); (€): *H(Y,820(Y)), whereY = H(X,&20(X));
(d): «xH (Y, 520(Y) ﬂX), whereY = H (X,Szo(X)).

To ensure both the anti-extensivity and the preservatidch@parts that survive the thinning, it is then natural teetdie
result of the homotopic thinninl (X, & (X)) (Fig. 5d), to apply a simple dilation (the result on this @bjeould be the same
as Fig. 7¢), to make the intersection wikhand to use this as a constraint for the homotopic thickening(X, &, (X)) (see the
resultin Fig. 7d). We give below a more formal definition oisthew operator and its dual version.

Let X be any finite subset &, letr € N. Thehomotopic cutting of X by Bdenoted by HEX), and thenomotopic filling
of X by B, denoted by HR X), are defined as follows:
HC; (X) = «H(Y, & (Y) N X), whereY = H(X,& (X)) ;
HF (X) = H(Z,&(Z) UX), whereZ = +H (X, & (X)) .
We can easily see that for anyHGC; is anti-extensive and HFs extensive.

Figures 7d and 8 illustrate these operators. We can seehi&omotopic cutting deletes small capes and the homotopic
filling deletes small bays. On the other hand, these operateserve isthmuses and straits, as well as islands ars] {akizh
would be deleted by the classical opening and closing. Towsanize, the homotopic cutting has a filtering effect simitathe
opening, except that thin parts of the object which are rezggdor the preservation of topology are left unchanged.

I 3 I 1 I %
(@) (b) (€)

Figure 8. (a): a setX; (b): homotopic filling HE5(X); (c): homotopic cutting HE(X). The homotopic cutting deletes small
capes and the homotopic filling deletes small bays. On ther dthnd, these operators preserve isthmuses and straitgllas
as islands and lakes.




We introduce now constrained versions of the homotopidraytand filling operators, where constraint sets are used to
indicate which bays or capes must be preserved, even if siegiris small with respect to the parameateiVe will see in the
next section how to use these constraint sets.

Let X be any finite subset d, letC C X,D C X,r € N. Thehomotopic cutting of X by Bwith constraint set Cdenoted
by HCE(X), and thehomotopic filling of X by Bwith constraint set Ddenoted by HR(X), are defined as follows:
HCE(X) = #H (Y, & (Y)NX), whereY = H(X,&(X)UC) ;
HFP(X) = H(Z,&(Z) UX), whereZ = xH (X, 8 (X)ND) .

5. HOMOTOPIC ALTERNATING SEQUENTIAL FILTER

In this section, we introduce the homotopic alternatingueadjal filter (HASF) which is a composition of constrainezhto-
topic cuttings and fillings by balls of increasing radiugsleasy to see that neither homotopic cutting nor homotolfirefiare
continuous wrt. their numerical parameter (of course, ihaso true for opening and closing). This can be highlighte the
following example: take a ribbon of uniform width and apphetoperator HEfor increasing values af. Whenr reaches the
width of the ribbon, the result suddently changes from aaibbke shape to a disk-like shape. In order to obtain a shingt
operator which is continuous wrt. its parameter, we corttrelhomotopic alternating sequential filter by two constraetsC
andD.

Let X be any finite subset d&, let C C X,D C X. Thehomotopic alternating sequential filter of order n with ctramt
sets CD is defined as follows:
HASFSP = HFR 0 HCS o HFR | o HCS ;0. .HF? o HCY
Notice that if the orden is greater or equal to the radius of the largest disc whichfitan the object or in the background,
then we have HASE® = HASF;;}; = HASFSP.

n
The idea is to use centered skeletons of the object and ofablegbound as constraint sets (see Fig. 9¢), and to smooth
the image “as much as possible” using the homotopic altexpaequential filter. Thus, the order of the alternatingfils no
more a useful parameter. Instead, we introduce a new paganvaich allows to control the shrinking of the constraintsse
hence the degree of smoothing.

Let us consider centered skeletonsXondX (i.e. homotopic skeletons constrained by the medial ax@g)iteratively
removing 6 times) extremity points from these skeletons, we obtainnailfaof constraint sets which “vary smoothly” with
respect to the parameter valneWe give below a formal definition of this family.

Let X C E, we setC = H(X,MA (X)) andD = H(X,MA (X) UB), whereB denotes the rectangular border of the image
domain, and wherkl is the homotopic ultimate skeleton defined in section 4. T8us homotopic toX and contains MAX),
andD is homotopic taX and contains MAX) U B (see Fig. 9c). Now we will get our family of constraint setssmccessively
pruning out extremity points from the sefsandD. Let SRX) denote the set of all the points which are simple XorWe
define:
c'=cC;

D%=D:andforn> 0,

Ch=H (Cnfl,cnfl\ SF{Cnfl)) :

D"=H (Dn—l7 Dn—l\ SF{Dn—l)) .

In other wordsC" is obtained fron€"~* by deleting sequentially simple points chosen in the sS¢E3F), until stability (idem
for D). Fig. 10a-c shows the resulting sets (in black@8r in white forD") for n = 10,30, 60 respectively.

Using the sets of this family as constraints for the condilidwnorpotopic alternating filter, we obtain the operatoraihi
associates, to any subsebf E and to any integen, the set HASE ® (X), where the familieC"} and{D"} are defined as
above.

In Fig. 10a-c the contours of the resulting smoothed shagsewell as the corresponding constraint sets, are supesiatpo
to the original shapes.

This smoothing operator has all the desired propertiesreisgrves topology, it has a single parameter that conthels t
smoothing degree, it operates both on the object and on ttlgglaund in a equilibrated way, and the result of this operat
presents small variations in response to small variatidtiseoparameter value.

Notice that, similarly to the morphological alternatingjsential filter, the results of this operator and its dual hayuite
different on particular shapes. This will be the case, faaregle, with the shape of Fig. 2, and with a high vatufor the
parameter (such th&" is reduced to one point arial' is equal tof).



(a) (b) (c)
Figure9. (a): a seiX; (b): MA(X) (in black) and MAX) (in white); (c):C (in black) andD (in white).

Figure 10. (a):C2° (in black) andD (in white); contour of HASE "?**(X) ; (b): C3° (in black) andD3° (in white); contour
SO’DSO

of HASFE™P¥(X) ; (c): C® (in black) andD®® (in white); contour of HASE™P%(X) .

6. SMOOTHING OF ZOOMED IMAGES

In this section, we present a method based on the homotagiroaling sequential filter for smoothing objects whilegeneing

both topological and geometric features. A very good exampthe need for such a method is a binary image which has been
zoomed by pixel replication. As we have seen in the introidacexisting methods do not guarantee topology presematin

the other hand our visual system is very sensitive to theltmpcal characteristics of an image.

Let us consider the image in Fig. 11b, which is a binarizatbma pipe smoking man’s face (a). This image has been
zoomed by a factor 4 in each dimension (c). We will denot&Xithe set of white points of this zoomed image. With the aim
of smoothing the crenelated contours of the zoomed imagaslérst try a simple convolution by a Gaussian kernel folbow
by a threshold (Fig. 11f). We can observe that some edgedibiigrsgular, while some thin details, both in black and iteh
parts, have disappeared.

Now let us apply the homotopic alternating sequential filteth some adapted constraint sets. Here, we will use medial
axes based on the chessboard distance, also dillechich is defined bydg(x,y) = max(|x1 — y1l, [X2 — Y2|), wherex; andy;



(i € {1,2}) denote the coordinates of the pointandy of E. The reason for this choice is explained in the next pardgrap
Fig. 11d-eillustrates medial axes obtained using the Baal and the chessboard distance, respectively. In thelsbtfg(X)
will be used to denote the medial axis based on the chessbisadceds.

In this application, it makes sense to take as constraiattietmedial axes based on the chessboard distance: théoballs
the chessboard distance are squares, and the zoomed inggeigely a union of squares with a minimal side length of fou
pixels. To preserve the main geometric features of the imatgesufficient to preserve the centers of maximal squarelsided
in the object and in the background. The use of two differésittadces is a logical choice with respect to the application
the chessboard distance is best adapted to the descrifittha original shape, while the Euclidean distance involirethe
definition of the homotopic filter is necessary to produce ath@ontours in the result.

We selC = MAg(X) andD = MAg(X), and we compute HASEP (X) . The resultis shown in Fig. 11g. It has been obtained
in 10 s. on a standard PC, for an image size of 37220. We get a smooth image with no artefacts, a good presamvait
shape, and by construction the preservation of topologuaanteed. Furthermore, this method has no parameter.

All the operators described in this paper can be easily eeero the 3D discrete griéd®. In fact these operators only
involve only morphological operators which can be extene®f in a straightforward manner, and the notion of simple point,
which has also an efficient characterization in the 3D cubid.l} To conclude this section, we show an application on a
zoomed 3D binary image.

The image in Fig. 12b is a rendering of the left ventricle ofuartan heart. The original 3D image has been obtained
from a MRI device. We have segmented 10 sections (2D imagesjcted from the DICOM file, and we simply stacked
the results (Fig. 12a). The dimensions of the pixel in eactia® (x, y axes) are 1.5mnx 1.5mm, and the distance between
two sections £ axis) is 6mm. To get the object shown in Fig. 12b, eaglsection has been replicated four times in order
to obtain a more realistic visualization (we will denotestbbject byX). Fig. 12c shows a rendering of HASB(X), where
C = MA26(X), D = MA24(X), and where MAg denotes the medial axis based on the distabgealefined by:dyg(x,y) =
max(|x1 — Y1, X2 — Y2|,|Xs — ya|). This result has been obtained in 75 s. on a standard PC, fonage size of 80x 80 x
48. In Fig. 12d,e we show different renderings of the 3D olsjelepicted in Fig. 12b,c respectively. These renderinge we
obtained by using a topologically sound variant of the “némg cubes” method to obtain a triangulated surface, and by
displaying this surface using a ray-tracer. No smoothing aaplied to the mesh vertices, only the Phong methoas used
to interpolate normals.

7. CONCLUSION

Topological characteristics are fundamental attribufesnoobject. In many applications, it is mandatory to preseswcon-
trol the topology of an image. Nevertheless, the designafdformations which preserve both topological and geaoaédtr
features of images is not an obvious task, especially in BDadt, except for the notable case of homotopic skeletaws, f
transformations based on these two criteria have been peapo

In this paper, we introduced the homotopic alternating satjal filter, a general topology-preserving operator wath
smoothing effect which is controlled by a constraint secdntrast with the skeleton transformation, the homotojpéraating
sequential filter does not only remove simple points fromahject, but also adds some simple points, treating both ibfexcb
and the background in an equilibrated way. Depending on llesen constraint set, this operator may be used in different
ways. We presented a method without any parameter for srimgogoomed 2D and 3D images while preserving topology,
using medial axes based on a discrete distance as consgainie also presented a general topology preserving singoth
method which allows to control the degree of smoothing bynglsiparameter, such that little variations of the paranmtéy
provoke little variations of the result.

The notions of simple point and homotopic skeleton have lgeaeralized to the case of multilevel (i.e. grayscale) iesag
by G. Bertrand et at® This allows us to extend the smoothing procedures introdiiicehis paper to the case of multilevel
images. This extension will be discussed in forthcomingipabons.
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TDICOM is a standard format for the storage and exchange ofaakdata.
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Figure 11. (a): a pipe smoking man’s face; (b): a binarization of (a); ({mage (b) zoomed 4 times (s¥); (d): medial axis
based on the Euclidean distance; (e): medial axis basedeothtssboard distance; (f): threshold of a convolutioK dfy a
Gaussian kernel; (g): HASF (X), with C = MAg(X) andD = MAg(X) .



Figure12. (a): arendering of a 3D object (slices of the left ventridla buman heart) ; (b): obje#t: the original object zoomed
by 4 in thez direction ; (c): a rendering of HASEP (X), with C = MA 26(X) andD = MA 2¢(X) ; (d): another rendering of the
objectin (b) ; (e): another rendering of the object in (c).



