
HAL Id: hal-00622027
https://hal.science/hal-00622027

Submitted on 11 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Topology preserving alternating sequential filter for
smoothing 2D and 3D objects

Michel Couprie, Gilles Bertrand

To cite this version:
Michel Couprie, Gilles Bertrand. Topology preserving alternating sequential filter for smoothing 2D
and 3D objects. Journal of Electronic Imaging, 2004, 13 (4), pp.720-730. �10.1117/1.1789986�. �hal-
00622027�

https://hal.science/hal-00622027
https://hal.archives-ouvertes.fr


Topology preserving alternating sequential filter for smoothing

2D and 3D objects

Michel Couprie(a,b) and Gilles Bertrand(a,b)
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ABSTRACT

We introduce the homotopic alternating sequential filter asa new method for smoothing 2D and 3D objects in binary images.
Unlike existing methods, our method offers a strict guarantee of topology preservation. This property is ensured by theex-
clusive use of homotopic transformations defined in the framework of digital topology. Smoothness is obtained by the useof
morphological openings and closings by metric discs or balls of increasing radius, in the manner of an alternating sequential
filter. The homotopic alternating sequential filter operates both on the object and on the background, in an equilibratedway.
It takes an original imageX and a control imageC as input, and smoothesX “as much as possible” while respecting the
topology ofX and geometrical constraints implicitly represented byC. Based on this filter, we introduce a general smoothing
procedure with a single parameter which allows to control the degree of smoothing. Furthermore, the result of this procedure
presents small variations in response to small variations of the parameter value. We also propose a method with no parameter
for smoothing zoomed binary images in 2D or 3D while preserving topology.

Keywords: Shape smoothing, digital topology, homotopy, mathematical morphology, alternating sequential filters.

1. INTRODUCTION

Shape smoothing plays an important role in image processingand pattern recognition. For example, the analysis or recognition
of a shape is often perturbed by noise, thus the smoothing of object boundaries is a necessary pre-processing step. Also,when
zooming or warping binary digital images, one obtains a crenelated result that must be smoothed for better visualization. The
smoothing procedure can also be used to extract some shape characteristics: by making the difference between the original and
the smoothed object, salient or carved parts can be detectedand measured.

Many different approaches have been proposed for smoothingshapes:
- Ad hoc transformation rules applied to chain-coded objectboundaries (2D only).1

- Morphological filtering applied directly to the shape.2

- Morphological filtering applied to a curvature plot of the object’s contour (2D only).3

- Filtering of the medial axis.4

- Filtering of a multiple scale boundary representation (2Dmorphological scale space).5

- Linear filtering. The most popular algorithm to perform linear filtering is the Laplacian smoothing (well suited to 2D-vector
or 3D-mesh representations).6–9

- Diffusion equations: partial differential equations, similar to the classical heat equation, are used to model the evolution of a
curve or a surface in space-time.10,11

In all previous works, it was always assumed that the shape tobe smoothed is a single object, in other words, its boundary is
a simple closed curve (in 2D) or surface (in 3D). What happensif we want to apply the smoothing to a whole scene composed
of several objects? If we apply any of the proposed schemes toeach object independently and then merge the results, thereis
no guarantee that the images of two disjoint objects will be disjoint. More generally, little attention has been paid to global
topological properties of smoothing procedures. Even whenapplied to a single object, there is no formal proof that known
smoothing schemes preserve the object’s topological characteristics (number of connected components and cavities, number of
tunnels in 3D), with the remarkable exception of a result concerning the evolution of a 2D plane curve under the heat equation
which has been proved to shrink towards one point.12

We introduce a new method for smoothing 2D and 3D objects in binary images while preserving topology. Here, objects are
defined as sets of grid points, and topology preservation is ensured by the exclusive use of homotopic transformations defined
in the framework of digital topology.13 Smoothness is obtained by the use of morphological openingsand closings by metric



discs or balls of increasing radius, in the manner of alternating sequential filters.14,15 All these morphological filters do not
preserve topology, this is why we introduce new operators: homotopic cutting and homotopic filling, which combine a filtering
effect with the guarantee of topology preservation. The homotopic alternating sequential filter is a composition of homotopic
cuttings and fillings by balls of increasing radius. It takesan original imageX and a control imageC as input, and smoothesX
“as much as possible” while respecting the topology ofX and geometrical constraints implicitly represented byC. Based on
this filter, we introduce a general smoothing procedure witha single parameter which allows to control the degree of smoothing.
Furthermore, the result of this procedure presents small variations in response to small variations of the parameter value. We
also propose a method with no parameter for smoothing zoomedbinary images in 2D or 3D while preserving topology.

2. BASIC NOTIONS OF MATHEMATICAL MORPHOLOGY

In this section, we recall some basic notions of mathematical morphology for binary images,16,15 and the definition of alternat-
ing sequential filters.14 For the sake of simplicity, we restrict ourselves to the minimal set of notions that will be useful for our
purpose. In particular, we consider only morphological operators based on structuring elements which are balls in the sense of
the Euclidean distance, in order to obtain the desired smoothing effect.

We denote byZ the set of relative integers, and byE the discrete planeZ2. A point x∈ E is defined by(x1,x2) with xi ∈ Z.
Let x ∈ E, r ∈ N, we denote byBr(x) the ball of radiusr centered onx, defined byBr(x) = {y ∈ E,d(x,y) ≤ r}, whered is
a distance onE. We denote byBr the map which associates to eachx in E the ballBr(x). The Euclidean distanced on E is
defined byd(x,y) = [(x1−y1)

2 +(x2−y2)
2]1/2. Unless explicitly stated, the choice of the Euclidean distance will be assumed.

An operator on Eis a mapping fromP (E) into P (E), whereP (E) denotes the set of all the subsets ofE. Let r be
an integer, thedilation by Br is the operatorδr defined by:∀X ∈ P (E), δr(X) =

S

x∈X Br(x). The ballBr is termed as the

structuring elementof the dilation. For any operatorα, we define thedual operator∗α by: ∀X ∈ P (E), ∗α(X) = α(X),
whereX denotes the complementary set ofX in E.

The erosion by Br is the operatorεr defined by duality:εr = ∗δr . Theopening by Br is defined byγr = δr ◦ εr , and the
closing by Br is defined byφr = εr ◦ δr . Notice that opening and closing are dual to each other, likeerosion and dilation. It is
well known that for anyr, the opening operatorγr is increasing (∀X,Y subsets ofE, X ⊆ Y ⇒ γr(X) ⊆ γr(Y)), anti-extensive
(∀X ⊆ E, γr(X) ⊆ X), and idempotent (∀X ⊆ E, γr(γr(X)) = γr(X)). Also, the closing operatorφr is increasing, extensive
(∀X ⊆ E, X ⊆ φr(X)), and idempotent.

Let us now recall the notion of medial axis (see also17,18). Let X ⊆ E, x∈ X, r ∈ N. A ball Br(x) ⊆ X is maximal for Xif it
is not strictly included in any other ball included inX. Themedial axis of X, denoted by MA(X), is the set of the centers of all
the maximal balls forX (see Fig. 4e).

(a) (b) (c) (d)

Figure 1. (a): a setX; (b): ASF3(X); (c): ASF9(X); (d): the contour ofX, superimposed to ASF25(X).

Alternating sequential filters were introduced by Sternberg14 and were extensively studied by Serra.15 Although these
filters are useful both for binary and greyscale images, we limit our presentation to the binary case for simplicity. An alternating
sequential filter is a composition of openings and closings by balls of increasing radius:

ASFn = φn ◦ γn◦φn−1◦ γn−1◦ . . .φ1 ◦ γ1

As illustrated in Fig. 1, an alternating sequential filter can be used to smooth the contour of an object. Fig. 1d shows ASF25(X)
superimposed to the contour of the setX given in Fig. 1a. We can notice that ASF25(X) is neither a superset nor a subset ofX.



In most cases, applying the same alternating sequential filter to the complementary of the object would give approximately∗

the same result (up to the complementation). But in some particular cases, the results of ASFn and those of its dual∗ASFn can
be very different, see Fig. 2. This problem occurs when the object and the background are imbricated together and have the
same thickness. This kind of configuration may appear in certain real-world images, such as binarized fingerprint images.

(a) (b) (c)

Figure 2. (a): a setX (the line is one pixel thick); (b): ASF1(X); (c): ∗ASF1(X).

In many applications we need to smooth an object while preserving its topology. In such a case, the alternating sequential
filter does not provide satisfactory results, as illustrated in Fig. 3. Also, it may be noticed that the result of an alternating
sequential filter ASFn may change dramatically for a small variation of the parameter n (for example, Great Britain suddenly
vanishes from the Europe map betweenn = 22 andn = 23).

(a) (b) (c) (d)

Figure 3. (a): a setX; (b): ASF3(X); (c): ASF9(X); (d): ASF25(X). Notice the changes in the number of connected components
of bothX andX.

3. BASIC NOTIONS OF DIGITAL TOPOLOGY

In this section, we recall some basic notions of digital topology for binary images.13 For the sake of simplicity, we limit
this presentation to the 2D case. We consider the two neighborhoods relationsΓ4 andΓ8 defined by, for each pointx ∈ E:
Γ4(x) = {y∈ E; |y1−x1|+ |y2−x2| ≤ 1}, Γ8(x) = {y∈ E;max(|y1−x1|, |y2−x2|)≤ 1}. In the following, we will denote byn
a number such thatn = 4 or n = 8. We defineΓ∗

n(x) = Γn(x) \ {x}. The pointy∈ E is n-adjacentto x ∈ E if y ∈ Γ∗
n(x). An

n-pathis a sequence of pointsx0 . . .xk with xi n-adjacent toxi−1 for i = 1. . .k.

We say that two pointsx, y of X aren-connected in Xif there is ann-path inX between these two points. This defines
an equivalence relation. The equivalence classes for this relation are then-connected componentsof X, or n-componentsin
short. A subsetX of E is said to ben-connectedif it consists of exactly onen-connected component. The set composed of all
n-connected components ofX which aren-adjacent to a pointx is denoted byCn[x,X].

In order to have a correspondence between the topology ofX and the topology ofX, we have to consider two different kinds
of adjacency forX andX13: if we use then-adjacency forX, we must use then-adjacency forX, with (n,n) = (8,4) or (4,8).
For the sake of simplicity, we assume in the sequel that an adjacency pair has been chosen (e.g.(n,n) = (8,4)) and we do not
write the subscriptn unless necessary.

Informally, a simple pointp of a discrete objectX is a point which is “inessential” to the topology ofX. In other words,
we can remove the pointp from X without “changing the topology ofX”. The notion of simple point is fundamental to the

∗In fact the dual of the operator ASFn is not equal to ASFn itself, but toγn ◦φn ◦ γn−1 ◦φn−1 ◦ . . . γ1 ◦φ1.



definition of topology-preserving transformations in discrete spaces. We give below a definition and a local characterization of
simple points inE = Z

2.

The pointx ∈ X is simple (for X)if eachn-component ofX contains exactly onen-component ofX \ {x} and if eachn-
component ofX∪{x} contains exactly onen-component ofX. Let X ⊆ E andx∈ E, the twoconnectivity numbersare defined
as follows (#X stands for the cardinality ofX):

T(x,X) = #Cn[x,Γ∗
8(x)∩X]; T(x,X) = #Cn[x,Γ∗

8(x)∩X].
The following property allows us to locally characterize simple points,13,19 hence to implement efficiently topology preserving
operators:

x∈ E is simple forX ⊆ E ⇔ T(x,X) = 1 andT(x,X) = 1.

Let X be any finite subset ofE. The subsetY of E is lower homotopic to Xif Y = X or if Y may be obtained fromX by
iterative deletion of simple points (see Fig. 4a-b). The setY is upper homotopic to Xif Y is lower homotopic toX, in other
words, there is a duality between lower and upper homotopy (see Fig. 4c).

Let X be any finite subset ofE. We say that a subsetY of X is ahomotopic ultimate skeleton of Xif Y is lower homotopic
to X and if there is no simple point forY (see Fig. 4d). LetX be any finite subset ofE, and letC be a subset ofX. We say thatY
is ahomotopic ultimate skeleton of X constrained by Cif C ⊆ Y, if Y is lower homotopic toX and if there is no simple point
for Y in Y\C (see e.g.20,21). The setC is called theconstraint setrelative to this skeleton. A particularly useful constraint set is
the medial axis ofX. A homotopic ultimate skeleton ofX constrained by its medial axis is called acentered skeleton of X. (see
Fig. 4e-f).

(a) (b) (c)

(d) (e) (f)

Figure 4. (a): a setX (in white); (b): a set which is lower homotopic toX; (c): a set which is upper homotopic toX; (d): a
homotopic ultimate skeleton ofX; (e): medial axis ofX; (f): centered skeleton ofX. In (b,d,e,f) the original setX appears in
dark gray for comparison.

Clearly, there may exist several different ultimate skeletons for a same setX, depending on the order in which simple points
are selected. Several strategies have been proposed to compute homotopic skeletons which are well centered with respect to the
original object, see22 for a survey. We will denote byH(X,C) a homotopic ultimate skeleton ofX constrained byC obtained by



following one of these strategies, and we will callhomotopic constrained thinningthis operatorH. For the illustrations of this
paper, we choose a strategy which consists in selecting simple points in increasing order of their distance to the background,
thanks to a pre-computed quasi-Euclidean distance map.23

By duality, we also define the operator∗H, calledhomotopic constrained thickening, as follows: for any finite subsetX
of E, and for any finite supersetC of X, ∗H(X,C) = H(X,C). This operator thickens the setX by iterative addition of points
which are simple forX and which belong to the setC, until stability.

4. TOPOLOGICALLY CONTROLLED OPERATORS

Our goal is to propose a smoothing filter which: (i) preservestopology, (ii) preserves the main geometrical features of the object,
(iii) has a parameter specifying the “smoothness” of the result, (iv) has a continuous behaviour with regard to this parameter, and
(v) smoothes the object and its complementary in an equilibrated way. To achieve these goals, we will combine morphological
operators, which provide the desired smoothing effect, andhomotopic transformations, which guarantee topology preservation.
In this section, we focus on the requirements (i), (ii) and (iii). Requirements (iv) and (v) will be considered in section5. The
requirement (i) will be achieved by the use of the previouslyintroduced homotopic operatorH (and its dual∗H). The compli-
ance to requirement (ii) and the smoothing effect will be obtained by constraining the homotopic operators by morphological
dilations and erosions. The size of the structuring element(i.e. the radius of the ball) for these morphological operators will
allow to fullfil requirement (iii).

Let us first consider a “homotopic equivalent” of the erosion, i.e. an operator which shrinks an object while preserving its
topology. Such an operator may be defined as a particular caseof the homotopic constrained thinningH, taking as constraint
set the erosion of the original objectX by a ballBr (see Fig. 5). We obtain a result which is homotopic to the original object,
and which has been shrinked according to the size parameterr (when not in contradiction with topology preservation).

(a) (b) (c) (d)

Figure 5. (a): a setX; (b): ε5(X); (c): ε5(X) superimposed toX; (d): H(X,ε5(X)).

Like the erosion, this operation is anti-extensive, but it is not increasing, as shown by Fig. 6.

(a) (b) (c)

Figure 6. (a): a setX; (b): a setY ⊆ X; (c): the union ofH(X,ε20(X)) andH(Y,ε20(Y)). We see thatH(Y,ε20(Y)) is not
included inH(X,ε20(X)).

Now suppose we want to have a “homotopic equivalent” of the opening operator. The opening operator consists in an
erosion followed by a dilation of the same size. This dilation has the effect of “reconstructing” some parts of the objectwhich



have not been completely deleted by the erosion. If we want toobtain a homotopic operator similar to the opening, several
choices may be considered. First, we could use the opening ofthe original set as a constraint for the operatorH. Fig. 7b
shows the drawback of this approach: the parts of the result that have been kept in order to fullfil the topological preservation
requirement are not properly reconstructed, they consist of thin lines or isolated points. Intuitively, for such an operator, we
want any shape element to be either completely deleted or completely preserved. A second idea is to apply the thickening
operator∗H after the application of the thinnning operatorH. We see in Fig 7(c) that the result is not satisfactory: the resulting
operator is not anti-extensive, contrary to the opening.

(a) (b) (c) (d)

Figure 7. (a): a setX (same as in Fig. 5); (b):H(X,δ20(ε20(X))); (c): ∗H(Y,δ20(Y)), where Y = H(X,ε20(X));
(d): ∗H(Y,δ20(Y)∩X), whereY = H(X,ε20(X)).

To ensure both the anti-extensivity and the preservation ofthe parts that survive the thinning, it is then natural to take the
result of the homotopic thinningH(X,εr(X)) (Fig. 5d), to apply a simple dilation (the result on this object would be the same
as Fig. 7c), to make the intersection withX and to use this as a constraint for the homotopic thickening of H(X,εr(X)) (see the
result in Fig. 7d). We give below a more formal definition of this new operator and its dual version.

Let X be any finite subset ofE, let r ∈ N. Thehomotopic cutting of X by Br , denoted by HCr(X), and thehomotopic filling
of X by Br , denoted by HFr(X), are defined as follows:
HCr(X) = ∗H(Y,δr(Y)∩X), whereY = H(X,εr(X)) ;
HFr(X) = H(Z,εr(Z)∪X), whereZ = ∗H(X,δr(X)) .
We can easily see that for anyr, HCr is anti-extensive and HFr is extensive.

Figures 7d and 8 illustrate these operators. We can see that the homotopic cutting deletes small capes and the homotopic
filling deletes small bays. On the other hand, these operators preserve isthmuses and straits, as well as islands and lakes, which
would be deleted by the classical opening and closing. To summarize, the homotopic cutting has a filtering effect similarto the
opening, except that thin parts of the object which are necessary for the preservation of topology are left unchanged.

(a) (b) (c)

Figure 8. (a): a setX; (b): homotopic filling HF5(X); (c): homotopic cutting HC5(X). The homotopic cutting deletes small
capes and the homotopic filling deletes small bays. On the other hand, these operators preserve isthmuses and straits, aswell
as islands and lakes.



We introduce now constrained versions of the homotopic cutting and filling operators, where constraint sets are used to
indicate which bays or capes must be preserved, even if theirsize is small with respect to the parameterr. We will see in the
next section how to use these constraint sets.

Let X be any finite subset ofE, let C ⊆ X,D ⊆ X, r ∈ N. Thehomotopic cutting of X by Br with constraint set C, denoted
by HCC

r (X), and thehomotopic filling of X by Br with constraint set D, denoted by HFDr (X), are defined as follows:
HCC

r (X) = ∗H(Y,δr(Y)∩X), whereY = H(X,εr(X)∪C) ;

HFD
r (X) = H(Z,εr(Z)∪X), whereZ = ∗H(X,δr(X)∩D) .

5. HOMOTOPIC ALTERNATING SEQUENTIAL FILTER

In this section, we introduce the homotopic alternating sequential filter (HASF) which is a composition of constrained homo-
topic cuttings and fillings by balls of increasing radius. Itis easy to see that neither homotopic cutting nor homotopic filling are
continuous wrt. their numerical parameter (of course, thisis also true for opening and closing). This can be highlighted by the
following example: take a ribbon of uniform width and apply the operator HCr for increasing values ofr. Whenr reaches the
width of the ribbon, the result suddently changes from a ribbon-like shape to a disk-like shape. In order to obtain a smoothing
operator which is continuous wrt. its parameter, we controlthe homotopic alternating sequential filter by two constraint setsC
andD.

Let X be any finite subset ofE, let C ⊆ X,D ⊆ X. Thehomotopic alternating sequential filter of order n with constraint
sets C,D is defined as follows:
HASFC,D

n = HFD
n ◦HCC

n ◦HFD
n−1◦HCC

n−1◦ . . .HFD
1 ◦HCC

1
Notice that if the ordern is greater or equal to the radius of the largest disc which canfit in the object or in the background,
then we have HASFC,D

n = HASFC,D
n+1 = HASFC,D

∞ .

The idea is to use centered skeletons of the object and of the background as constraint sets (see Fig. 9c), and to smooth
the image “as much as possible” using the homotopic alternating sequential filter. Thus, the order of the alternating filter is no
more a useful parameter. Instead, we introduce a new parameter which allows to control the shrinking of the constraint sets,
hence the degree of smoothing.

Let us consider centered skeletons ofX andX (i.e. homotopic skeletons constrained by the medial axes).By iteratively
removing (n times) extremity points from these skeletons, we obtain a family of constraint sets which “vary smoothly” with
respect to the parameter valuen. We give below a formal definition of this family.

Let X ⊆ E, we setC = H(X,MA(X)) andD = H(X,MA(X)∪β), whereβ denotes the rectangular border of the image
domain, and whereH is the homotopic ultimate skeleton defined in section 4. Thus, C is homotopic toX and contains MA(X),
andD is homotopic toX and contains MA(X)∪β (see Fig. 9c). Now we will get our family of constraint sets bysuccessively
pruning out extremity points from the setsC andD. Let SP(X) denote the set of all the points which are simple forX. We
define:
C0 = C ;
D0 = D ; and forn > 0,
Cn = H(Cn−1,Cn−1\SP(Cn−1)) ;
Dn = H(Dn−1,Dn−1\SP(Dn−1)) .
In other words,Cn is obtained fromCn−1 by deleting sequentially simple points chosen in the set SP(Cn−1), until stability (idem
for Dn). Fig. 10a-c shows the resulting sets (in black forCn, in white forDn) for n = 10,30,60 respectively.

Using the sets of this family as constraints for the conditional homotopic alternating filter, we obtain the operator which
associates, to any subsetX of E and to any integern, the set HASFC

n,Dn

∞ (X), where the families{Cn} and{Dn} are defined as
above.

In Fig. 10a-c the contours of the resulting smoothed shapes,as well as the corresponding constraint sets, are superimposed
to the original shapes.

This smoothing operator has all the desired properties: it preserves topology, it has a single parameter that controls the
smoothing degree, it operates both on the object and on the background in a equilibrated way, and the result of this operator
presents small variations in response to small variations of the parameter value.

Notice that, similarly to the morphological alternating sequential filter, the results of this operator and its dual maybe quite
different on particular shapes. This will be the case, for example, with the shape of Fig. 2, and with a high valuen for the
parameter (such thatCn is reduced to one point andDn is equal toβ).



(a) (b) (c)

Figure 9. (a): a setX; (b): MA(X) (in black) and MA(X) (in white); (c):C (in black) andD (in white).

(a) (b) (c)

Figure 10. (a):C10 (in black) andD10 (in white); contour of HASFC
10,D10

∞ (X) ; (b): C30 (in black) andD30 (in white); contour

of HASFC30,D30

∞ (X) ; (c):C60 (in black) andD60 (in white); contour of HASFC
60,D60

∞ (X) .

6. SMOOTHING OF ZOOMED IMAGES

In this section, we present a method based on the homotopic alternating sequential filter for smoothing objects while preserving
both topological and geometric features. A very good example of the need for such a method is a binary image which has been
zoomed by pixel replication. As we have seen in the introduction, existing methods do not guarantee topology preservation, on
the other hand our visual system is very sensitive to the topological characteristics of an image.

Let us consider the image in Fig. 11b, which is a binarizationof a pipe smoking man’s face (a). This image has been
zoomed by a factor 4 in each dimension (c). We will denote byX the set of white points of this zoomed image. With the aim
of smoothing the crenelated contours of the zoomed image, let us first try a simple convolution by a Gaussian kernel followed
by a threshold (Fig. 11f). We can observe that some edges are still irregular, while some thin details, both in black and white
parts, have disappeared.

Now let us apply the homotopic alternating sequential filterwith some adapted constraint sets. Here, we will use medial
axes based on the chessboard distance, also calledd8, which is defined by:d8(x,y) = max(|x1−y1|, |x2−y2|), wherexi andyi



(i ∈ {1,2}) denote the coordinates of the pointsx andy of E. The reason for this choice is explained in the next paragraph.
Fig. 11d-e illustrates medial axes obtained using the Euclidean and the chessboard distance, respectively. In the sequel, MA8(X)
will be used to denote the medial axis based on the chessboarddistanced8.

In this application, it makes sense to take as constraint sets the medial axes based on the chessboard distance: the ballsfor
the chessboard distance are squares, and the zoomed image isprecisely a union of squares with a minimal side length of four
pixels. To preserve the main geometric features of the image, it is sufficient to preserve the centers of maximal squares included
in the object and in the background. The use of two different distances is a logical choice with respect to the application:
the chessboard distance is best adapted to the description of the original shape, while the Euclidean distance involvedin the
definition of the homotopic filter is necessary to produce smooth contours in the result.

We setC= MA8(X) andD = MA8(X), and we compute HASFC,D
∞ (X) . The result is shown in Fig. 11g. It has been obtained

in 10 s. on a standard PC, for an image size of 372× 520. We get a smooth image with no artefacts, a good preservation of
shape, and by construction the preservation of topology is guaranteed. Furthermore, this method has no parameter.

All the operators described in this paper can be easily extended to the 3D discrete gridZ3. In fact these operators only
involve only morphological operators which can be extendedto Z

3 in a straightforward manner, and the notion of simple point,
which has also an efficient characterization in the 3D cubic grid.19 To conclude this section, we show an application on a
zoomed 3D binary image.

The image in Fig. 12b is a rendering of the left ventricle of a human heart. The original 3D image has been obtained
from a MRI device. We have segmented 10 sections (2D images) extracted from the DICOM† file, and we simply stacked
the results (Fig. 12a). The dimensions of the pixel in each section (x, y axes) are 1.5mm× 1.5mm, and the distance between
two sections (z axis) is 6mm. To get the object shown in Fig. 12b, eachxy section has been replicated four times in order
to obtain a more realistic visualization (we will denote this object byX). Fig. 12c shows a rendering of HASFC,D

∞ (X), where
C = MA26(X), D = MA26(X), and where MA26 denotes the medial axis based on the distanced26 defined by:d26(x,y) =
max(|x1− y1|, |x2 − y2|, |x3− y3|). This result has been obtained in 75 s. on a standard PC, for animage size of 80× 80 ×
48. In Fig. 12d,e we show different renderings of the 3D objects depicted in Fig. 12b,c respectively. These renderings were
obtained by using a topologically sound variant of the “marching cubes” method24 to obtain a triangulated surface, and by
displaying this surface using a ray-tracer. No smoothing was applied to the mesh vertices, only the Phong method25 was used
to interpolate normals.

7. CONCLUSION

Topological characteristics are fundamental attributes of an object. In many applications, it is mandatory to preserve or con-
trol the topology of an image. Nevertheless, the design of transformations which preserve both topological and geometrical
features of images is not an obvious task, especially in 3D. In fact, except for the notable case of homotopic skeletons, few
transformations based on these two criteria have been proposed.

In this paper, we introduced the homotopic alternating sequential filter, a general topology-preserving operator witha
smoothing effect which is controlled by a constraint set. Incontrast with the skeleton transformation, the homotopic alternating
sequential filter does not only remove simple points from theobject, but also adds some simple points, treating both the object
and the background in an equilibrated way. Depending on the chosen constraint set, this operator may be used in different
ways. We presented a method without any parameter for smoothing zoomed 2D and 3D images while preserving topology,
using medial axes based on a discrete distance as constraintset. We also presented a general topology preserving smoothing
method which allows to control the degree of smoothing by a single parameter, such that little variations of the parameter only
provoke little variations of the result.

The notions of simple point and homotopic skeleton have beengeneralized to the case of multilevel (i.e. grayscale) images
by G. Bertrand et al.26 This allows us to extend the smoothing procedures introduced in this paper to the case of multilevel
images. This extension will be discussed in forthcoming publications.
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(a) (b)

(d) (e)

(c)

(f) (g)

Figure 11. (a): a pipe smoking man’s face; (b): a binarization of (a); (c): image (b) zoomed 4 times (setX); (d): medial axis
based on the Euclidean distance; (e): medial axis based on the chessboard distance; (f): threshold of a convolution ofX by a
Gaussian kernel; (g): HASFC,D

∞ (X), with C = MA8(X) andD = MA8(X) .
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(b) (c)

(d) (e)

Figure 12. (a): a rendering of a 3D object (slices of the left ventricle of a human heart) ; (b): objectX: the original object zoomed
by 4 in thez direction ; (c): a rendering of HASFC,D

∞ (X), with C = MA26(X) andD = MA26(X) ; (d): another rendering of the
object in (b) ; (e): another rendering of the object in (c).


