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New 
hara
terizations of simple points, minimalnon-simple sets and P-simple points in 2D, 3Dand 4D dis
rete spa
esMi
hel Couprie and Gilles BertrandUniversité Paris-Est, LABINFO-IGM, UMR CNRS 8049, A2SI-ESIEE, Fran
e(m.
ouprie,g.bertrand)�esiee.frAbstra
t. In this arti
le, we present new results on simple points, min-imal non-simple sets (MNS) and P-simple points. In parti
ular, we pro-pose new 
hara
terizations whi
h hold in dimensions 2, 3 and 4, andwhi
h lead to e�
ient algorithms for dete
ting su
h points or sets. Thiswork is settled in the framework of 
ubi
al 
omplexes, and some of themain results are based on the properties of 
riti
al kernels.Introdu
tionTopology-preserving operators, like homotopi
 skeletonization, are used in manyappli
ations of image analysis to transform an obje
t while leaving un
hanged itstopologi
al 
hara
teristi
s. In dis
rete grids (Z2, Z
3, Z

4), su
h a transformation
an be de�ned thanks to the notion of simple point [20℄: intuitively, a point ofan obje
t is 
alled simple if it 
an be deleted from this obje
t without alteringtopology.The most �natural� way to thin an obje
t 
onsists in removing some of itsborder points in parallel, in a symmetri
al manner. However, parallel deletion ofsimple points does not guarantee topology preservation in general. In fa
t, su
ha guarantee is not obvious to obtain, even for the 2D 
ase (see [10℄). C. Ronseintrodu
ed the minimal non-simple sets [28℄ to study the 
onditions under whi
hpoints may be removed simultaneously while preserving topology of 2D obje
ts.This leads to veri�
ation methods for the topologi
al soundness of parallel thin-ning algorithms. Su
h methods have been proposed for 2D algorithms by C.Ronse [28℄ and R. Hall [15℄, they have been developed for the 3D 
ase by T.Y.Kong [21, 16℄ and C.M. Ma [25℄, as well as for the 4D 
ase by C-J. Gau andT.Y. Kong [13, 19℄. For the 3D 
ase, G. Bertrand [1℄ introdu
ed the notion ofP-simple point as a veri�
ation method but also as a methodology to designparallel thinning algorithms [2, 9, 23, 24℄.Introdu
ed re
ently by G. Bertrand, 
riti
al kernels [3, 4℄ 
onstitute a generalframework settled in the 
ategory of abstra
t 
omplexes for the study of parallelthinning in any dimension. It allows easy design of parallel thinning algorithmswhi
h produ
e new types of skeletons, with spe
i�
 geometri
al properties, whileguaranteeing their topologi
al soundness [7, 5, 6℄. A new de�nition of a simplepoint is proposed in [3, 4℄, based on the 
ollapse operation whi
h is a 
lassi
al



tool in algebrai
 topology and whi
h guarantees topology preservation. Then,the notions of an essential fa
e and of a 
ore of a fa
e allow to de�ne the 
riti
alkernel K of a 
omplex X . The most fundamental result proved in [3, 4℄ is that,if a subset Y of X 
ontains K, then X 
ollapses onto Y , hen
e X and Y �havethe same topology�.In this arti
le, we present new results on simple points, minimal non-simplesets (MNS), P-simple points and 
riti
al kernels. Let us summarize the mainones among these results.First of all, we state some 
on�uen
e properties of the 
ollapse operation(Th. 5, Th. 6), whi
h play a fundamental role in the proof of forth
oming theo-rems. These properties do not hold in general due to the existen
e of �topologi
almonsters� su
h as Bing's house ([8℄, see also [27℄); we show that they are indeedtrue in some dis
rete spa
es whi
h are not large enough to 
ontain su
h 
ounter-examples.Based on these 
on�uen
e properties, we derive a new 
hara
terization of2D, 3D and 4D simple points (Th. 7) whi
h leads to a simple, greedy linear timealgorithm for simpli
ity 
he
king.Then, we show the equivalen
e (up to 4D) between the notion of MNS andthe notion of 
ru
ial 
lique, derived from the framework of 
riti
al kernels. Thisequivalen
e (Th. 21) leads to the �rst 
hara
terization of MNS whi
h 
an beveri�ed using a polynomial method.Finally, we show the equivalen
e between the notion of P-simple point andthe notion of weakly 
ru
ial point, also derived from the framework of 
riti
alkernels. This equivalen
e (Th. 23) leads to the �rst lo
al 
hara
terization ofP-simple points in 4D.This paper is self-
ontained, however the proofs 
annot be in
luded due tospa
e limitation. They 
an be found in [12, 11℄, together with some illustrationsand developments.1 Cubi
al ComplexesAbstra
t 
omplexes have been promoted in parti
ular by V. Kovalevsky [22℄ inorder to provide a sound topologi
al basis for image analysis. For instan
e, inthis framework, we retrieve the main notions and results of digital topology, su
has the notion of simple point.Intuitively, a 
ubi
al 
omplex may be thought of as a set of elements havingvarious dimensions (e.g. 
ubes, squares, edges, verti
es) glued together a

ord-ing to 
ertain rules. In this se
tion, we re
all brie�y some basi
 de�nitions on
omplexes, see also [7, 5, 6℄ for more details. We 
onsider here n-dimensional
omplexes, with 0 ≤ n ≤ 4.Let S be a set. If T is a subset of S, we write T ⊆ S. We denote by |S| thenumber of elements of S.Let Z be the set of integers. We 
onsider the families of sets F
1
0, F

1
1, su
h that

F
1
0 = {{a} | a ∈ Z}, F

1
1 = {{a, a + 1} | a ∈ Z}. A subset f of Z

n, n ≥ 2, whi
his the Cartesian produ
t of exa
tly m elements of F
1
1 and (n − m) elements of



F
1
0 is 
alled a fa
e or an m-fa
e of Z

n, m is the dimension of f , we write
dim(f) = m.Observe that any non-empty interse
tion of fa
es is a fa
e. For example, theinterse
tion of two 2-fa
es A and B may be either a 2-fa
e (if A = B), a 1-fa
e,a 0-fa
e, or the empty set.

(a) (b) (
) (d) (e)Fig. 1. Graphi
al representations of: (a) a 0-fa
e, (b) a 1-fa
e, (
) a 2-fa
e, (d) a 3-fa
e,(e) a 4-fa
e.We denote by F
n the set 
omposed of all m-fa
es of Z

n, with 0 ≤ m ≤ n. An
m-fa
e of Z

n is 
alled a point if m = 0, a (unit) interval if m = 1, a (unit)square if m = 2, a (unit) 
ube if m = 3, a (unit) hyper
ube if m = 4 (seeFig. 1).Let f be a fa
e in F
n. We set f̂ = {g ∈ F

n | g ⊆ f} and f̂∗ = f̂ \ {f}.Any g ∈ f̂ is a fa
e of f , and any g ∈ f̂∗ is a proper fa
e of f .If X is a �nite set of fa
es in F
n, we write X− = ∪{f̂ | f ∈ X}, X− is the
losure of X .A set X of fa
es in F

n is a 
ell or an m-
ell if there exists an m-fa
e f ∈ X ,su
h that X = f̂ . The boundary of a 
ell f̂ is the set f̂∗.A �nite set X of fa
es in F
n is a 
omplex (in F

n) if X = X−. Any subset Y ofa 
omplex X whi
h is also a 
omplex is a sub
omplex of X . If Y is a sub
omplexof X , we write Y � X . If X is a 
omplex in F
n, we also write X � F

n. In Fig. 2and Fig. 3, some 
omplexes are represented. Noti
e that any 
ell is a 
omplex.Let X ⊆ F
n be a non-empty set of fa
es. A sequen
e (fi)

ℓ
i=0 of fa
es of X isa path in X (from f0 to fℓ) if either fi is a fa
e of fi+1 or fi+1 is a fa
e of fi,for all i ∈ [0, ℓ − 1]. We say that X is 
onne
ted if, for any two fa
es f, g in X ,there is a path from f to g in X ; otherwise we say that X is dis
onne
ted . Wesay that Y is a 
onne
ted 
omponent of X if Y ⊆ X , Y is 
onne
ted and if Yis maximal for these two properties (i.e., we have Z = Y whenever Y ⊆ Z ⊆ Xand Z is 
onne
ted).Let X ⊆ F

n. A fa
e f ∈ X is a fa
et of X if there is no g ∈ X su
h that
f ∈ ĝ∗. We denote by X+ the set 
omposed of all fa
ets of X .If X is a 
omplex, observe that in general, X+ is not a 
omplex, and that
[X+]− = X .Let X � F

n, X 6= ∅, the number dim(X) = max{dim(f) | f ∈ X+} is thedimension of X . We say that X is an m-
omplex if dim(X) = m.We say that X is pure if, for ea
h f ∈ X+, we have dim(f) = dim(X).In Fig. 2, the 
omplexes (a) and (f) are pure, while (b,
,d,e) are not.



2 Collapse and simple setsIntuitively a sub
omplex of a 
omplex X is simple if its removal from X �doesnot 
hange the topology of X�. In this se
tion we re
all a de�nition of a simplesub
omplex based on the operation of 
ollapse [14℄, whi
h is a dis
rete analogueof a 
ontinuous deformation (a homotopy).Let X be a 
omplex in F
n and let f ∈ X . If there exists one fa
e g ∈ f̂∗ su
hthat f is the only fa
e of X whi
h stri
tly in
ludes g, then g is said to be freefor X and the pair (f, g) is said to be a free pair for X . Noti
e that, if (f, g) isa free pair, then we have ne
essarily f ∈ X+ and dim(g) = dim(f) − 1.Let X be a 
omplex, and let (f, g) be a free pair for X . The 
omplex X\{f, g}is an elementary 
ollapse of X .Let X , Y be two 
omplexes. We say that X 
ollapses onto Y if Y = X or if thereexists a 
ollapse sequen
e from X to Y , i.e., a sequen
e of 
omplexes 〈X0, ..., Xℓ〉su
h that X0 = X , Xℓ = Y , and Xi is an elementary 
ollapse of Xi−1, i = 1, ..., ℓ.If X 
ollapses onto Y and Y is a 
omplex made of a single point, we say that
ollapses onto a point .Fig. 2 illustrates a 
ollapse sequen
e. Observe that, if X is a 
ell of anydimension, then X 
ollapses onto a point. It may easily be seen that the 
ollapseoperation preserves the number of 
onne
ted 
omponents.

(a) f (b) (
)(d) (e) (f)Fig. 2. (a): a pure 3-
omplex X � F
3, and a 3-fa
e f ∈ X+. (f): a 
omplex Y whi
h isthe deta
hment of f̂ from X. (a-f): a 
ollapse sequen
e from X to Y .Let X, Y be two 
omplexes. Let Z su
h that X ∩ Y � Z � Y , and let

f, g ∈ Z \ X . It may be seen that the pair (f, g) is a free pair for X ∪ Z ifand only if (f, g) is a free pair for Z. Thus, by indu
tion, we have the followingproperty.Proposition 1 ([3, 4℄). Let X, Y � F
n. The 
omplex X ∪ Y 
ollapses onto X ifand only if Y 
ollapses onto X ∩ Y .The operation of deta
hment allows to remove a subset from a 
omplex, whileguaranteeing that the result is still a 
omplex.De�nition 2 ([3, 4℄). Let Y ⊆ X � F
n. We set X ⊘ Y = (X+ \ Y +)−. The set

X ⊘ Y is a 
omplex whi
h is the deta
hment of Y from X.



In the following, we will be interested in the 
ase where Y is a single 
ell.For example in Fig. 2, we see a 
omplex X (a) 
ontaining a 3-
ell f̂ , and X ⊘ f̂is depi
ted in (f).Let us now re
all here a de�nition of simpli
ity based on the 
ollapse op-eration, whi
h 
an be seen as a dis
rete 
ounterpart of the one given by T.Y.Kong [17℄.De�nition 3 ([3, 4℄). Let Y ⊆ X; we say that Y is simple for X if X 
ollapsesonto X ⊘ Y .The 
ollapse sequen
e displayed in Fig. 2 (a-f) shows that the 
ell f̂ is simplefor the 
omplex depi
ted in (a).The notion of atta
hment, as introdu
ed by T.Y. Kong [16, 17℄, leads to alo
al 
hara
terization of simple sets, whi
h follows easily from Prop. 1.Let Y � X � F
n. The atta
hment of Y for X is the 
omplex de�ned byAtt(Y, X) = Y ∩ (X ⊘ Y ).Proposition 4 ([3, 4℄). Let Y � X � F

n. The 
omplex Y is simple for X if andonly if Y 
ollapses onto Att(Y, X).Let us introdu
e informally the S
hlegel diagrams as a graphi
al representa-tion for visualizing the atta
hment of a 
ell. In Fig. 3a, the boundary of a 3-
ell f̂and its S
hlegel diagram are depi
ted. The interest of this representation lies inthe fa
t that a stru
ture like f̂∗ lying in the 3D spa
e may be represented in the2D plane. Noti
e that one 2-fa
e of the boundary, here the square efhg, is notrepresented by a 
losed polygon in the s
hlegel diagram, but we may 
onsiderthat it is represented by the outside spa
e.As an illustration of Prop. 4, Fig. 3b shows (both dire
tly and by its S
hlegeldiagram) the atta
hment of f̂ for the 
omplex X of Fig. 2a, and we 
an easilyverify that f̂ 
ollapses onto Att(f̂ , X).
(a) a b

c d

e f

g h

e

g h

f

a

c d

b (b)Fig. 3. (a): The boundary of a 3-
ell and its S
hlegel diagram. (b): The atta
hment of
f̂ for X (see Fig. 2a).Representing 4D obje
ts is not easy. To start with, let us 
onsider Fig. 4awhere a representation of the 3D 
omplex X of Fig. 2a is given under the formof two horizontal 
ross-se
tions, ea
h bla
k dot representing a 3-
ell.In a similar way, we may represent a 4D obje
t by its �3D se
tions�, as theobje
t Y in Fig. 4b. Su
h an obje
t may be thought of as a �time series of 3Dobje
ts�. In Fig. 4b, ea
h bla
k dot represents a 4-
ell of the whole 4D 
omplex Y .S
hlegel diagrams are parti
ularly useful for representing the atta
hment ofa 4D 
ell f̂ , whenever this atta
hment if not equal to f̂∗. Fig. 5a shows the



(a) f (b) h

n

m

g

i

k
l

jFig. 4. (a): An alternative representation of the 3D 
omplex X of Fig. 2a. (b): A similarrepresentation of a 4D 
omplex Y .S
hlegel diagram of the boundary of a 4-
ell (see Fig. 1e), where one of the 3-fa
es is represented by the outside spa
e. Fig. 5b shows the S
hlegel diagramof the atta
hment of the 4-
ell g in Y (see Fig. 4b). For example, the 3-
ell Hrepresented in the 
enter of the diagram is the interse
tion between the 4-
ell gand the 4-
ell h. Also, the 2-
ell I (resp. the 1-
ell J , the 1-
ell K, the 0-
ell L)is g ∩ i (resp. g ∩ j, g ∩ k, g ∩ l). The two 2-
ells whi
h are the interse
tions of gwith, respe
tively, m and n, are both in
luded in the 3-
ell H . Observe that the
ell g is not simple (its atta
hment is not 
onne
ted).
(a) (b) H

JI

K

LFig. 5. (a): The S
hlegel diagram of the boundary of a 4-
ell. (b): The S
hlegel diagramof the atta
hment of the 4-
ell g of Fig. 4b, whi
h is not simple.3 Con�uen
esLet X � F
n. If f is a fa
et of X , then by Def. 3, f̂ is simple if and only if X
ollapses onto X ⊘ f̂ . From Prop. 4, we see that 
he
king the simpli
ity of a
ell f redu
es to the sear
h for a 
ollapse sequen
e from f̂ to Att(f̂ , X). We willshow in Se
. 4 that the huge number (espe
ially in 4D) of possible su
h 
ollapsesequen
es need not be exhaustively explored, thanks to the 
on�uen
e properties(Th. 5 and Th. 6) introdu
ed in this se
tion.Consider three 
omplexes A, B, C. If A 
ollapses onto C and A 
ollapsesonto B, then we know that A, B and C �have the same topology�. If furthermorewe have C � B � A, it is tempting to 
onje
ture that B 
ollapses onto C.In the two-dimensional dis
rete plane F

2, the above 
onje
ture is true, we
all it a 
on�uen
e property. But quite surprisingly it does not hold in F
3 (moregenerally in F

n, n ≥ 3), and this fa
t 
onstitutes indeed one of the prin
ipaldi�
ulties when dealing with 
ertain topologi
al properties, su
h as the Poin
aré
onje
ture for example. A 
lassi
al 
ounter-example to this assertion is Bing'shouse ([8℄, see also [27℄).



In the boundary of an n-fa
e with n ≤ 4, there is �not enough room� to buildsu
h 
ounter-examples, and thus some kinds of 
on�uen
e properties hold.Theorem 5 (Con�uen
e 1). Let f be a d-fa
e with d ∈ {2, 3, 4}, let A, B � f̂∗su
h that B � A, and A 
ollapses onto a point. Then, B 
ollapses onto a pointif and only if A 
ollapses onto B.The se
ond 
on�uen
e theorem may be easily derived from Th. 5 and thefa
t that f̂ 
ollapses onto a point.Theorem 6 (Con�uen
e 2). Let f be a d-fa
e with d ∈ {2, 3, 4}, and let C, D �

f̂∗ su
h that D � C, and f̂ 
ollapses onto D. Then, f̂ 
ollapses onto C if andonly if C 
ollapses onto D.4 New 
hara
terization of simple 
ellsIn the image pro
essing literature, a (binary) digital image is often 
onsideredas a set of pixels in 2D or voxels in 3D. A pixel is an elementary square and avoxel is an elementary 
ube, thus an easy 
orresponden
e 
an be made betweenthis 
lassi
al view and the framework of 
ubi
al 
omplexes.If X � F
n and if X is a pure n-
omplex, then we write X ⊑ F

n. In otherwords, X ⊑ F
n means that X+ is a set 
omposed of n-fa
es (e.g., pixels in 2Dor voxels in 3D). If X, Y ⊑ F

n and Y � X , then we write Y ⊑ X .Noti
e that, if X ⊑ F
n and if f̂ is an n-
ell of X , then X ⊘ f̂ ⊑ F

n. Thereis indeed an equivalen
e between the operation on 
omplexes whi
h 
onsistsof removing (by deta
hment) a simple n-
ell, and the removal of an 8-simple(resp. 26-simple, 80-simple) point in the framework of 2D (resp. 3D, 4D) digitaltopology (see [16, 17, 7, 6℄).From Prop. 4 and Th. 6, we have the following 
hara
terization of a simple
ell, whi
h does only depend on the status of the fa
es whi
h are in the 
ell.Theorem 7. Let X ⊑ F
d, with d ∈ {2, 3, 4}. Let f be a fa
et of X, and let

A = Att(f̂ , X). The two following statements hold:i) The 
ell f̂ is simple for X if and only if f̂ 
ollapses onto A.ii) Suppose that f̂ is simple for X. For any Z su
h that A � Z � f̂ , if f̂ 
ollapsesonto Z then Z 
ollapses onto A.Now, thanks to Th. 7, if we want to 
he
k whether a 
ell f̂ is simple or not,it is su�
ient to apply the following greedy algorithm:Set Z = f̂ ;Sele
t any free pair (f, g) in Z \ A, and set Z to Z \ {f, g} ;Continue until either Z = A (answer yes) or no su
h pair is found (answer no).If this algorithm returns �yes�, then obviously f̂ 
ollapses onto A and by i),
f̂ is simple. In the other 
ase, we have found a sub
omplex Z of A su
h that f̂
ollapses onto Z and Z does not 
ollapse onto A, thus by the negation of ii), f̂is not simple.This algorithm may be implemented to run in linear time with respe
t to thenumber of elements in the atta
hment of a 
ell.



5 Criti
al kernelsLet us brie�y re
all the framework introdu
ed by one of the authors (in [3, 4℄) forthinning, in parallel, dis
rete obje
ts with the warranty that we do not alter thetopology of these obje
ts. We fo
us here on the two-, three- and four-dimensional
ases, but in fa
t some of the results in this se
tion are valid for 
omplexes ofarbitrary dimension. This framework is based solely on three notions: the notionof an essential fa
e whi
h allows us to de�ne the 
ore of a fa
e, and the notionof a 
riti
al fa
e.De�nition 8. Let X � F
n and let f ∈ X. We say that f is an essential fa
efor X if f is pre
isely the interse
tion of all fa
ets of X whi
h 
ontain f , i.e., if

f = ∩{g ∈ X+ | f ⊆ g}. We denote by Ess(X) the set 
omposed of all essentialfa
es of X. If f is an essential fa
e for X, we say that f̂ is an essential 
ell for
X. If Y � X and Ess(Y ) ⊆ Ess(X), then we write Y E X.Observe that a fa
et of X is ne
essarily an essential fa
e for X , i.e., X+ ⊆Ess(X). Observe also that, if X and Y are both pure n-
omplexes, we have that
Y E X whenever Y is a sub
omplex of X .De�nition 9. Let X � F

n and let f ∈ Ess(X). The 
ore of f̂ for X is the
omplex Core(f̂ , X) = ∪{ĝ | g ∈ Ess(X) ∩ f̂∗}.Proposition 10 ([3℄). Let X � F
n, and let f ∈ Ess(X). Let K = {g ∈ X | f ⊆

g}, and let Y = X ⊘ K. We have: Core(f̂ , X) = Att(f̂ , Y ∪ f̂) = f̂ ∩ Y .Corollary 11 ([3, 4℄). Let X � F
n, and let f ∈ X+. We have: Core(f̂ , X) =Att(f̂ , X).De�nition 12. Let X � F

n and let f ∈ X. We say that f and f̂ are regularfor X if f ∈ Ess(X) and if f̂ 
ollapses onto Core(f̂ , X). We say that f and f̂are 
riti
al for X if f ∈ Ess(X) and if f is not regular for X.If X � F
n, we set Criti
(X) = ∪{f̂ | f is 
riti
al for X}, we say that Criti
(X)is the 
riti
al kernel of X.A fa
e f in X is a maximal 
riti
al fa
e, or an M-
riti
al fa
e (for X), if f isa fa
et of Criti
(X).In other words, f is an M-
riti
al fa
e if it is 
riti
al and not in
luded in anyother 
riti
al fa
e.Proposition 13 ([3, 4℄). Let X � F

n, and let f ∈ Ess(X). Let Y = ∪{ĝ | g ∈

X+ and f ⊆ g} and Z = [X ⊘ Y ] ∪ f̂ . The fa
e f is regular for X if and onlyif f̂ is simple for Z.The following theorem is the most fundamental result 
on
erning 
riti
alkernels. We use it for the proofs of our main properties in dimension 4 or less,but noti
e that the theorem holds whatever the dimension.Theorem 14 ([3, 4℄). Let n ∈ N, let X � F
n.i) The 
omplex X 
ollapses onto its 
riti
al kernel.



ii) If Y E X 
ontains the 
riti
al kernel of X, then X 
ollapses onto Y .iii) If Y E X 
ontains the 
riti
al kernel of X, then any Z su
h that Y � Z E X
ollapses onto Y .If X is a pure n-
omplex (e.g., a set of 3-
ells, or voxels, in F
3), the 
riti
alkernel of X is not ne
essarily a pure n-
omplex. The notion of 
ru
ial 
lique,introdu
ed in [7℄, allows us to re
over a pure n-sub
omplex Y of an arbitrarypure n-
omplex X , under the 
onstraint that X 
ollapses onto Y .De�nition 15 ([7℄). Let X ⊑ F

n, and let f be an M-
riti
al fa
e for X. Theset K of all the fa
ets of X whi
h 
ontain f is 
alled a 
ru
ial 
lique (for X).More pre
isely, K is the 
ru
ial 
lique indu
ed by f .
(a) (b) (
) (d) (e) (f)Fig. 6. Cru
ial 
liques in F

3 (represented in light gray): (a) indu
ed by an M-
riti
al 0-fa
e; (b,
) indu
ed by an M-
riti
al 1-fa
e; (d,e,f) indu
ed by an M-
riti
al 2-fa
e. The
onsidered M-
riti
al fa
es are in dark gray, the 
ore of these M-
riti
al fa
es (whennon-empty) is represented in bla
k.Some 3D 
ru
ial 
liques are illustrated in Fig. 6. By Th. 14 and the abovede�nition, if a sub
omplex Y ⊑ X ⊑ F
n 
ontains all the 
riti
al fa
ets of X , andat least one fa
et of ea
h 
ru
ial 
lique for X , then X 
ollapses onto Y .Now, let us state two properties of 
ru
ial 
liques whi
h are essential for theproof of one of our main results (Th. 21).Proposition 16. Let X ⊑ F

d, with d ∈ {2, 3, 4}, let f be an M-
riti
al fa
e of
X, let K be the 
ru
ial 
lique indu
ed by f , and let k be any fa
et of K. Let K ′be su
h that K ′ ⊆ K \ {k} and K ′ 6= K \ {k}.Then, k is a simple fa
e of the 
omplex [X ⊘ K ′].Proposition 17. Let X ⊑ F

d, with d ∈ {2, 3, 4}, let f be an M-
riti
al fa
e of
X, let K be the 
ru
ial 
lique indu
ed by f , and let k be any fa
et of K.Then, k is not a simple fa
e of the 
omplex [X ⊘ K] ∪ k̂.6 Minimal non-simple setsC. Ronse introdu
ed in [28℄ the minimal non-simple sets (MNS) to propose some
onditions under whi
h simple points 
an be removed in parallel while preservingtopology. This leads to veri�
ation methods for the topologi
al soundness of 2D



thinning algorithms [28, 15℄, 3D thinning algorithms [21, 16, 25℄, the 4D 
ase haseven been 
onsidered in [13, 18, 19℄.The main result of this se
tion (Th. 21) states the equivalen
e between MNSand 
ru
ial 
liques in dimensions 2, 3 and 4. This equivalen
e leads to the �rst
hara
terization of MNS whi
h 
an be veri�ed using a polynomial method. In
ontrast, the very de�nition of a MNS (see below), as well as the 
hara
terizationof Th. 18, involves the examination of all subsets of a given 
andidate set, e.g.,a subset of a 2 × 2 × 2 × 2 blo
k in 4D.Let X ⊑ F
d, with d ∈ {2, 3, 4}. A sequen
e 〈k0, . . . , kℓ〉 of fa
ets of X is saidto be a simple sequen
e for X if k0 is simple for X , and if, for any i ∈ {1, . . . , ℓ},

ki is simple for X ⊘ {kj | 0 ≤ j < i}. Let K be a set of fa
ets of X . The set
K is said to be F-simple (where �F� stands for fa
et) for X if K is empty, orif the elements of K 
an be ordered as a simple sequen
e for X . The set K isminimal non-simple for X if it is not F-simple for X and if all its proper subsetsare F-simple. The following 
hara
terization will be used in the sequel.Theorem 18 (adapted from Gau and Kong [13℄, theorem 3). Let X ⊑ F

d, with
d ∈ {2, 3, 4}, and let K ⊆ X+. Then K is a minimal non-simple set for X ifand only if the two following 
onditions hold:i) Ea
h k of K is non-simple for [X ⊘ K] ∪ k̂.ii) Ea
h k of K is simple for [X ⊘ K ′] whenever K ′ ⊆ K \{k} and K ′ 6= K \{k}.For example, it may be seen that the sets displayed in Fig. 6 in light grayare indeed minimal non-simple sets.Th. 19 is a key property1 whi
h is used to prove Prop. 20 and Th. 23.Theorem 19. Let f be a d-fa
e with d ∈ {2, 3, 4}, let ℓ be an integer stri
tlygreater than 1, let X1, . . . , Xℓ be ℓ sub
omplexes of f̂ . The two following asser-tions are equivalent:i) For all L ⊆ {1, . . . , ℓ} su
h that L 6= ∅, ∪i∈LXi 
ollapses onto a point.ii) For all L ⊆ {1, . . . , ℓ} su
h that L 6= ∅, ∩i∈LXi 
ollapses onto a point.Let us now establish the link between MNS and 
ru
ial 
liques.Proposition 20. Let X ⊑ F

d, with d ∈ {2, 3, 4}, let K be a minimal non-simpleset for X, and let f be the interse
tion of all the elements of K. Then, f is anM-
riti
al fa
e for X and K is the indu
ed 
ru
ial 
lique.If K is a 
ru
ial 
lique for X , then from Th. 18, Prop. 16 and Prop. 17, K isa minimal non-simple set for X . Conversely, if K is a minimal non-simple set for
X , then by Prop. 20, K is a 
ru
ial 
lique. Thus, we have the following theorem.Theorem 21. Let X ⊑ F

d, with d ∈ {2, 3, 4}, and let K ⊆ X+. Then K is aminimal non-simple set for X if and only if it is a 
ru
ial 
lique for X.1 Noti
e that a similar property holds in R
3, in the framework of algebrai
 topology, ifwe repla
e the notion of 
ollapsibility onto a point by the one of 
ontra
tibility [18,26℄.



7 P-simple pointsIn the pre
eding se
tion, we saw that 
riti
al kernels whi
h are settled in theframework of abstra
t 
omplexes allow to derive the notion of a minimal non-simple set proposed in the 
ontext of digital topology. Also in the framework ofdigital topology, one of the authors introdu
ed the notion of P-simple point [2℄,and proved for the 3D 
ase a lo
al 
hara
terization whi
h leads to a linear al-gorithm for testing P-simpli
ity. In [7℄, we stated the equivalen
e between thenotion of 2D P-simple points and a notion derived from the one of 
ru
ial 
lique.Here, we extend this equivalen
e result up to 4D.Let X ⊑ F
n, and let C ⊆ X+. A fa
et k ∈ C is said to be P-simple for 〈X, C〉if k is simple for all 
omplexes X ⊘ T , su
h that T ⊆ C \ {k}.De�nition 22. Let X ⊑ F

n, and let C be a set of fa
ets of X, we set D =
X+ \ C. Let k ∈ C, we say that k is weakly 
ru
ial for 〈X, D〉 if k 
ontains afa
e f whi
h is 
riti
al for X, and su
h that all the fa
ets of X 
ontaining f arein C.Theorem 23. Let X ⊑ F

d, with d ∈ {2, 3, 4}, let C be a set of fa
ets of X, let
D = X ⊘ C. Let k ∈ C, the fa
et k is P-simple for 〈X, C〉 if and only if k is notweakly 
ru
ial for 〈X, D〉.Con
lusionWe provided in this arti
le a new 
hara
terization of simple points, in dimen-sions up to 4D, leading to an e�
ient simpli
ity testing algorithm. Moreover,we demonstrated that the main 
on
epts previously introdu
ed in order tostudy topology-preserving parallel thinning in the framework of digital topol-ogy, namely P-simple points and minimal non-simple sets, may be not onlyretrieved in the framework of 
riti
al kernels, but also better understood andenri
hed. Criti
al kernels thus appear to 
onstitute a unifying framework whi
hen
ompasses previous works on parallel thinning.Referen
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