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Abstract LInear amplification with Nonlinear Component
(LINC) transmitter architecture is an efficient solution for
high efficiency amplification of signals. Nonetheless, this
solution suffers both from gain impairment and delay mis-
match between the two signal paths. Indeed, a mismatch in
propagation time between the paths degrades the quality of
the transmit signal but also disrupts the convergence of the
gain correction algorithm resulting in a degradation of its
performance. In this paper, we present an adaptive algorithm
based on a gradient descent formulation for the identifica-
tion and correction of these delays. We also demonstrate its
effectiveness when applied prior to the gain adjustment pro-
cedure. The identification approach is preferred here, to en-
sure monitoring facilities.
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1 Introduction

The high data rate demand for data transmissions in radio-
communication systems implies the use of efficient modula-
tion schemes for increasing the spectral efficiency of these
systems. The use of non constant envelope modulations in-
duces stringent constraints on the linearity and the efficiency
of the transmitter. Thus, the choice of the transmit architec-
ture is realized considering the feasibility of the analog front
end and the additive digital signal processing necessary for
achieving desired performances [1].

Among all the appropriate transmitter architectures, we
find the LINC solution which is based on the separation
of any modulated signal into two constant envelope phase
modulated signals. These two signals follow two parallel
paths and are recombined after efficient power amplifica-
tion. However, this architecture is sensitive to mismatch be-
tween the two transmit paths: gain impairment and differ-
ences in propagation delays. The gain imbalance is a well
known drawback of this topology and some solutions for
solving this problem are presented in [2–5]. In addition to
this gain mismatch, we demonstrate in this paper that the
delay mismatch between the two paths has to be taken into
account. It does not only degrade the output performances
of the transmitter but also corrupts the gain correction by
adding a time dependent perturbation on the phase.

In the first part of this paper, after a brief introduction to
the LINC architecture and the impact of the delay mismatch
on output performances, we will present a solution for de-
lay adjustment based on the minimization of the quadratic
error between the desired output signal and the emitted one.
In the second part of this article, we will demonstrate the
usefulness of this correction in addition to a gain mismatch
correction between the two paths
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Fig. 1 Simulation model of the transmitter. This model includes an I/Q modulator signal component separator for the generation of the two
constant envelope modulated signals. Both signals are convertedinto analog using 8-bit DAC and translated to RF with an I/Q modulator. The sum
of the two signals is operated at the output of the PAs and a feedback loop (quadrature demodulation and 8-bit ADCs) is implemented for applying
correction algorithms.

2 LINC transmitter

2.1 Principle of the architecture

The principle of the LINC transmitter [6] consists of rewrit-
ing any modulated signal as the sum of two constant enve-
lope modulated signals, denoted bys1(t) ands2(t).

s(t) = s1(t)+ s2(t).

After the frequency translation and efficient amplification
stages, these two signals are added, with a combiner, so as
to recover the original modulated signal.

The generation of the two constant envelope phase mod-
ulated signals is based on the following development: let us
consider the band-limited modulated signal expressed using
its complex representation,

s(t) = a(t)expjφ(t), (1)

with max[a(t)] = Am anda(t) = Am cos(θ (t)).
At the output of the SCS (Signal Component Separator), two
phase modulated signals,s1(t) ands2(t), are generated with:

s1(t) = expj(φ(t)−θ(t)) , s2(t) = expj(φ(t)+θ(t)) . (2)

These two signals can also be expressed as:

s1(t) = 1
2 [s(t)− se(t)]

s2(t) = 1
2 [s(t)+ se(t)]

(3)

with

se(t) = js(t)

√

A2
m

a2(t)
−1. (4)

This component separator can be implemented using either
a digital processing unit or an analog approach as demon-
strated in [7] and [8].

The model of the LINC transmitter developed in this ar-
ticle, Fig.1, is realized with Agilent ADS. This model takes
into account quantization effects, with 8-bit DACs at a sam-
ple rate of 8Fs. The output of these DACs are filtered with
5th order Butterworth filters before the quadrature modula-
tion and the amplification. For the purpose of the study, RF
delays are added in each path to model the desynchroniza-
tion between the two signals. The feedback loop is imple-
mented with a quadrature demodulator and two 8-bit ADCs
at a similar sampling rate of 8Fs.

2.2 Impact of delay mismatch

In this paper, we consider the performance of a transmitter
according to the 3GPP standard using the 16QAM modula-
tion for HSDPA with a chip rate of 3.84 Mcps [9]. Among
all the scenarios specified in this standard, we will focus on
the most stringent performance specifications. The output
RF spectrum emissions are specified in term of Adjacent
Channel Leakage power Ratio (ACLR). The specification of
the ACLR is 33dB at ±5 MHz from the assigned channel
frequency and 43dB at±10 MHz. The EVM has to remain
lower than 17.5 %. In the simulation model implemented,
without any desychronization, the EVM value is 0.3 % and
ACLR at±5 MHz and±10MHz are respectively 43dB and
53 dB.

To evaluate the impact of delay mismatch between the
two paths, we introduce a differential delay. The results of
simulations are given in Table 1, whereTs is the duration
of an emitted symbol at the output of the modulator (this is
in fact the chip time of the standard) and is equal toTchip =

Ts = 1/3.84e6≈ 260ns. From these results, it is obvious that
both EVM and ACLR are impacted:Ts/32≈ 8 ns seems to
be the limit of acceptance for the delay, without any margin
for other impairments in this architecture. Therefore delay
compensation is mandatory.



3

Table 1 Impacts of differential delay mismatches on the EVM and on
the spectrum.

Delay EVM ( %) ACLR @±5 MHz
Ts/64 1.6 % 38 dB
Ts/32 3.2 % 32 dB
Ts/21 5 % 28 dB
Ts/16 6.8 % 26 dB
Ts/13 8.8 % 24 dB
Ts/10 10.7 % 22 dB
Ts/9 12.1 % 21 dB
Ts/8 13.5 % 20 dB

3 Delay Adjustment

In this section we present a delay identification algorithm in
order to cancel mismatch, and so, improve the performance
of the transmitter.

3.1 Synchronisation algorithm principle

Let us consider thats1(t) is delayed byτ1 whereass2(t) is
delayed byτ2, with τ2− τ1 = ∆ . At the output of the trans-
mitter, considering these delays, the original modulated sig-
nal s(t) is modified to givez(t):

z(t) = z1(t)+ z2(t)
= s1(t − τ1)+ s2(t − τ2)

(5)

This can be rewritten as:

z(t) =
1
2



s(t − τ1)+ s(t − τ2)
︸ ︷︷ ︸

1





+
1
2



se(t − τ2)− se(t − τ1)
︸ ︷︷ ︸

2



 . (6)

The first term of this expression corresponds to the linear
interpolation ofs(t) at the timet − τ1 + ∆

2 , the second term
is the first order derivative ofse(t) at the timet − τ1 + ∆

2 . In
order to compensate for these delays, a feedback loop asso-
ciated with an adaptive algorithm is one solution. The aim
of the algorithm is to reduce the quadratic distance between
the original signal,s(t), and the emitted one,z(t).

Two solutions for the implementation can be explored.
The first is to advance directly the emitted signal by values
µ1 = τ1 andµ2 = τ2 so that the various delays are canceled:
this is a correction algorithm. This approach is similar to the
one presented in [10] for gain correction. One of the draw-
backs of this solution is the need for an additive SCS in the
feedback loop. Moreover, this solution is restricted to real
time correction that precludes any monitoring capabilities.

The second solution resolves the values ofτ1 and τ2:
this is the identification procedure. Once the identification

is done, the correction could be applied, if necessary. This
implementation allows both correction and monitoring. Fi-
nally, the identification procedure presents the advantageof
avoiding the use of an additive SCS. Advancing or delaying
the signal is of course only possible if the transmitter intro-
duces a delay between the emitted signal and the output of
the modulator with a buffer. Moreover, the solution for de-
laying or advancing signals by fractional amounts relies on
the use of interpolation filters which allow to adjust the de-
lay without modifying the implementation of the filter [11],
[12]. The choice of this interpolator has to be studied further
because it impacts directly the value of the interpolated sig-
nal EVM. For this reason, we choose to implement a fifth
order Lagrange interpolator using the farrow structure [13].

3.2 Derivation of the delay identification algorithm

Let us now study the formulation of the algorithm. If we
denotee(t) = z(t)− s(t) the error function we want to mini-
mize, the gradient algorithm consists of iterating the searched
value as follows:

µ(k +1) = µ(k)− γ(k)
∂J(µ)

∂ µ

∣
∣
∣
∣
µ=µ(k)

with J(µ) = E
[
|e(t)|2

]
being the mean square error andγ the

adaptation step. Rewriting the expression of the derivative of
the mean square error brings to:

∂J(µ)

∂•
=

∂E
[
|e(t)|2

]

∂•
= 2E

[

ℜ
(

∂e∗(t)
∂•

e(t)

)]

For the identification of the delays introduced by the trans-
mitter, the algorithm will resolveµ1 andµ2 values such as:

s1(t −µ1) = z1(t)
s2(t −µ2) = z2(t)

(7)

This procedure is illustrated Fig.2. Considering the errorto
be of the form:

e(t) = z(t)− s1(t −µ1)− s2(t −µ2),

the derivative of the mean square error can be written as:

∂J(µ1,µ2)
∂ µi

=
∂E[|e(t)|2]

∂ µi

= −2E
[

ℜ
[

e(t)
∂ s∗i (t−µi)

∂ µi

]] (8)

The final formulation of the gradient algorithm is, withi =

1,2,

µi(k +1) = µi(k)+2γ(k)ℜ

[

e(t)
∂ s∗i (t −µi)

∂ µi

∣
∣
∣
∣
µi=µi(k)

]

.

This procedure then consists of finding the values of these
two delaysµ1 andµ2. Once these delays are identified, the
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Fig. 2 Identification architecture : delayµ1 andµ2 are adjusted to cancel the quadratic error. After convergence, the correction is calculated and
applied.

correction would have to be applied to the transmit path. It
is worth noting that the algorithm not only identifies differ-
ential delay mismatch but also the global delay introduced
by the analog front end. If the global delay introduced in
the transmitter is acceptable for the application, the correc-
tion may be only differential and operated on a single path
instead of being absolute for the two paths.

3.3 Simulation results

The convergence time for the identification procedure is il-
lustrated Fig.3, for the same test cases as the ones given in
Table 1, with a pseudo-random sequence at the input of the
modulator. In the simulation scenarios, the differential delay,
∆ , was only applied onτ1. Both delaysµ1 andµ2 are iden-
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Fig. 3 Identification ofµ1 andµ2 normalized to the symbol time, for
∆ = [Ts/64,Ts/32,Ts/16,Ts/8]

tified and the results take into account both, global propaga-
tion time linked to the baseband filters and the differential

delay mismatch. After 300Tc ≈ 100 µs the convergence is
obtained. The correction is then applied (by delaying or ad-
vancing one path relative to the other) and this allows, for all
cases, the reduction of the EVM to 0.6 % with an ACLR at
±5 MHz higher than 43dB. The output spectrum after cor-
rection is shown in Fig.4. The dramatic improvement of the
performance compared to the values given in Table 1 high-
lights the effectiveness of this delay equalization algorithm.
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Fig. 4 Output spectrum after identification and correction of the de-
lays, for∆ = [Ts/64,Ts/32,Ts/16,Ts/8]

4 Gain and delay adjustment

In this section, we will now present the gain identification
algorithm and demonstrate the necessity to realize a delay
identification before applying a gain correction procedure.

4.1 Gain adjustment algorithm

Due to the non-linear operation on the modulated signal
for the generation of the two constant envelope signals, we
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Fig. 5 Gain and Delay mismatch cancellation architecture : delayµ1 andµ2 are identified (K1 = K2 = 1), corrected. The gain mismatch identifi-
cation is realized in a second step. After convergence, the gain correction is applied.

choose to apply for the gain correction the same identifica-
tion procedure as presented previously for the delay adjust-
ment. Indeed, direct correction solutions as in [10] are only
valid if we consider that the SCS in the return path gives
at its outputzi(t) ∝ si(t): inspection of the formula suggests
that this assumption is not valid for all types of signals. The
output signalz(t), see Fig.5, has now the following form,
with G1 andG2 the two complex gains:

z(t) = G1s1(t)+G2s2(t).

The objective of the algorithm is to findK1 andK2 so that
we minimize the quadratic error:

J(K1,K2) = E
[
|K1s1(t)+K2s2(t)− z(t)|2

]
.

This gives, fori = 1,2:

ℜ(Ki(k +1)) = ℜ(Ki(k))+2γk(k)ℜ[e(t)s∗i (t)],

and

ℑ(Ki(k +1)) = ℑ(Ki(k))+2γk(k)ℜ[ j.e(t)s∗i (t)].

As already highlighted in the introduction, the gain correc-
tion cannot be correctly achieved without a preliminary syn-
chronization between the reference and the emitted signal.
We introduced a gain and phase mismatch of 0.5 dB and 5o

in the transmitter Fig.1 with no additional differential delays
in both transmit paths than the one introduced by the analog
filters. The ACLR is about 30dB at 5 MHz and the EVM
is approximately 5.9 %. Without any preliminary identifica-
tion of the processing delay in the transmit path, the gain
correction algorithm fails to converge. This is due to the fact
that the algorithm tries to cancel, with the two complex gain
phase values, a delay comprising the analog front end time
processing and the phase value of both complex gains. If we
simply identify this processing delay (ideal case here) and
add it in the simulation before gain identification, the ACLR
is higher than 43dB and the EVM lower than 0.6 % after

the identification and correction of those two complex gains.
This demonstrates the usefulness of the delay synchroniza-
tion before the gain identification procedure even if there is
no differential delay mismatch between the two paths.
The algorithm is implemented as follows, see Fig.5:

– Identification of the delays
– Correction of the delays
– Identification of the complex gains
– Correction of the complex gains

In our simulation environment, we choose to apply the delay
correction after a convergence time of 500T s.

4.2 Results of simulation

Further simulations were realized including both delay mis-
match and gain impairment. We introduced a differential de-
lay mismatch ofT s/32≈ 9 ns between the two paths: this
corresponds to a mismatch of 10 % of the propagation time
between the two analog filters. A comparison of results was
realized between the performance before the correction, af-
ter only a simple non differential delay identification (theo-
retical value taken for processing time in our simulated ana-
log front end) and finally with the differential delay adjust-
ment procedure. Results given in Table 2 demonstrate the
efficiency of a differential delay correction as this allowsa
reduction of about 15dB on ACLR and lowers the EVM to
less than 1 %. It should be pointed out that for greater mi-
match (above 1dB and 15o) the algorithm exhibits poorer
results in term of ACLR and EVM.

5 Conclusions

This paper addresses the sensitivity of the LINC transmitter
architecture to impairments between the two transmit paths.
In Addition to gain mismatch, we consider the impact of
mismatch in analog processing delays and we evaluate its
effects on the transmitter performances.
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Table 2 Algorithms performances with and without differential delayadjustment, with∆ = τ1− τ2 = Ts/32

Before Without Diff Delay Adj With Delay Adj
∆G ∆φ EVM ( %) ACLR EVM ( %) ACLR EVM ( %) ACLR

0.1dB 2o 4.2 % 27 dB 3.7 % 28 dB 0.7 % 43 dB
0.2dB 5o 6.9 % 23 dB 3.7 % 28 dB 0.8 % 41 dB
0.5dB 5o 6.9 % 23 dB 3.8 % 28 dB 0.7 % 41 dB
0.6dB 8o 10.8 % 20 dB 3.8 % 28 dB 0.8 % 40 dB
0.8dB 10o 14.1 % 18 dB 3.8 % 28 dB 0.9 % 39 dB

A solution to identify delays in each transmit path is pro-
posed. This allows the identification of the global processing
delay in the transmitter and also the correction of the differ-
ential delay impairments between the two paths. As the loop
delay impacts the convergence of the gain correction solu-
tion, a two step solution is adopted: first an identification
of paths processing time with a correction of the differen-
tial delay and then an identification and a correction of the
gain mismatches. The proposed approach allows drastic im-
provement for both EVM and ACLR: in our test case it re-
duces the EVM from 14 % to 1 % and improves the ACLR
at ±5 MHz by more than 20dB (from 18 dB to 39 dB for
instance in the worst test case).
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