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On the Capacity Achieving Covariance Matrix for
Frequency Selective MIMO Channels Using the

Asymptotic Approach
Florian Dupuy and Philippe Loubaton,Fellow, IEEE

Abstract—In this contribution, an algorithm for evaluating
the capacity-achieving input covariance matrices for frequency
selective Rayleigh MIMO channels is proposed. In contrast
with the flat fading Rayleigh case, no closed-form expressions
for the eigenvectors of the optimum input covariance matrix
are available. Classically, both the eigenvectors and eigenvalues
are computed numerically and the corresponding optimization
algorithms remain computationally very demanding. In this
paper, it is proposed to optimize (w.r.t. the input covariance
matrix) a large system approximation of the average mutual
information derived by Moustakas and Simon. The validity of this
asymptotic approximation is clarified thanks to Gaussian large
random matrices methods. It is shown that the approximation
is a strictly concave function of the input covariance matrix and
that the average mutual information evaluated at the argmax of
the approximation is equal to the capacity of the channel up to
a O (1/t) term, where t is the number of transmit antennas. An
algorithm based on an iterative waterfilling scheme is proposed
to maximize the average mutual information approximation, and
its convergence studied. Numerical simulation results show that,
even for a moderate number of transmit and receive antennas, the
new approach provides the same results as direct maximization
approaches of the average mutual information.

Index Terms—Ergodic capacity, frequency selective MIMO
channels, large random matrices

I. I NTRODUCTION

When the channel state information is available at both the
receiver and the transmitter of a MIMO system, the problem
of designing the transmitter in order to maximize the (Gaus-
sian) mutual information of the system has been addressed
successfully in a number of papers. This problem is, however,
more difficult when the transmitter has the knowledge of
the statistical properties of the channel, the channel state
information being still available at the receiver side, a more
realistic assumption in the context of mobile systems. In this
case, the mutual information is replaced by the average mutual
information (EMI), which, of course, is more complicated to
optimize.

The optimization problem of the EMI has been addressed
extensively in the case of certain flat fading Rayleigh channels.
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In the context of the so-called Kronecker model, it has been
shown by various authors (see, e.g., [1] for a review) that
the eigenvectors of the optimal input covariance matrix must
coincide with the eigenvectors of the transmit correlation
matrix. It is therefore sufficient to evaluate the eigenvalues of
the optimal matrix, a problem which can be solved by using
standard optimization algorithms. Similar results have been
obtained for flat fading uncorrelated Rician channels ([2]).

In this paper, we consider this EMI maximization problem
in the case of popular frequency selective MIMO channels
(see, e.g., [3], [4]) with independent paths. In this context,
the eigenvectors of the optimum transmit covariance matrix
have no closed-form expressions, so that both the eigenvalues
and the eigenvectors of the matrix have to be evaluated
numerically. For this, it is possible to adapt the approach of
[5] developed in the context of correlated Rician channels.
However, the corresponding algorithms are computationally
very demanding as they heavily rely on intensive Monte-Carlo
simulations. We therefore propose to optimize the approxi-
mation of the EMI, derived by Moustakas and Simon ([4]),
in principle valid when the number of transmit and receive
antennas converge to infinity at the same rate, but accurate for
realistic numbers of antennas. This will turn out to be a simpler
problem. We mention that, while [4] contains some results
related to the structure of the argument of the maximum of
the EMI approximation, [4] does not propose any optimization
algorithm.

We first review the results of [4] related to the large
system approximation of the EMI. The analysis of [4] is
based on the so-called replica method, an ingenious trick
whose mathematical relevance has not yet been established
mathematically. Using a generalization of the rigorous analysis
of [6], we verify the validity of the approximation of [4]
and provide the convergence speed under certain technical
assumptions. Besides, the expression of the approximation
depends on the solutions of a non linear system. The existence
and the uniqueness of the solutions are not addressed in [4].
As our optimization algorithm needs to solve this system, we
clarify this crucial point. We show in particular that the system
admits a unique solution that can be evaluated numerically
using the fixed point algorithm. Next, we study the properties
of the EMI approximation, and briefly justify that it is a strictly
concave function of the input covariance matrix. We show
that the mutual information corresponding to the argmax of
the EMI approximation is equal to the channel capacity up
to aO

(

1
t

)

term, wheret is the number of transmit antennas.
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Therefore it is relevant to optimize the EMI approximation to
evaluate the capacity achieving covariance matrix. We finally
present our maximization algorithm of the EMI approximation.
It is based on an iterative waterfilling algorithm which, in
some sense, can be seen as a generalization of [7] devoted to
the Rayleigh context and of [8], [9] devoted to the correlated
Rician case: Each iteration will be devoted to solve the above
mentioned system of nonlinear equations as well as a standard
waterfilling problem. It is proved that the algorithm converges
towards the optimum input covariance matrix as long as it
converges1.

The paper is organized as follows. SectionII is devoted
to the presentation of the channel model, the underlying
assumptions, the problem statement. In sectionIII , we rig-
orously derive the large system approximation of the EMI
with Gaussian methods and establish some properties of the
asymptotic approximation as a function of the covariance
matrix of the input signal. The maximization problem of the
EMI approximation is then studied in sectionIV. Numerical
results are provided in sectionV.

II. PROBLEM STATEMENT

A. General Notations

In this paper, the notationss, x, M, stand for scalars,
vectors and matrices, respectively. As usual,‖x‖ represents
the Euclidian norm of vectorx, and ‖M‖, ρ(M) and |M|
respectively stand for the spectral norm, the spectral radius and
the determinant of matrixM. The superscripts(.)T and (.)H

represent respectively the transpose and transpose conjugate.
The trace ofM is denoted byTr(M). The mathematical
expectation operator is denoted byE(·). We denote byδi,j
the Kronecker delta, i.e.δi,j = 1 if i = j and0 otherwise.

All along this paper,r andt stand for the number of receive
and transmit antennas. Certain quantities will be studied in
the asymptotic regimet → ∞, r → ∞ in such a way that
t/r → c ∈ (0,∞). In order to simplify the notations,t → ∞
should be understood from now on ast → ∞, r → ∞ and
t/r → c ∈ (0,∞). A matrix Mt whose size depends ont is
said to be uniformly bounded ifsupt ‖Mt‖ <∞.

Several variables used throughout this paper depend on
various parameters, e.g., the number of antennas, the noise
level, the covariance matrix of the transmitter, etc. In order to
simplify the notations, we may not always mention all these
dependencies.

B. Channel Model

We consider a wireless MIMO link witht transmit andr
receive antennas corrupted by a multipath propagation channel.
The discrete-time propagation channel between the transmitter
and the receiver is characterized by the input-output equation

y(n) =

L
∑

l=1

H(l)s(n−l+1)+n(n) = [H(z)]s(n)+n(n), (1)

where s(n) = [s1(n), . . . , st(n)]
T and y(n) = [y1(n),

. . . , yr(n)]
T represent the transmit and the receive vector at

1Note however that we have been unable to prove formally its convergence.

time n respectively.n(n) is an additive Gaussian noise such
thatE(n(n)n(n)H) = σ2I. H(z) denotes the transfer function
of the discrete-time equivalent channel defined by

H(z) =
L
∑

l=1

H(l) z−(l−1). (2)

Each coefficientH(l) is assumed to be a Gaussian random
matrix given by

H(l) =
1√
t
(C(l))1/2Wl(C̃

(l))1/2, (3)

whereWl is a r × t random matrix whose entries are inde-
pendent and identically distributed complex circular Gaussian
random variables, with zero mean and unit variance. The
matricesC(l) and C̃(l) are positive definite, and respectively
account for the receive and transmit antenna correlation. This
correlation structure is called a separable or Kronecker corre-
lation model. We also assume that for eachk 6= l, matrices
H(k) and H(l) are independent. Note that our assumptions
imply that H(l) 6= 0 for l = 1, . . . , L. However, it can be
checked easily that the results stated in this paper remain valid
if some coefficients(H(l))l=1,...,L are zero.

In this article the channel matrices are assumed perfectly
known at the receiver side. However, only the statistics of the
(H(l))l=1,...,L, i.e. matrices(C̃(l),C(l))l=1,...,L, are available
at the transmitter side.

C. Ergodic Capacity of the Channel.

Let Q(e2iπν) be the t × t spectral density matrix of the
transmit signals(n), which is assumed to verify the transmit
power condition

1

t

∫ 1

0

Tr(Q(e2iπν))dν = 1. (4)

Then, the (Gaussian) ergodic mutual informationI(Q(.))
between the transmitter and the receiver is defined as

I(Q(.)) = EW

[∫ 1

0

log

∣

∣

∣

∣

Ir +
1

σ2
H(·)Q(·)H(·)H

∣

∣

∣

∣

dν

]

, (5)

whereEW[.] = E(Wl)l=1,...,L
[.]. The ergodic capacity of the

MIMO channel is equal to the maximum ofI(Q(.)) over the
set of all spectral density matrices satisfying the constraint
(4). The hypotheses formulated on the statistics of the channel
allow however to limit the optimization to the set of positive
matrices which are independent of the frequencyν. This is
because the probability distribution of matrixH(e2iπν) is
clearly independent of the frequencyν. More precisely, the
mutual informationI(Q(.)) is also given by

I(Q(.)) = EH

[∫ 1

0

log

∣

∣

∣

∣

Ir +
1

σ2
HQ(e2iπν)HH

∣

∣

∣

∣

dν

]

,

whereH =
∑L
l=1 H

(l) = H(1). Using the concavity of the
logarithm, we obtain that

I(Q(.)) ≤ EH

[

log

∣

∣

∣

∣

Ir +
1

σ2
H

(∫ 1

0

Q(e2iπν)dν

)

HH

∣

∣

∣

∣

]

.
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We denote byC the cone of non negative hermitian matrices,
and by C1 the subset of all matricesQ of C satisfying
1
tTr(Q) = 1. If Q is an element ofC1, the mutual information
I(Q) reduces to

I(Q) = EH

[

log

∣

∣

∣

∣

Ir +
1

σ2
HQHH

∣

∣

∣

∣

]

. (6)

Q 7→ I(Q) is strictly concave on the convex setC1 and
reaches its maximum at a unique elementQ∗ ∈ C1. It is clear
that if Q(e2iπν) is any spectral density matrix satisfying (4),
then the matrix

∫ 1

0
Q(e2iπν)dν is an element ofC1. Therefore,

EH

[

log
∣

∣

∣Ir +
1

σ2
H

(∫ 1

0

Q(e2iπν)dν

)

HH
∣

∣

∣

]

≤ EH

[

log

∣

∣

∣

∣

Ir +
1

σ2
HQ∗H

H

∣

∣

∣

∣

]

.

In other words,
I(Q(.)) ≤ I(Q∗)

for each spectral density matrix verifying (4). This shows that
the maximum of functionI over the set of all spectral densities
satisfying (4) is reached on the setC1. The ergodic capacity
CE of the channel is thus equal to

CE = max
Q∈C1

I(Q). (7)

We note that property (7) also holds if the time delays of
the channel are non integer multiples of the symbol period,
provided that the receiving filter coincides with the ideal
low-pass filter on the[− 1

2T ,
1
2T ] frequency interval, whereT

denotes the symbol period. If this is the case, the transfer
functionH(e2iπν) is equal toH(e2iπν) =

∑L
l=1 H

(l)e−2iπντl ,
whereτl is the delay associated to pathl for l = 1, . . . , L. The
probability distribution ofH(e2iπν) does not depend onν and
this leads immediately to (7).

If the matrices(C(l))l=1,...,L all coincide with a matrix
C, matrix H follows a Kronecker model with transmit and
receive covariance matrices1L

∑L
l=1 C̃

(l) andC respectively
[10]. In this case, the eigenvectors of the optimum matrixQ∗
coincide with the eigenvectors of1L

∑L
l=1 C̃

(l). The situation
is similar if the transmit covariance matrices(C̃(l))l=1,...,L

coincide. In the most general case, the eigenvectors ofQ∗
have however no closed-form expression. The evaluation of
Q∗ and of the channel capacityCE is thus a more difficult
problem. A possible solution consists in adapting the Vu-
Paulraj approach ([5]) to the present context. However, the
algorithm presented in [5] is very demanding since the needed
evaluations ofI(Q) gradient and Hessian require intensive
Monte-Carlo simulations.

D. The Large System Approximation ofI(Q)

Whent andr converge to∞ while t/r → c, c ∈ (0,∞), [4]
showed thatI(Q) can be approximated byI(Q) defined by

(8) at the bottom of the page, where(δ1(Q), . . . , δL(Q))T =
δ(Q) and (δ̃1(Q), . . . , δ̃L(Q))T = δ̃(Q) are the positive
solutions of the system of2L equations:

{

κl = fl(κ̃)

κ̃l = f̃l(κ,Q)
for l = 1, . . . , L, (9)

with κ = (κ1, . . . , κL)
T and κ̃ = (κ̃1, . . . , κ̃L)

T , and with






fl(κ̃) =
1
tTr

[

C(l)T(κ̃)
]

,

f̃l(κ,Q) = 1
tTr

[

Q1/2C̃(l)Q1/2T̃(κ,Q)
]

.
(10)

The r × r matrix T(κ̃) and thet × t matrix T̃(κ,Q) are
respectively defined by:

T(κ̃) =

[

σ2

(

Ir +

L
∑

j=1

κ̃jC
(j)

)]−1

, (11)

T̃(κ,Q) =

[

σ2

(

It +
L
∑

j=1

κjQ
1/2C̃(j)Q1/2

)]−1

. (12)

III. D ERIVING THE LARGE SYSTEM APPROXIMATION

A. The Canonical Equations

In [4], the existence and the uniqueness of positive solutions
to (9) is assumed without justification. Moreover no algorithm
is given for the calculation of theδl and δ̃l, l = 1, . . . , L. We
therefore clarify below these important points. We consider the
caseQ = I in order to simplify the notations. To address the
general case it is sufficient to change matrices(C̃(l))l=1,...,L

into (Q1/2C̃(l)Q1/2)l=1,...,L in what follows.
Theorem 1:The system of equations (9) admits unique

positive solutions(δl)l=1,...,L and (δ̃l)l=1,...,L, which are the
limits of the following fixed point algorithm:

- Initialization: δ(0)l > 0, δ̃(0)l > 0, l = 1, . . . , L.
- Evaluation of the δ(n+1)

l and δ̃
(n+1)
l from δ(n) =

(δ
(n)
1 , . . . , δ

(n)
L )T and δ̃(n) = (δ̃

(n)
1 , . . . , δ̃

(n)
L )T :

{

δ
(n+1)
l = fl(δ̃

(n)),

δ̃
(n+1)
l = f̃l(δ

(n), I).
(13)

Proof: We prove the existence and uniqueness of positive
solutions.

1) Existence: Using analytic continuation technique, we
show in AppendixA that the fixed point algorithm introduced
converges to positive coefficientsδl and δ̃l, l = 1, . . . , L. As
functionsκ̃ 7→ fl(κ̃) andκ 7→ f̃l(κ, I) are clearly continuous,
the limit of (δ(n), δ̃(n)) whenn→ ∞ satisfies (9). Hence, the
convergence of the algorithm yields the existence of a positive
solution to (9).

I(Q) = log

∣

∣

∣

∣

∣

Ir +
L
∑

l=1

δ̃l(Q)C(l)

∣

∣

∣

∣

∣

+ log

∣

∣

∣

∣

∣

It +Q

(

L
∑

l=1

δl(Q)C̃(l)

)∣

∣

∣

∣

∣

− σ2t

(

L
∑

l=1

δl(Q)δ̃l(Q)

)

(8)
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2) Uniqueness:: Let (δ, δ̃) and (δ′, δ̃′) be two solutions
of the canonical equation (9) with Q = I. We denote(T, T̃)
and(T′, T̃′) the associated matrices defined by (11) and (12),
where (κ, κ̃) respectively coincide with(δ, δ̃) and (δ′, δ̃′).
Introducinge = δ − δ′ = (e1, . . . , eL)

T we have:

el =
1

t
Tr
[

C(l)T(T′−1 −T−1)T′
]

=
σ2

t

L
∑

k=1

(δ̃′k − δ̃k)Tr
(

C(l)TC(k)T′
)

. (14)

Similarly, with ẽ = δ̃ − δ̃′ = (ẽ1, . . . , ẽL)
T ,

ẽk =
σ2

t

L
∑

l=1

(δ′l − δl)Tr
(

C̃(k)T̃C̃(l)T̃′
)

. (15)

And (14) and (15) can be written together as
[

I σ2A(T,T′)
σ2Ã(T̃, T̃′) I

] [

e

ẽ

]

= 0, (16)

whereL × L matricesA(T,T′) and Ã(T̃, T̃′) are defined
by Akl(T,T

′) = 1
tTr

(

C(k)TC(l)T′) and Ãkl(T̃, T̃′) =
1
tTr(C̃

(k)T̃C̃(l)T̃′). We will now prove thatρ(M) < 1, with
M = σ4Ã(T̃, T̃′)A(T,T′). This will imply that the matrix
governing the linear system (16) is invertible, and thus that
e = ẽ = 0, i.e. the uniqueness.

|Mkl| =
∣

∣

∣

∣

σ4

t2

L
∑

j=1

Tr(C̃(k)T̃C̃(j)T̃′)Tr(C(j)TC(l)T′)

∣

∣

∣

∣

≤σ
4

t2

L
∑

j=1

∣

∣

∣Tr(C̃(k)T̃C̃(j)T̃′)
∣

∣

∣

∣

∣

∣Tr(C(j)TC(l)T′)
∣

∣

∣ . (17)

Using Cauchy-Schwarz inequality|Tr(AB)|2 ≤ Tr(AAH)·
Tr(BBH), we have:








1

t

∣

∣

∣Tr(C̃(k)T̃C̃(j)T̃′)
∣

∣

∣ ≤
√

Ãkj(T̃, T̃)Ãkj(T̃′, T̃′),

1

t

∣

∣

∣Tr(C(j)TC(l)T′)
∣

∣

∣ ≤
√

Ajl(T,T)Ajl(T′,T′).

Using these two inequalities in (17) gives

|Mkl| ≤ σ4
L
∑

j=1

√

Ãkj(T̃)Ãkj(T̃′)Ajl(T)Ajl(T′),

where matricesA(T) andÃ(T̃) are defined by








Akl(T) =
1

t
Tr(C(k)TC(l)T) = Akl(T,T),

Ãkl(T̃) =
1

t
Tr(C̃(k)T̃C̃(l)T̃) = Ãkl(T̃, T̃).

(18)

Using Cauchy-Schwarz inequality then yields:

|Mkl| ≤ Pkl,

whereP is the L × L matrix whose entries are defined by

Pkl =
√

(

σ4Ã(T̃)A(T)
)

kl

√

(

σ4Ã(T̃′)A(T′)
)

kl
. Theorem

8.1.18 of [11] then yieldsρ(M) ≤ ρ(P). Besides, Lemma
5.7.9 of [12] used on the definition ofP gives:

ρ(P) ≤
√

ρ
(

σ4Ã(T̃)A(T)
)

√

ρ
(

σ4Ã(T̃′)A(T′)
)

. (19)

Lemma1 (ii ) in AppendixC implies thatρ(σ4Ã(T̃)A(T)) <
1 andρ(σ4Ã(T̃′)A(T′)) < 1, so that (19) finally implies:

ρ(M) ≤ ρ(P) < 1.

This completes the proof of Theorem1. �

B. Deriving the Approximation ofI(Q = It) With Gaussian
Methods

We consider in this section the caseQ = It. We noteI =
I(It), I = I(It). We have proved in the previous section the
consistency ofI(Q) definition. To establish the approximation
of I(Q), [4] used the replica method, a useful and simple
trick whose mathematical relevance is not yet proved in the
present context. Moreover, no assumptions were specified for
the convergence ofI(Q) towardsI(Q). However, using large
random matrix techniques similar to those of [6] and [8], it is
possible to prove rigorously the following theorem, in which
the (mild) suitable technical assumptions are clarified.

Theorem 2:Assume that supt ‖C(j)‖ < +∞,
supt ‖C̃(j)‖ < +∞, inft

(

1
tTrC

(j)
)

> 0 and
inft

(

1
tTr C̃

(j)
)

> 0, for any j ∈ {1, . . . , L}. Then,

I = I + O

(

1

t

)

.

Sketch of proof: The proof is done in three steps:

1) In a first step we derive a large system approximation of
EH[TrS], whereS = (HHH + σ2Ir)

−1 is the resolvent
of HHH at point −σ2. Nonetheless the approximation
is expressed with the termsαl = 1

tEH[Tr
(

C(l)S
)

], l =
1, . . . , L, which still depend on the entries ofEH[S].

2) A second step refines the previous approximation to
obtain an approximation which this time only depends
on the variance structure of the channels, i.e. matrices
(C(l))l∈{1,...,L} and (C̃(l))l∈{1,...,L}.

3) The previous approximation is used to get the asymptotic
behavior of mutual information by a proper integration.

Proof: We now sketch the three steps stated above. We provide
the missing details in the Appendix.

1) A First Large System Approximation ofEH[TrS]: We
introduce vectorsα = [α1, . . . , αL]

T and α̃ = [α̃1, . . . , α̃L]
T

defined by
{

αl =
1
tTr

[

C(l)
EH[S]

]

α̃l =
1
tTr
[

C̃(l)R̃
] for l = 1, . . . , L, (20)

where t × t matrix R̃ is defined byR̃(α) =
[

σ2
(

It +
∑L
j=1 αjC̃

(j)
)]−1

. Using large random matrix techniques
similar to those of [6] and [8], the following proposition is
proved in AppendixB.

Proposition 1: Assume that, for everyj ∈ {1, . . . , L},
supt ‖C(j)‖ < +∞, supt ‖C̃(j)‖ < +∞. Then EH[S] can
be written as

EH[S] = R+Υ, (21)

where matrixΥ is such that1tTr(ΥA) = O
(

1
t2

)

for any
uniformly bounded matrixA and where matrixR is defined
by R(α̃) =

[

σ2
(

Ir +
∑L
j=1 α̃jC

(j)
)]−1

.
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One can check that the entries of matrixΥ are O
(

1
t3/2

)

;
nevertheless this result is not needed here. It follows from
Proposition1 that, for anyr× r matrix A uniformly bounded
in r,

1

t
EH[Tr(SA)] =

1

t
Tr(RA) + O

(

1

t2

)

. (22)

TakingA = I gives a first approximation ofEH[TrS]:

EH[TrS] = TrR+ O

(

1

t

)

. (23)

Nonetheless matrixR depends onEH[S] through vectorα.
2) A refined large system approximation ofEH[Tr S]: We

first recall from SectionIII-A that T is the matrix defined
by (11) associated to the solutions(δ, δ̃) of the canonical
equation (9) with Q = It: T =

(

σ2
(

Ir +
∑L
l=1 δ̃lC

(l)
))−1

.
We introduce the following proposition which will lead to the
desired approximation ofEH[Tr S]:

Proposition 2: Assume that, for everyj ∈ {1, . . . , L},
supt ‖C(j)‖ < +∞, supt ‖C̃(j)‖ < +∞, inft

(

1
tTrC

(j)
)

> 0

and inft
(

1
tTr C̃

(j)
)

> 0. Let A be ar × r matrix uniformly
bounded inr, then

1

t
Tr(RA) =

1

t
Tr(TA) + O

(

1

t2

)

. (24)

The proof is given in AppendixC. It relies on the simi-
larity of the systems of equations verified by the(αl, α̃l)
and the(δl, δ̃l). Actually, taking A = C(l) in (22) yields
αl =

1
tTr(C

(l)R) + O
(

1
t2

)

and therefore






αl =
1
tTr
[

C(l)
[

σ2(I+
∑L
j=1 α̃jC

(j))
]−1
]

+ O
(

1
t2

)

α̃l =
1
tTr
[

C̃(l)
[

σ2(I+
∑L
j=1 αjC̃

(j))
]−1
]

for l = 1, . . . , L. Taking A = Ir in (24) together with (23)
leads to

EH[TrS] = TrT+ O

(

1

t

)

(25)

3) The resulting large system approximation ofI: The
ergodic mutual informationI can be written in terms of the
resolventS:

I = EH

[

log

∣

∣

∣

∣

Ir +
HHH

σ2

∣

∣

∣

∣

]

= EH

[

log
∣

∣σ2S(σ2)
∣

∣

−1
]

.

As the differential ofg(A) = log |A| is given byg(A+δA) =
g(A) + Tr[A−1δA] + o(‖δA‖), we obtain:

dI

dσ2
= −EH

[

Tr[S(σ2)HHH ]

σ2

]

= −EH

[

Tr[Ir − σ2S(σ2)]

σ2

]

,

where the last equality follows from the so-called resolvent
identity

σ2S(σ2) = Ir − S(σ2)HHH . (26)

The resolvent identity is inferred easily from the definition of
S(σ2). As I(σ2 = +∞) = 0, we now have the following
expression of mutual information:

I(σ2) =

∫ +∞

σ2

(

r

ρ
− EH [Tr S(ρ)]

)

dρ.

This equality clearly justifies the search of a large system
equivalent ofEH [TrS] done in the previous sections. The
term under the integral sign can be written as

r

σ2
− EH [TrS] = t

L
∑

l=1

δ̃lδl + EH [Tr (T− S)] ,

as r
σ2 −TrT = Tr

[

((σ2T)−1−Ir)T
]

= Tr
[

(
∑

l δ̃lC
(l))T

]

=

t
∑

l δ̃lδl. We need to integrateε(t, σ2) = EH [Tr (T− S)]
with respect toσ2 on (ρ > 0,+∞). We therefore introduce
the following proposition:

Proposition 3: ε(t, σ2) = EH [Tr (T− S)] is integrable
with respect toσ2 on (ρ > 0,+∞) and

∫ +∞

ρ

ε(t, σ2)dσ2 = O

(

1

t

)

.

Proof: We prove in AppendixD that there existst0 such that,
for t > t0, |ε(t, σ2)| ≤ 1

σ8tP
(

1
σ2

)

, whereP is a polynomial
whose coefficients are real positive and do not depend onσ2

nor on t. Therefore
∫ +∞
ρ

ε(t, σ2)dσ2 = O
(

1
t

)

.
�

We now prove that the termt
∑

l δ̃lδl corresponds to the
derivative ofI(σ2) with respect toσ2. To this end, we consider
the functionV0(σ

2,κ, κ̃) defined by

V0(σ
2,κ, κ̃) = log |I+C(κ̃)|+log |I+C̃(κ)|−σ2t

L
∑

l=1

κlκ̃l,

whereC̃(κ) =
∑L
l=1 κlC̃

(l) andC(κ̃) =
∑L
l=1 κ̃lC

(l). Note
that V0(σ

2, δ, δ̃) = I(σ2). The derivative ofI(σ2) can then
be expressed in terms of the partial derivatives ofV0.

dI

dσ2
=
∂V0

∂σ2
(σ2, δ, δ̃) +

L
∑

l=1

∂V0

∂κl
(σ2, δ, δ̃) · dδl

dσ2

+

L
∑

l=1

∂V0

∂κ̃l
(σ2, δ, δ̃) · dδ̃l

dσ2
.

It is straightforward to check that










∂V0

∂κl
(σ2,κ, κ̃) = −σ2t

(

f̃l(κ, It)− κ̃l
)

,

∂V0

∂κ̃l
(σ2,κ, κ̃) = −σ2t

(

fl(κ̃)− κl
)

.

(27)

Both partial derivatives are equal to zero at point(σ2, δ, δ̃),
as (δ, δ̃) verifies by definition (9) with Q = It. Therefore,

dI

dσ2
=
∂V0

∂σ2
(σ2, δ, δ̃) = −t

L
∑

l=1

δlδ̃l,

which, together with Proposition3, leads toI = I + O
(

1
t

)

.
�

C. The ApproximationI(Q)

We now consider the dependency inQ of the approxima-
tion Ī(Q). We previously considered the caseQ = It; to
address the general case it is sufficient to change matrices



6

(C̃(l))l=1,...,L into (Q1/2C̃(l)Q1/2)l=1,...,L in III-A andIII-B .
Hence the following Corollary of Theorem2:

Corollary 1: Assume that, for everyj ∈ {1, . . . , L},
supt ‖C(j)‖ < +∞, supt ‖C̃(j)‖ < +∞, inft

(

1
tTrC

(j)
)

> 0

and inft λmin(C̃
(j)) > 0. Then, forQ such assupt ‖Q‖ <

+∞,

I(Q) = I(Q) + O

(

1

t

)

.

Note that the technical assumptions on matrices(C̃(l))l=1,...,L

are slightly stronger than in Theorem2 in order to ensure that
inft

(

1
tTr

[

QC̃(j)
])

> 0.
We can now state an important result about the concavity of

the functionQ 7→ I(Q), a result which will be highly needed
for its optimization in sectionIV.

Theorem 3:Q 7→ I(Q) is a strictly concave function over
the compact setC1.
Proof: We here only prove the concavity ofI(Q). The proof
of the strict concavity is quite tedious, but essentially the same
as in [8] section IV (see also the extended version [9]). It is
therefore omitted.

Denote by⊗ the Kronecker product of matrices. Let us
introduce the following matrices:

∆(l) = Im ⊗C(l), ∆̃(l) = Im ⊗ C̃(l), Q̌ = Im ⊗Q.

We now denoteȞ(z) =
∑L
l=1 Ȟ

(l)z−(l−1) with Ȟ(l) =
1√
mt

(∆(l))1/2W̌l(∆̃
(l))1/2. where W̌ is a rm × tm ma-

trix whose entries are independent and identically distributed
complex circular Gaussian random variables with variance1.
IntroducingIm(Q̌) the ergodic mutual information associated
with channelȞ(z):

Im(Q̌) = EȞ log

∣

∣

∣

∣

I+
ȞQ̌Ȟ

H

σ2

∣

∣

∣

∣

,

where Ȟ = Ȟ(1) =
∑

l Ȟ
(l). Using the results of [4]

and Theorem2, it is clear thatIm(Q̌) admits an asymptotic
approximationĪm(Q̌). Due to the block-diagonal nature of
matrices∆(l), ∆̃(l) and Q̌, it is straightforward to show that
δl(Q) = δl(Q̌), δ̃l(Q) = δ̃l(Q̌) and that, as a consequence,

1

m
Īm(Q̌) = Ī(Q),

and thus

lim
m→∞

1

m
Im(Q̌) = Ī(Q).

As Q̌ 7→ Im(Q̌) is concave, we can conclude thatĪ(Q) is
concave as a pointwise limit of concave functions. �

As I(Q) is strictly concave onC1 by Theorem3, it admits
a unique argmax that we denoteQ∗. We recall thatI(Q) is
strictly concave onC1 and that we denotedQ∗ its argmax.
In order to clarify the relation betweenQ∗ and Q∗ we
introduce the following proposition which establishes that the

maximization ofI(Q) is equivalent to the maximization of
I(Q) over C1, up to aO

(

1
t

)

term.
Proposition 4: Assume that, for everyj ∈ {1, . . . , L},

supt ‖C(j)‖ < +∞, supt ‖C̃(j)‖ < +∞, inft λmin(C
(j)) > 0

and inft λmin(C̃
(j)) > 0. Then

I(Q∗) = I(Q∗) + O

(

1

t

)

.

Proof: The proof is very similar to the one of [8, Proposition
3]. Assuming thatsupt ‖Q∗‖ < +∞ and supt ‖Q∗‖ < +∞
we can apply Theorem1 on Q∗ andQ∗, hence
(

I(Q∗)− I(Q∗)
)

+
(

I(Q∗)− I(Q∗)
)

=
(

I(Q∗)− I(Q∗)
)

+
(

I(Q∗)− I(Q∗)
)

= O

(

1

t

)

.

BesidesI(Q∗) − I(Q∗) ≥ 0 and I(Q∗) − I(Q∗) ≥ 0, as
Q∗ andQ∗ respectively maximizeI(Q) andI(Q). Therefore
I(Q∗)− I(Q∗) = O

(

1
t

)

.
One can provesupt ‖Q∗‖ < +∞ using the same arguments

as in [8, Appendix III]. It essentially lies in the fact that
Q∗ is the solution of a waterfilling algorithm, which will
be shown independently from this result in next section (see
Proposition7).

Concerningsupt ‖Q∗‖ < +∞, the proof is identical to
[8, Appendix III], one just needs to replace

√
K√
K+1

A by
1√
t

∑L
l=2(C

(l))1/2Wl(C̃
(l))1/2 and 1√

K+1
1√
t
C

1/2
R WC

1/2
T by

1√
t
(C(1))1/2W1(C̃

(1))1/2 in the definition ofH. ThenSj ,
defined in [8, (134)], can be written as (28) at the bottom of the
page, whereRj has the same definition as in [8], zl,j is thejth

column of matrixWl(C̃
(l))1/2 andzj = z1,j = uj+u⊥

j with
uj the conditional expectationuj = E

[

z1,j
∣

∣(z1,k)1≤k≤t,k 6=j
]

.
As the vectoru⊥

j is independent fromRj and from zl,k,
k = 1, . . . , t, l = 2, . . . , L, we can easily prove that the first
term of the right-hand side of (28) is a O

(

1
t

)

. The second
term of the right-hand side of (28) is moreover close fromρj =
1
t

[

(C̃(1))−1
]−1

jj
Tr(RjC

(1)). In fact it is possible to prove that

there exists a constantC1 such thatE
[

(Sj − ρj)
2
]

< C1

t (see
[8] for more details).

The rest of the proof of [8, Proposition 3 (ii)] can then
follow.

�

IV. M AXIMIZATION ALGORITHM

Proposition4 shows that it is relevant to maximizeI(Q)
overC1. In this section we propose a maximization algorithm
for the large system approximationI(Q). We first introduce
some classical concepts and results needed for the optimization
of Q 7→ I(Q).

Definition 1: Let φ be a function defined on the convex set
C1. Let P,Q ∈ C1. Thenφ is said to be differentiable in the

Sj = 2Re

{

1

t
u⊥H
j

(

C(1)
)1/2

Rj

(

L
∑

l=2

(

C(l)
)1/2

zl,j +
(

C(1)
)1/2

uj

)}

+
1

t
u⊥H
j

(

C(1)
)1/2

Rj

(

C(1)
)1/2

u⊥
j , (28)
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Gâteaux sense (or Gâteaux differentiable) at pointQ in the
directionP−Q if the following limit exists:

lim
λ→0+

φ(Q+ λ(P−Q))− φ(Q)

λ
.

In this case, this limit is noted〈φ′(Q),P−Q〉.
Note thatφ(Q + λ(P − Q)) makes sense forλ ∈ [0, 1], as
Q+λ(P−Q) = (1−λ)Q+λP naturally belongs toC1. We
now establish the following result:

Proposition 5: For eachP,Q ∈ C1, functionsQ 7→ δl(Q),
Q 7→ δ̃l(Q), l = 1, . . . , L, as well as functionQ 7→ I(Q) are
Gâteaux differentiable atQ in the directionP−Q.
Proof: See AppendixE. �

In order to characterize matrixQ∗ we recall the following
result:

Proposition 6: Let φ : C1 → R be a strictly concave
function. Then,

(i) φ is Gâteaux differentiable atQ in the directionP−Q

for eachP,Q ∈ C1,
(ii) Qopt is the unique argmax ofφ on C1 if and only if it

verifies:

∀Q ∈ C1, 〈φ′(Qopt),Q−Qopt〉 ≤ 0. (29)

This proposition is standard (see for example [13, Chapter 2]).
In order to introduce our maximization algorithm, we con-

sider the functionV(Q,κ, κ̃) defined by:

V(Q,κ, κ̃) = log |Ir +C(κ̃)|+ log |It +QC̃(κ)|

− σ2t
L
∑

l=1

κlκ̃l. (30)

We recall thatC̃(κ) =
∑

l κlC̃
(l) and C(κ̃) =

∑

l κ̃lC
(l).

Note that we haveV(Q, δ(Q), δ̃(Q)) = I(Q). We then have
the following result:

Proposition 7: Denote byδ∗ and δ̃∗ the quantitiesδ(Q∗)
and δ̃(Q∗). Matrix Q∗ is the solution of the standard wa-
terfilling problem: maximize overQ ∈ C1 the function
log |It +QC̃(δ∗)|.
Proof: We first remark that maximizing functionQ 7→
log |I +QC̃(δ∗)| is equivalent to maximizing functionQ 7→
V(Q, δ∗, δ̃∗) by (30). The proof then relies on the observation
hereafter proven that, for eachP ∈ C1,

〈I ′(Q∗),P−Q∗〉 = 〈V′(Q∗, δ∗, δ̃∗),P−Q∗〉, (31)

where〈V′(Q∗, δ∗, δ̃∗),P−Q∗〉 is the Gâteaux differential of
functionQ 7→ V(Q, δ∗, δ̃∗) at pointQ∗ in directionP−Q∗.
Assuming (31) is verified, (29) yields that〈V′(Q∗, δ∗, δ̃∗),P−
Q∗〉 ≤ 0 for each matrixP ∈ C1. And as the functionQ 7→
V(Q, δ∗, δ̃∗) is strictly concave onC1, its unique argmax on
C1 coincides withQ∗.

It now remains to prove (31). ConsiderP, Q ∈ C1. Then,

〈I ′(Q),P−Q〉 = 〈V′(Q, δ(Q), δ̃(Q)),P−Q〉

+
L
∑

l=1

∂V

∂κl
(Q, δ(Q), δ̃(Q))〈δ′l(Q),P−Q〉

+

L
∑

l=1

∂V

∂κ̃l
(Q, δ(Q), δ̃(Q))〈δ̃′l(Q),P−Q〉. (32)

Similarly to (27), partial derivatives ∂V
∂κl

(Q,κ, κ̃) =

−σ2t
(

f̃l(κ,Q) − κ̃l
)

and ∂V
∂κ̃l

(Q,κ, κ̃) = −σ2t
(

fl(κ̃) − κl
)

are equal to zero at point(Q, δ(Q), δ̃(Q)), as(δ(Q), δ̃(Q))
verifies (9) by definition. Therefore, lettingQ = Q∗ in (32)
yields:

〈I ′(Q∗),P−Q∗〉 = 〈V′(Q∗, δ(Q∗), δ̃(Q∗)),P−Q∗〉.

�

Proposition7 shows that the optimum matrix is solution
of a waterfilling problem associated to the covariance matrix
C̃(δ∗). This result cannot be used to evaluateQ∗, because
the matrixC̃(δ∗) itself depends ofQ∗. However, it provides
some insight on the structure of the optimum matrix: the
eigenvectors ofQ∗ coincide with the eigenvectors of a linear
combination of matrices̃C(l), theδl(Q∗) being the coefficients
of this linear combination. This is in line with the result of[4,
Appendix VI].

We now introduce our iterative algorithm for optimizing
I(Q):

• Initialization: Q0 = I.
• Evaluation ofQk from Qk−1: (δ(k), δ̃(k)) is defined as

the unique solution of (9) in whichQ = Qk−1. ThenQk

is defined as the maximum of functionQ 7→ log
∣

∣It +

QC̃(δ(k))
∣

∣ on C1.

We now establish a result which implies that, if the al-
gorithm converges, then it converges towards the optimal
covariance matrixQ∗.

Proposition 8: Assume that

lim
k→∞

δ(k) − δ(k−1) = lim
k→∞

δ̃(k) − δ̃(k−1) = 0. (33)

Then, the algorithm converges towards matrixQ∗.
Proof: The sequence(Qk) belongs to the setC1. As C1

is compact, we just have to verify that every convergent
subsequence(Qψ(k))k∈N extracted from(Qk)k∈N converges
towardsQ∗. For this, we denote byQψ,∗ the limit of the
above subsequence, and prove that this matrix verifies property
(29) with φ = I. Vectorsδψ(k)+1 and δ̃ψ(k)+1 are defined
as the solutions of (9) with Q = Qψ(k). Hence, due to
the continuity of functionsQ 7→ δl(Q) and Q 7→ δ̃l(Q),
sequences(δψ(k)+1)k∈N and (δ̃ψ(k)+1)k∈N converge towards
δψ,∗ = δ(Qψ,∗) and δ̃ψ,∗ = δ̃(Qψ,∗) respectively. Moreover,
(δψ,∗, δ̃ψ,∗) is solution of system (9) in which matrix Q

coincides withQψ,∗. Therefore,

∂V

∂κl

(

Qψ,∗, δ
ψ,∗, δ̃ψ,∗

)

=
∂V

∂κ̃l

(

Qψ,∗, δ
ψ,∗, δ̃ψ,∗

)

= 0.

As in the proof of Proposition7, this leads to

〈I ′(Qψ,∗),P−Qψ,∗〉 = 〈V′(Qψ,∗, δψ,∗, δ̃ψ,∗),P−Qψ,∗〉
(34)

for every P ∈ C1. It remains to show that the right-hand
side of (34) is negative to complete the proof. For this, we
use thatQψ(k) is the argmax overC1 of function Q 7→
V
(

Q, δψ(k), δ̃ψ(k)
)

. Therefore,

〈V′(Qψ(k), δψ(k), δ̃ψ(k)),P−Qψ(k)〉 ≤ 0 ∀ P ∈ C1. (35)
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By condition (33), sequences(δψ(k)) and (δ̃ψ(k)) also
converge towardsδψ,∗ and δ̃ψ,∗ respectively. Taking the
limit of (35) when k → ∞ eventually shows that
〈V′(Qψ,∗, δψ,∗, δ̃ψ,∗),P−Qψ,∗〉 ≤ 0 as required. �

To conclude, if the algorithm is convergent, that is, if the
sequence of(Qk)k∈N converges towards a certain matrix, then
the δ(k)l = δl(Qk−1) and theδ̃(k)l = δ̃l(Qk−1) converge as
well when k → ∞. Condition (33) is then verified, hence,
if the algorithm is convergent, it converges towardsQ∗. Al-
though the convergence of the algorithm has not been proved,
this result is encouraging and suggests that the algorithm is
reliable. In particular, in all the conducted simulations the
algorithm was converging. In any case, condition (33) can be
easily checked. If it is not satisfied, it is possible to modify
the initial point Q0 as many times as needed to ensure the
convergence.

V. NUMERICAL RESULTS

We provide here some simulations results to evaluate the
performance of the proposed approach. We use the propagation
model introduced in [3], in which each path corresponds to a
scatterer cluster characterized by a mean angle of departure,
a mean angle of arrival and an angle spread for each of these
two angles.

In the featured simulations for Fig.1(a) (respectively Fig.
1(b)), we consider a frequency selective MIMO system with
r = t = 4 (respectivelyr = t = 8), a carrier frequency of
2GHz, a number of pathsL = 5. The paths share the same
power, and their mean departure angles and angles spreads are
given in TableI in radians. In both Fig.1(a)and1(b), we have
represented the EMII(It) (i.e. without optimization), and the
optimized EMI I(Q∗) (i.e. with an input covariance matrix
maximizing the approximationI). The EMI are evaluated by
Monte-Carlo simulations, with2 · 104 channel realizations.
The EMI optimized with Vu-Paulraj algorithm [5] is also
represented for comparison.

Vu-Paulraj’s algorithm is composed of two
nested iterative loops. The inner loop evaluates
Q

(n)
∗ = argmax {I(Q) + kbarrier log |Q|} thanks to the

Newton algorithm with the constraint1tTrQ = 1, for a
given value of kbarrier and a given starting pointQ(n)

0 .
Maximizing I(Q) + kbarrier log |Q| instead ofI(Q) ensures
thatQ remains positive semi-definite through the steps of the
Newton algorithm; this is the so-called barrier interior-point
method. The outer loop then decreaseskbarrier by a certain
constant factorµ and gives the inner loop the next starting
point Q(n+1)

0 = Q
(n)
∗ . The algorithm stops when the desired

precision is obtained, or, as the Newton algorithm requires
heavy Monte-Carlo simulations for the evaluation of the
gradient and of the Hessian ofI(Q), when the number of
iterations of the outer loop reaches a given numberNmax.
As in [5] we tookNmax = 10, µ = 100, 2 · 104 trials for the
Monte-Carlo simulations, and we started withkbarrier = 1

100 .
Both Fig. 1(a) and 1(b) show that maximizingI(Q) over

the input covariance leads to significant improvement for
I(Q). Our approach provides the same results as Vu-Paulraj’s
algorithm. Moreover our algorithm is computationally much
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0 5 10 15 20
0

5

10

15

20

25

30

SNR [dB]

[b
p
s
/H

z
]

 

 

I(It) (no optimization)

I(Q
∗
) (presented optimization)

I(Q
∗
) (Vu-Paulraj optimization)

(b) r = t = 8

Fig. 1. Comparison with Vu-Paulraj algorithm

TABLE I
PATHS ANGULAR PARAMETERS(in radians)

l = 1 l = 2 l = 3 l = 4 l = 5

mean departure angle 6.15 3.52 4.04 2.58 2.66

departure angle spread 0.06 0.09 0.05 0.05 0.03

mean arrival angle 4.85 3.48 1.71 5.31 0.06

arrival angle spread 0.06 0.08 0.05 0.02 0.11

more efficient: in Vu-Paulraj’s algorithm, the evaluation of the
gradient and of the Hessian ofI(Q) needs heavy Monte-Carlo
simulations. TableII gives for both algorithms the average
execution time in seconds to obtain the input covariance
matrix, on a 3.16GHz Intel Xeon CPU with 8GB of RAM,
for a number of pathsL = 3, L = 4 and L = 5, given
r = t = 4.

VI. CONCLUSION

In this paper we have addressed the evaluation of the
capacity achieving covariance matrices of frequency selective
MIMO channels. We have first clarified the definition of
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TABLE II
AVERAGE EXECUTION TIME (in seconds)

L = 3 L = 4 L = 5

Vu-Paulraj 681 884 1077

New algorithm 7.0 · 10−3 7.4 · 10−3 8.3 · 10−3

the large system approximation of the EMI and rigorously
proved its expression and convergence speed with Gaussian
methods. We have then proposed to optimize the EMI through
this approximation, and have introduced an attractive iterative
algorithm based on an iterative waterfilling scheme. Numerical
results have shown that our approach provides the same results
as a direct approach, but in a more efficient way in terms of
computation time.

APPENDIX A
PROOF OF THE EXISTENCE OF A SOLUTION

To study (9), it is quite useful to interpret functionsfl
and f̃l as functions of the parameter−σ2 ∈ R

−, to extend
their domain of validity fromR

− to C − R
+, and to use

powerful results concerning certain class of analytic functions.
We therefore define the functionsg(ψ̃)(z) andg(ψ)(z), with
ψ(z) = [ψ1(z), ..., ψL(z)]

T , ψ̃(z) = [ψ̃1(z), ..., ψ̃L(z)]
T , as

g(ψ̃)(z) =





g1(ψ̃)(z)
...

gL(ψ̃)(z)



 , g̃(ψ)(z) =





g̃1(ψ)(z)
...

g̃L(ψ)(z)



 ,

where functionsgl(ψ̃) and g̃l(ψ) are defined bygl(ψ̃)(z) =
1
tTr
[

C(l)Tψ̃(z)
]

, g̃l(ψ)(z) = 1
tTr
[

C̃(l)T̃ψ(z)
]

. Matrices
Tψ̃(z) and T̃ψ(z) are defined by

Tψ̃(z) =

[

− z

(

Ir +
L
∑

j=1

ψ̃j(z)C
(j)

)]−1

, (36)

T̃ψ(z) =

[

− z

(

It +

L
∑

j=1

ψj(z)C̃
(j)

)]−1

. (37)

In order to explain the following results, we now have to
introduce the concept of Stieltjès transforms.

Definition 2: Let µ be a finite2 positive measure carried by
R

+. The Stieltjès transform ofµ is the functions(z) defined
for z ∈ C− R

+ by

s(z) =

∫

R+

dµ(λ)

λ− z
. (38)

In the following, the class of all Stieltjès transforms of finite
positive measures carried byR+ is denotedS(R+). We now
state some of the properties of the elements ofS(R+).

Proposition 9: Let s(z) ∈ S(R+), and µ its associated
measure. Then we have the following results:

(i) s(z) is analytic onC− R
+,

(ii) Im(s(z)) > 0 if Im(z) > 0, and Im(s(z)) < 0 if
Im(z) < 0,

(iii) Im(zs(z)) > 0 if Im(z) > 0, and Im(zs(z)) < 0 if
Im(z) < 0,

2finite means thatµ(R+) < ∞

(iv) s(−σ2) > 0 for σ2 > 0,

(v) |s(z)| ≤ µ(R+)
d(z,R+) for z ∈ C− R

+,

(vi) µ(R+) = lim
y→∞

−iy s(iy).
Proof: All the stated properties are standard material, see e.g.
Appendix of [14]. �

Conversely, a useful tool to prove that a certain function
belongs toS(R+) is the following proposition:

Proposition 10: Let s be a function holomorphic on
C− R

+ which verifies the three following properties:

(i) Im(s(z)) > 0 if Im(z) > 0,
(ii) Im(zs(z)) > 0 if Im(z) > 0,

(iii) sup
y>0

|iy s(iy)| <∞.

Then s ∈ S(R+), and if µ represents the corresponding
positive measure, thenµ(R+) = lim

y→∞
(−iy s(iy)).

Proof: see Appendix of [14]. �

Now that we have recalled the notion of Stieltjès transforms
and its associated basic properties we can introduce the
following proposition:

Proposition 11: Let (ψl, ψ̃l)l=1,...,L ∈ S(R+). We define
functionsϕl(z) and ϕ̃l(z), l = 1, . . . , L, as

{

ϕl(z) =
1
tTr
[

C(l)Tψ̃(z)
]

,

ϕ̃l(z) =
1
tTr
[

C̃(l)T̃ψ(z)
]

.

Then we have the following results:

(i) Tψ̃, T̃ψ are holomorphic onC− R
+,

(ii) ‖Tψ̃(z)‖ ≤ 1
d(z,R+) , ‖T̃ψ(z)‖ ≤ 1

d(z,R+) on C− R
+,

(iii) ϕl ∈ S(R+) with the corresponding massµl verifying
µl(R

+) = 1
tTrC

(l), ϕ̃l ∈ S(R+) with the corresponding
massµ̃l verifying µ̃l(R+) = 1

tTr C̃
(l).

Proof: For item (i) we only have to check thatz
(

Ir +
∑L
j=1 ψ̃j(z)C

(j)
)

is invertible for everyz ∈ C− R
+ to prove

thatTψ̃ is holomorphic onC− R
+. The key point is to notice

that, for any vectorv, for z such thatIm(z) > 0,

Im
{

vHz
(

Ir+

L
∑

j=1

ψ̃j(z)C
(j)
)

v
}

= Im{z}vHv +

L
∑

j=1

Im
{

zψ̃j(z)
}

vHC(j)v > 0.

A similar inequality holds forIm(z) < 0, and the casez ∈ R
−

is straightforward.
Item (iii ) can easily be proved thanks to Proposition10.
As for item (ii ), the proof is essentially the same as the proof

of Proposition 5.1 item 3 in [15], and is therefore omitted.�

We consider the following iterative scheme:
{

ψ(n+1)(z) = g(ψ̃(n))(z),

ψ̃(n+1)(z) = g̃(ψ(n))(z),
(39)

with a starting point(ψ(0)(z), ψ̃(0)(z)) in (S(R+))
2L. Item

(iii ) of Proposition11 then ensures that, for eachn ≥ 1,
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ψ(n)(z) and ψ̃(n)(z) belong to(S(R+))L. Moreover,
∣

∣(ψ
(n+1)
l − ψ

(n)
l )(z)

∣

∣

=
∣

∣

∣gl(ψ
(n))(z)− gl(ψ

(n−1))(z)
∣

∣

∣

=
1

t

∣

∣

∣Tr
[

C(l)(T(n)(z)−T(n−1)(z))
]∣

∣

∣, (40)

where matricesT(n)(z) andT̃(n)(z) are defined byT(n)(z) =

Tψ̃
(n)

(z), T̃(n)(z) = T̃ψ
(n)

(z). Note that in the following we
may not always mention the dependency inz of T(n), T̃(n),
ψ
(n)
j and ψ̃(n)

j for reading ease. Using the equalityA−B =

A
(

B−1 −A−1
)

B, we then obtain:

T(n) −T(n−1)

= T(n)

(

− z

L
∑

j=1

(

ψ̃
(n−1)
j − ψ̃

(n)
j

)

C(j)

)

T(n−1). (41)

Using (41) in (40) then yields:
∣

∣

∣ψ
(n+1)
l − ψ

(n)
l

∣

∣

∣

=
|z|
t

∣

∣

∣

∣

L
∑

j=1

(

ψ̃
(n−1)
j − ψ̃

(n)
j

)

Tr
[

C(l)T(n)C(j)T(n−1)
]

∣

∣

∣

∣

≤ |z|
t

L
∑

j=1

∣

∣

∣ψ̃
(n−1)
j − ψ̃

(n)
j

∣

∣

∣

∣

∣

∣Tr
[

C(l)T(n)C(j)T(n−1)
]∣

∣

∣ .

The trace in the above expression can be bounded with the
help ofCmax = maxj{‖C(j)‖, ‖C̃(j)‖}:
∣

∣

∣ψ
(n+1)
l − ψ

(n)
l

∣

∣

∣

≤ |z|r
t

L
∑

j=1

∣

∣

∣ψ̃
(n)
j − ψ̃

(n−1)
j

∣

∣

∣ ‖C(l)‖‖T(n)‖‖C(j)‖‖T(n−1)‖

≤ |z|C2
max

r

t
‖T(n)‖‖T(n−1)‖

L
∑

j=1

∣

∣

∣ψ̃
(n)
j − ψ̃

(n−1)
j

∣

∣

∣ .

For z ∈ C− R
+, T(n)(z) andT(n−1)(z) have a spectral norm

less than 1
d(z,R+) by item (ii ) of Proposition11. Therefore,

∣

∣

∣(ψ
(n+1)
l − ψ

(n)
l )(z)

∣

∣

∣

≤ rC2
max

t

|z|
(d(z,R+))2

L
∑

j=1

∣

∣

∣

(

ψ̃
(n)
j − ψ̃

(n−1)
j

)

(z)
∣

∣

∣ . (42)

A similar computation leads to
∣

∣

∣(ψ̃
(n+1)
j − ψ̃

(n)
j )(z)

∣

∣

∣

≤ C2
max

|z|
(d(z,R+))2

L
∑

l=1

∣

∣

∣

(

ψ
(n)
l − ψ

(n−1)
l

)

(z)
∣

∣

∣ . (43)

We now introduce the following maximum:

M (n)(z) = max
j

{∣

∣(ψ
(n+1)
j −ψ(n)

j )(z)
∣

∣,
∣

∣(ψ̃
(n+1)
j −ψ̃(n)

j )(z)
∣

∣

}

Equations (42) and (43) can then be combined into:

M (n)(z) ≤ ε(z)M (n−1)(z),

whereε(z) = ε1|z|
(d(z,R+))2 , with ε1 = LC2

max max
{

r
t , 1
}

. We
now define the following domain:U =

{

z ∈ C, d(z,R+) ≥
2ε1
K , |z|

d(z,R+) ≤ 2
}

, with 0 ≤ K < 1. On this domainU we

haveM (n)(z) ≤ KM (n−1)(z). Hence, forz ∈ U , ψ(n)
l (z)

and ψ̃(n)
j (z) are Cauchy sequences and, as such, converge.

We denote byψl(z) and ψ̃j(z) their respective limit.
One wants to extend this convergence result onC − R

+.
We first notice that, asψ(n)

l is a Stieltjès transform whose
associated measure has mass1

tTrC
(l) by Proposition11 item

(iii ), item (v) of Proposition9 implies

ψ
(n)
l (z) ≤

1
tTrC

(l)

d(z,R+)
.

The ψ(n)
l are thus bounded on any compact set included in

C − R
+, uniformly in n. By Montel’s theorem,

(

ψ
(n)
l

)

n∈N

is a normal family. Therefore one can extract a subsequence
converging uniformly on compact sets ofC−R

+, whose limit
is thus analytic overC − R

+. This limit coincides withψl
on domainU . The limit of any converging subsequence of
(

ψ
(n)
l

)

thus coincides withψl onU . Therefore, these limits all
coincide onC−R

+ with a function analytic onC−R
+, that we

still denoteψl. The converging subsequences of
(

ψ
(n)
l

)

have
thus the same limit. We have therefore showed the convergence
of the whole sequence

(

ψ
(n)
l

)

n≥0
on C − R

+ towards an
analytic functionψl. Moreover, as one can check thatψl
verifies Proposition10, we haveψl(z) ∈ S(R+). The same
arguments hold for thẽψl(z).

We have proved the convergence of iterative sequence (39).
Taking z = −σ2 then yields the convergence of the fixed
point algorithm (13). Note that the starting point(δ(0), δ̃(0))
only needs to verifyδ(0)l > 0, δ̃(0)l > 0 (l = 1, . . . , L), as any
positive real number can be interpreted as the value at point
z = −σ2 of some elements(z) ∈ S(R+). Moreover, the limits
ψl(z), ψ̃l(z) (l = 1, . . . , L) of the iterative sequence (39) are
positive for anyz = −σ2 by item (iv) of Proposition9, as
they all are Stieltjès transforms. Therefore, the limitsδl, δ̃l
(l = 1, . . . , L) are positive.

APPENDIX B
A FIRST LARGE SYSTEM APPROXIMATION OFEH[TrS] –

PROOF OFPROPOSITION1

In this section, ifx is a random variable we denote bẙx
the zero mean random variable̊x = x− E(x).

We will prove Proposition1 by deriving the matrixΥ
defined by (21), before proving that it satisfies1tTr (ΥA) =
O
(

1
t2

)

for any uniformly bounded matrixA. To that end,
as the entries of matricesH(l) are Gaussian, we can use the
classical Gaussian methods: we introduce here two Gaussian
tools, an Integration by Parts formula and the Nash-Poincaré
inequality, both widely used in Random Matrix Theory (see
e.g. [16]).

We first present an Integration by Parts formula which
provides the expectation of some functionals of Gaussian
vectors (see e.g. [17]).

Theorem 4:Let ξ = [ξ1, . . . , ξM ]T a complex Gaussian
random vector such thatE[ξ] = 0, E[ξξT ] = 0 andE[ξξH ] =
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Ω. If Γ = Γ(ξ, ξ∗) is a C1 complex function polynomially
bounded together with its derivatives, then

E[ξpΓ(ξ)] =
M
∑

m=1

ΩpmE

[

∂Γ(ξ)

∂ξ∗m

]

. (44)

In the present context we considerξ being the vector of
the stacked columns of matricesH(l), where the channels
H(l) are independent and follow the Kronecker model, i.e.
EH

[

H
(k)
ij H

(l)∗
mn

]

= δk,l
1
tC

(l)
imC̃

(l)
jn. Then (44) becomes

EH

[

H
(l)
ij Γ
(

(H(l))l=1,...,L

)]

=
1

t

r
∑

m=1

t
∑

n=1

C
(l)
imC̃

(l)
jnEH

[

∂Γ

∂H
(l)∗
mn

]

. (45)

The second useful tool is the Poincaré Nash inequality
which bounds the variance of certain functionals of Gaussian
vectors (see e.g. [16], [6]).

Theorem 5:Let ξ = [ξ1, . . . , ξM ]T a complex Gaussian
random vector such thatE[ξ] = 0, E[ξξT ] = 0 and
E[ξξH ] = Ω. If Γ = Γ(ξ, ξ∗) is aC1 complex function poly-
nomially bounded together with its derivatives, then, noting
∇ξΓ = [ ∂Γ∂ξ1 , . . . ,

∂Γ
∂ξM

]T and∇ξ∗Γ = [ ∂Γ∂ξ∗1
, . . . , ∂Γ

∂ξ∗M
]T ,

var(Γ(ξ)) ≤E

[

∇ξΓ(ξ)T Ω ∇ξΓ(ξ)
]

+ E
[

∇ξ∗Γ(ξ)H Ω ∇ξ∗Γ(ξ)
]

. (46)

In the following we will use the Nash-Poincaré inequality with
ξ being the vector of the stacked columns of independent
matricesH(l), where the channelsH(l) follow the Kronecker
model. Then (46) can be written under the form (47) at the
bottom of the page.

Using these two Gaussian tools we now prove Proposition1.
In order to derive the matrixΥ defined byEH[S] = R +Υ

we study the entries ofEH[S]. Using the resolvent identity
(26) we haveσ2

EH[Spq] = (I−EH[SHHH ])pq. We evaluate
EH[(SHHH)pq] by first studyingEH

[

SpiH
(l)
ij H

(l′)∗
qk

]

. Calcu-

lation begins with an integration by parts onH(l)
ij (45):

EH

[

SpiH
(l)
ij H

(l′)∗
qk

]

=
1

t

∑

m,n

C
(l)
imC̃

(l)
jnEH





∂(SpiH
(l′)∗
qk )

∂H
(l)∗
mn





=
1

t

∑

m,n

C
(l)
imC̃

(l)
jnEH

[

Spiδl,l′δq,mδk,n +H
(l′)∗
qk

∂Spi

∂H
(l)∗
mn

]

.

As ∂Spi

∂H
(l)∗
mn

= −
(

S ∂S−1

∂H
(l)∗
mn

S
)

pi
= −(SH)pnSmi, we obtain

EH

[

SpiH
(l)
ij H

(l′)∗
qk

]

=
1

t
C

(l)
iq C̃

(l)
jkEH[Spi]δl,l′

−1

t

∑

n

C̃
(l)
jnEH

[

H
(l′)∗
qk (SH)pn(C

(l)S)ii

]

.

Summing overi, l and l′ then leads to:

EH

[

(SH)pjH
∗
qk

]

=
∑

l

1

t
EH[(SC(l))pq]C̃

(l)
jk

−
∑

n,l

C̃
(l)
jnEH

[

H∗
qk(SH)pn

1

t
Tr(SC(l))

]

.

To separate the terms under the last expectation, we denote
ηl = 1

tTr(SC
(l)) = αl + η̊l, where αl = EH[ηl]. We

can then writeEH

[

H∗
qk(SH)pnηl)

]

= αlEH

[

H∗
qk(SH)pn

]

+

EH

[

H∗
qk(SH)pnη̊l

]

, hence

EH

[

(SH)pjH
∗
qk

]

=
∑

l

1

t
EH[(SC(l))pq]C̃

(l)
jk

−
∑

n,l

αlC̃
(l)
jnEH

[

(SH)pnH
∗
qk

]

−Ξ
(p,q)
jk ,

(48)

whereΞ(p,q)
jk =

∑

l EH

[

η̊lH
∗
qk(SHC̃(l)T )pj

]

. We here notice
the presence ofEH

[

(SH)p_H
∗
qk

]

on both sides of equation

(48). Hence, let us denote∆(p,q)
jk = EH

[

(SH)pjH
∗
qk

]

. Then
(48) becomes

∆
(p,q)
jk =

∑

l

1

t
EH[(SC(l))pq]C̃

(l)
jk

−
(
∑

l

αlC̃
(l)∆(p,q)

)

jk
−Ξ

(p,q)
jk .

Recalling thatR̃ =
(

σ2
(

It +
∑

l αlC̃
(l)
))−1

, this leads to

∆(p,q) = σ2
∑

l

1

t
EH[(SC(l))pq]R̃C̃(l) − σ2R̃Ξ(p,q).

We now come back to the calculation ofEH[Spq] =
1
σ2 (Ir − EH[SHHH ])pq by noticing thatEH[(SHHH)pq] =
∑

j EH

[

(SH)pjH
∗
qj

]

= Tr(∆(p,q)). Therefore

EH[Spq] =
δp,q
σ2

−
∑

l

α̃lEH[(SC(l))pq] + Tr
(

R̃Ξ(p,q)
)

,

recalling from (20) that α̃l = 1
tTr
(

R̃C̃(l)
)

. Coming back to
the definition of matrixΞ(p,q), we notice thatTr

(

R̃Ξ(p,q)
)

=
∑

l EH

[

η̊l(SHC̃(l)T R̃THH)pq
]

. Hence matrixEH[S] can be
written as

EH[S] =
1

σ2
Ir − EH[S]

∑

l

α̃lC
(l)

+
∑

l

EH

[

η̊lSHC̃(l)T R̃THH
]

.

And finally, EH[S] = R + Υ, where we recall thatR =
(

σ2
(

Ir +
∑

l α̃lC
(l)
))−1

and where matrixΥ is defined as

Υ = σ2
∑

l

EH

[

η̊lSHC̃(l)T R̃THH
]

R. (49)

var
(

Γ
(

(H(l))l=1,...,L

)
)

≤ 1

t

r
∑

i,m=1

t
∑

j,n=1

L
∑

l=1

C
(l)
imC̃

(l)
jnEH

[

∂Γ

∂H
(l)
ij

(

∂Γ

∂H
(l)
mn

)∗
+

(

∂Γ

∂H
(l)∗
ij

)∗
∂Γ

∂H
(l)∗
mn

]

(47)
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To end Proposition1 proof, we now need to prove that
1
tTr (ΥA) = O

(

1
t2

)

for any uniformly bounded matrixA.
Let A be ar× r matrix uniformly bounded inr. Using (49),

1

t
Tr (ΥA) =

σ2

t

∑

l

EH

[

η̊lTr
(

SHC̃(l)T R̃THHRA
)]

=
σ2

t

∑

l

EH

[

η̊l

◦
︷ ︷

Tr(SHC̃(l)T R̃THHRA)

]

.

We can now bound1tTr (ΥA) thanks to Cauchy-Schwartz
inequality.
∣

∣

∣

1

t
Tr (ΥA)

∣

∣

∣

≤ σ2

t

∑

l

√

√

√

√

√EH

[

|̊ηl|2
]

EH

[∣

∣

∣

∣

∣

◦
︷ ︷

Tr(SHC̃(l)T R̃THHRA)

∣

∣

∣

∣

∣

2]

=
σ2

t

∑

l

√

var (ηl) var
(

Tr(SHC̃(l)T R̃THHRA)
)

, (50)

asEH

[

|̊x|2
]

= var (x) for any random variablex. We now
prove thatvar(ηl) = O

(

1
t2

)

. The Nash-Poincaré inequality
(47) states that

var(ηl) ≤
1

t

∑

i,j,m,n,k

C
(k)
im C̃

(k)
jn E

[

∂ηl

∂H
(k)
ij

(

∂ηl

∂H
(k)
mn

)∗

+

(

∂ηl

∂H
(k)∗
ij

)∗
∂ηl

∂H
(k)∗
mn

]

. (51)

As ∂Spq/∂H
(k)
ij = −(S(∂S−1/∂H

(k)
ij )S)pq = −Spi(H

HS)jq

the partial derivative∂ηl/∂H
(k)
ij can be written as

∂ηl

∂H
(k)
ij

=
1

t
Tr

(

∂S

∂H
(k)
ij

C(l)

)

=
1

t

∑

p,q

∂Spq

∂H
(k)
ij

C(l)
qp

= −1

t
(HHSC(l)S)ji.

Similarly we obtain∂ηl/∂H
(k)∗
ij = − 1

t (SC
(l)SH)ij . There-

fore (51) leads to (52) at the bottom of the page. Both traces of
(52) can be upper bounded thanks to inequality|Tr(B1B2)| ≤
‖B1‖TrB2, whereB2 is non-negative hermitian,

var(ηl) ≤
2

t3
‖C(l)‖2

∑

k

‖C(k)‖ E

[

‖S‖4Tr
(

HC̃(k)THH
)]

≤ 2

t3
‖C(l)‖2

∑

k

‖C(k)‖‖C̃(k)‖ E
[

‖S‖4Tr
(

HHH
)]

≤ 1

t2
2LC4

sup

σ8
E

[

1

t
Tr
(

HHH
)

]

, (53)

where the second inequality follows from‖S‖ ≤ 1
σ2 and from

the definition ofCsup:

Csup = sup
t
Cmax = sup

t

{

max
k

{

‖C(k)‖, ‖C̃(k)‖
}
}

. (54)

The hypotheses of Proposition1 ensure thatCsup < +∞. We
now prove thatE

[

1
tTr

(

HHH
)]

= O (1). Using the fact that
the channelsH(l) are independent and follow the Kronecker
model, that isEH

[

H
(k)
ij H

(l)∗
mn

]

= δk,l
1
tC

(l)
imC̃

(l)
jn,

EH

[

1

t
Tr
(

HHH
)

]

=
1

t

∑

i,j,k,l

EH

[

H
(k)
ij H

(l)∗
ij

]

=
1

t2

∑

i,j,l

C
(l)
ii C̃

(l)
jj

=
1

t2

∑

l

TrC(l)Tr C̃(l) ≤ r

t
LC2

sup.

Therefore we proved thatEH

[

1
tTr

(

HHH
)]

= O (1). Coming

back to (53) givesvar(ηl) ≤ 1
t2

(

r
t

2C6
supL

2

σ8

)

, hencevar(ηl) =

O
(

1
t2

)

.
We evaluate similarly the behavior of the second

term of the right-hand side of (50) and we obtain
var
(

Tr(SHC̃(l)T R̃THHRA)
)

≤ k
σ12

(

1 + 1
σ2

)

‖A‖2 =
O (1), wherek does not depend onσ2 nor on t. Hence we
eventually have:

1

t
Tr(ΥA) = O

(

1

t2

)

,

which completes the proof of Proposition1.
Remark 1:Note that, asvar(ηl) ≤ 1

σ8t2

(

2 rtC
6
supL

2
)

and
var
(

Tr(SHC̃(l)T R̃THHRA)
)

≤ 1
σ12

(

k‖A‖2
(

1 + 1
σ2

))

,
(50) leads to1

tTr(ΥA) ≤ 1
σ8t2P

(

1
σ2

)

, whereP is a polyno-
mial with real positive coefficients which do not depend on
σ2 nor on t.

APPENDIX C
A REFINED LARGE SYSTEM APPROXIMATION OFEH[TrS] –

PROOF OFPROPOSITION2

We prove in this section that1tTr(RA) = 1
tTr(TA) +

O
(

1
t2

)

for any r × r matrix A uniformly bounded in r. We
first note that the difference1tTr (RA) − 1

tTr (TA) can be
written as
1

t
Tr ((R−T)A) =

1

t
Tr
(

R
(

T−1 −R−1
)

TA
)

= −σ
2

t

∑

l

(α̃l − δ̃l)Tr(RC(l)TA). (55)

As ‖T‖ ≤ 1
σ2 and‖R‖ ≤ 1

σ2 , equation (55) yields

1

t
|Tr ((R−T)A)| ≤ r

t

Csup‖A‖
σ2

∑

l

∣

∣α̃l − δ̃l
∣

∣, (56)

whereCsup < +∞ is defined by (54). We derive similarly
the difference1

tTr(R̃Ã)− 1
tTr(T̃Ã) for any t× t matrix Ã

uniformly bounded in t.

1

t

∣

∣

∣Tr
(

(

R̃− T̃
)

Ã
)∣

∣

∣ ≤ Csup‖Ã‖
σ2

∑

l

|αl − δl| (57)

var(ηl) ≤
1

t3

∑

k

E

[

Tr
(

(HHSC(l)S)C(k)(HHSC(l)S)HC̃(k)T
)

+Tr
(

C̃(k)T (SC(l)SH)HC(k)(SC(l)SH)
)
]

. (52)
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Taking A = C(k) in (56), Ã = C̃(k) in (57) and using
Proposition1 gives

∣

∣αk − δk
∣

∣ ≤ r

t

C2
sup

σ2

∑

l

∣

∣α̃l − δ̃l
∣

∣+ O

(

1

t2

)

, (58)

∣

∣α̃k − δ̃k
∣

∣ ≤
C2

sup

σ2

∑

l

|αl − δl| , (59)

which leads to
(

1− r

t

C4
supL

2

σ4

)

∑

k

∣

∣αk − δk
∣

∣ ≤ O

(

1

t2

)

.

Therefore it is clear that there existsσ2
0 such that

∣

∣αk− δk
∣

∣ =
O
(

1
t2

)

for σ2 > σ2
0 for any k ∈ {1, . . . , L}. In particular,

∣

∣αk− δk
∣

∣

t→∞−−−→ 0 for σ2 > σ2
0 . We now extend this result to

anyσ2 > 0. To this end, similarly to AppendixA, it is useful to
considerαl andδl as functions of the parameter(−σ2) ∈ R

−

and to extend their domain of validity fromR− to C−R
+ in

order to use the results about Stieltjès transforms. The function
δl(z) then corresponds to the functionψl(z) of Appendix A
and therefore belongs toS(R+) with an associated measure
of mass 1

tTrC
(l), for l = 1, . . . , L. It is easy to check

that functionαl(z) also belongs toS(R+) with an associated
measure of mass1tTrC

(l) for any l ∈ {1, . . . , L}. Hence, by
Proposition9 (v), we can upper bound the Stieltjès transforms
αl(z) andδl(z) on C− R

+, yielding:

|αl(z)− δl(z)| ≤ 2
1
tTrC

(l)

d(z,R+)
≤ 2

r
tCsup

d(z,R+)
.

The (αl(z) − δl(z))t∈N are thus bounded on any com-
pact set included inC − R

+, uniformly in t. Moreover
(αl(z) − δl(z))t∈N is a family of analytic functions. Using
Montel’s theorem similarly to AppendixA, we obtain that
∣

∣αl(z) − δl(z)
∣

∣

t→∞−−−→ 0 on C− R
+ for any l ∈ {1, . . . , L},

thus in particular
∣

∣αl − δl
∣

∣

t→∞−−−→ 0 (60)

for any σ2 > 0, l ∈ {1, . . . , L}. And (59) then yields
∣

∣α̃l − δ̃l
∣

∣

t→∞−−−→ 0 (61)

for any σ2 > 0, l ∈ {1, . . . , L}. Using (61) in (56) and (60)
in (57) gives

1

t
Tr (A(R−T))

t→∞−−−→ 0, (62)

1

t
Tr
(

Ã(R̃− T̃)
)

t→∞−−−→ 0. (63)

We now refine (62) and (63) to prove that these two
traces areO

(

1
t2

)

. Taking A = C(l) in (55) leads toαk −
δk = σ2

t

∑

l(δ̃l−α̃l)Tr
(

C(l)TC(k)R
)

+ 1
tTr

(

C(k)Υ
)

, where
Υ = EH[S] − R, and similarly δ̃k − α̃k = σ2

t

∑

l(αl −
δl)Tr

(

C̃(l)T̃C̃(k)R̃
)

. We can rewrite these two equalities
under the following matrix form:

(

I2L −N(R,T, R̃, T̃)
)
[

α− δ
δ̃ − α̃

]

=

[

ε

0

]

, (64)

where ε is a L × 1 vector whose entries defined byεk =
1
tTr

(

C(k)Υ
)

verify εk = O
(

1
t2

)

, k = 1, . . . , L, by Proposi-
tion 1, and where matrixN(R,T, R̃, T̃) is defined by

N(R,T, R̃, T̃) = σ2

[

0 B(R,T)

B̃(R̃, T̃) 0

]

, (65)

where matrices B(R,T) and B̃(R̃, T̃) are L × L
matrices whose entries are defined byBkl(R,T) =
1
tTr

(

C(l)TC(k)R
)

and B̃kl(R̃, T̃) = 1
tTr
(

C̃(l)T̃C̃(k)R̃
)

.
Besides, takingA = C(l)TC(k) in (62) andÃ = C̃(l)T̃C̃(k)

in (63) leads to
{

Bkl(R,T)
t→∞−−−→ 1

tTr
(

C(l)TC(k)T
)

,

B̃kl(R̃, T̃)
t→∞−−−→ 1

tTr
(

C̃(l)T̃C̃(k)T̃
)

.
(66)

We now introduce the following lemma:
Lemma 1:Let T, T̃ be the matrices defined by (11) and

(12) with (δ, δ̃) verifying the canonical equation (9) with Q =
It. Let A(T) andÃ(T) be theL×L matrices whose entries
are defined byAkl(T) = 1

tTr
(

C(k)TC(l)T
)

andÃkl(T̃) =
1
tTr(C̃

(k)T̃C̃(l)T̃) andM(T, T̃) the matrix defined by

M(T, T̃) = σ2

[

0 A(T)

Ã(T̃) 0

]

.

Assume that, for everyl ∈ {1, . . . , L}, supt ‖C(l)‖ <
+∞, supt ‖C̃(l)‖ < +∞, inft

(

1
tTrC

(l)
)

> 0 and
inft

(

1
tTr C̃

(l)
)

> 0. Then there existsk0 > 0 and k1 < ∞
both independent ofσ2 such that

(i) supt [ρ (M))] ≤ 1− k0σ
4

(σ2+k1)2
< 1,

(ii) supt

[

ρ
(

σ4Ã(T̃)A(T)
)]

≤
(

1− k0σ
4

(σ2+k1)2

)2

< 1,

(iii) supt

[ ∣

∣

∣

∣

∣

∣

∣

∣

∣(I2L −M(T, T̃))−1
∣

∣

∣

∣

∣

∣

∣

∣

∣

∞

]

≤ (σ2+k1)
2

k0σ4 ,

where
∣

∣

∣

∣

∣

∣ ·
∣

∣

∣

∣

∣

∣

∞ is the max-rowℓ1 norm defined by
∣

∣

∣

∣

∣

∣P
∣

∣

∣

∣

∣

∣

∞ =

maxj∈{1,...,M}
∑N
k=1 |Pjk| for a M ×N matrix P.

Proof: Using the expression ofT−1 = σ2(Ir +
∑

k δ̃kC
(k)),

δl can be written as:

δl =
1

t
Tr(C(l)TT−1T)

=
σ2

t
Tr(C(l)TT) +

σ2

t

L
∑

k=1

δ̃kTr(C
(l)TC(k)T).

Similarly δ̃l verifies

δ̃l =
σ2

t
Tr
(

C̃(l)T̃T̃
)

+
σ2

t

∑

k

δkTr
(

C̃(l)T̃C̃(k)T̃
)

.

Thus,
[

δ

δ̃

]

= σ2

[

0 A(T)

Ã(T̃) 0

] [

δ

δ̃

]

+

[

w

w̃

]

,

where w and w̃ are L × 1 vectors such thatwl =
σ2

t Tr(C
(l)TT) and w̃l = σ2

t Tr(C̃
(l)T̃T̃). This equality is

of the formu = M(T, T̃)u + v, with u =
[

δT , δ̃T
]T

and

v =
[

wT , w̃T
]T

, the entries ofu andv being positive, and
the entries ofM(T, T̃) non-negative. A direct application
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of Corollary 8.1.29 of [11] then implies ρ(M(T, T̃)) ≤
1− minvl

maxul
.

We first considersupt
{

maxul
}

. As u =
[

δT , δ̃T
]T

we
need to upper boundδk and δ̃k. As ‖T‖ ≤ 1

σ2 and‖C(l)‖ ≤
Csup we have

δk =
1

t
Tr
(

C(k)T
)

≤ r

σ2t
Csup. (67)

Similarly, as‖T̃‖ ≤ 1
σ2 and‖C̃(l)‖ ≤ Csup,

δ̃k =
1

t
Tr
(

C̃(k)T̃
)

≤ 1

σ2
Csup. (68)

As t/r
t→∞−−−→ c > 0 we have thatsupt [r/t] < +∞.

Therefore supt {maxul} ≤ λ0

σ2 < +∞, where λ0 =
Csup max {1, supt [r/t]}.

We now consider inft {minl vl}. As minl vl =

mink
{

σ2

t Tr(C
(k)TT), σ

2

t Tr(C̃
(k)T̃T̃)

}

, we need to
lower bound σ2

t Tr(C
(k)TT) and σ2

t Tr(C̃
(k)T̃T̃). We use

the Cauchy-Schwarz inequality:

|Tr(AB)| ≤
√

Tr(AAH)
√

Tr(BBH). (69)

TakingA =
(

C(l)
)1/2

T andB =
(

C(l)
)1/2

in (69) leads to

σ2

t
Tr
(

C(l)TT
)

≥ σ2
(

1
tTr

(

C(l)T
))2

1
tTrC

(l)
=

σ2δ2l
1
tTrC

(l)
. (70)

We now need to lower boundδl. Using again inequality (69)
with A =

(

C(l)
)1/2

T1/2 andB = T−1/2
(

C(l)
)1/2

yields

δl =
1

t
Tr
(

C(l)T
)

≥
(

1
tTrC

(l)
)2

1
tTr

(

C(l)T−1
) . (71)

Thanks to (68), ‖T−1‖ = ‖σ2(Ir+
∑

l δ̃lC
(l))‖ ≤ σ2+LC2

sup.
Hence (71) leads to

δl ≥
1
tTrC

(l)

‖T−1‖ ≥
1
tTrC

(l)

σ2 + LC2
sup

. (72)

Eventually, using (72) in (70) gives

σ2

t
Tr
(

C(l)TT
)

≥ σ2 1
tTrC

(l)

(

σ2 + LC2
sup

)2 . (73)

Similarly, we prove that

σ2

t
Tr
(

C̃(l)T̃T̃
)

≥ σ2 1
tTr C̃

(l)

(

σ2 + r
tLC

2
sup

)2 .

Therefore inft
{

minl vl
}

≥ σ2λ1

(σ2+k1)2
, where λ1 =

minl
{

inft
[

1
tTrC

(l)
]

, inft
[

1
tTr C̃

(l)
]}

> 0 and k1 =
LC2

sup max {1, inft[r/t]} = LCsupλ0 < +∞. Noting k0 =
λ1

λ0
> 0 we can now conclude about statement (i) of the lemma:

sup
t
ρ(M(T, T̃)) ≤ 1− inft(minl vl)

supt(maxl ul)
≤ 1− k0σ

4

(σ2 + k1)2
.

As for statement (ii ) of the lemma, we note that
∣

∣M(T, T̃)−
λI2L

∣

∣ =
∣

∣σ4Ã(T̃)A(T)−λ2IL
∣

∣. Henceρ(σ4Ã(T̃)A(T)) =

(ρ(M(T, T̃)))2 ≤
(

1− k0σ
4

(σ2+k1)2

)2
< 1.

Concerning statement (iii ), the proof is the same as
in [18, Lemma 5.2]. Nonetheless we provide it here for
the sake of completeness. Asρ(M(T, T̃)) < 1, the se-
ries

∑

k∈N
M(T, T̃)k converges, matrixI2L − M(T, T̃)

is invertible and its inverse can be written as
(

I2L −
M(T, T̃)

)−1
=
∑

k∈N
M(T, T̃)k. Therefore the entries of

(

I2L −M(T, T̃)
)−1

are non-negative. Hence,

uk =

2L
∑

l=1

[

(I2L −M(T, T̃))−1
]

kl
vl

≥ min
l
(vl)

2L
∑

l=1

[

(I2L −M(T, T̃))−1
]

kl
.

Thereforemaxk
∑2L
l=1

[(

I2L − M(T, T̃)
)−1]

kl
≤ maxl(ul)

minl(vl)
and it eventually follows that:

sup
t

[
∣

∣

∣

∣

∣

∣

∣

∣

∣

(

I2L −M(T, T̃)
)−1 ∣

∣

∣

∣

∣

∣

∣

∣

∣

∞

]

≤ supt(maxl ul)

inft(minl vl)

≤ (σ2 + k1)
2

k0σ4
.

�

Remark 2:Lemma1 (ii ) is used in the proof of Theorem1
for the uniqueness of solutions to (9), but we took care not to
use any consequences of this uniqueness in the proof above;
this proof only requires the existence of solutions to (9).

Remark 3:Unfortunately assumptionsinft
(

1
tTrC

(l)
)

> 0

and inft
(

1
tTr C̃

(l)
)

> 0 made in Lemma1 cannot be
restrained, as1tTr

(

C(l)TT
)

≤ 1
σ4

(

1
tTrC

(l)
)

and similarly
1
tTr
(

C̃(l)T̃T̃
)

≤ 1
σ4

(

1
tTr C̃

(l)
)

.
Equation (66) shows that the entries ofB(R,T) and

B̃(R̃, T̃) respectively converge to the entries ofA(T) and
Ã(T̃). Hence there existst0 such that, fort > t0,

• the matrixI2L −N(R,T, R̃, T̃) is invertible,

• supt

[
∣

∣

∣

∣

∣

∣(I2L −N(R,T, R̃, T̃))−1
∣

∣

∣

∣

∣

∣

∞

]

≤ 2(σ2+k1)
2

k0σ4 .

Then, fort > t0, (64) yields
[

α− δ
δ̃ − α̃

]

=
(

I2L −N(R,T, R̃, T̃)
)−1

[

ε

0

]

. (74)

Hence maxl
{∣

∣αl − δl
∣

∣,
∣

∣α̃l − δ̃l
∣

∣

}

≤
∣

∣

∣

∣

∣

∣(I2L −
N(R,T, R̃, T̃))−1

∣

∣

∣

∣

∣

∣

∞ maxk |εk|, and asεl = Tr
(

C(l)Υ
)

=

O
(

1
t2

)

for l = 1, . . . , L, we eventually have that

α̃l − δ̃l = O

(

1

t2

)

. (75)

Using (75) in (56) completes the proof of Proposition2.

APPENDIX D
INTEGRABILITY OF EH [Tr (T− S)] - PROOF OF

PROPOSITION3

We first considerEH [Tr (R− S)], which is equal toTrΥ
by Proposition1. As noted in Remark1 of Appendix B, we
have

∣

∣
1
tTr(ΥA)

∣

∣ ≤ 1
σ8t2P0

(

1
σ2

)

, whereP0 is a polynomial
with real positive coefficients which do not depend onσ2 nor
on t. Therefore

|EH [Tr (R− S)]| ≤ P0

(

1
σ2

)

σ8t
. (76)
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We now considerTr (R−T). We showed in AppendixC
that there existst0 such that, fort > t0, I2L−N(R,T, R̃, T̃)
is invertible and such that

∣

∣

∣

∣

∣

∣(I2L −N(R,T, R̃, T̃))−1
∣

∣

∣

∣

∣

∣

∞ ≤
2(σ2+k1)

2

k0σ4 , wherek0 andk1 are given by Lemma1. Equation
(64) then implies

∣

∣α̃l − δ̃l
∣

∣ ≤
∣

∣

∣

∣

∣

∣

∣

∣

∣(I2L −N(R,T, R̃, T̃))−1
∣

∣

∣

∣

∣

∣

∣

∣

∣

∞
max
k

|εk|

≤ 2(σ2 + k1)
2

k0σ4
max
k

|εk| ,

whereεk = Tr
(

C(k)Υ
)

. Besides, Remark1 of Appendix B
ensures that|εk| ≤ 1

σ8t2P1

(

1
σ2

)

, whereP1 is a polynomial
with real positive coefficients which do not depend onσ2 nor
on t. Hence, fort > t0,

∣

∣α̃l − δ̃l
∣

∣ ≤ P1

(

1
σ2

)

σ8t2
2(σ2 + k1)

2

k0σ4
(77)

for any l ∈ {1, . . . , L}. Using (77) in (56) with A = Ir then
gives, fort > t0,

|Tr (R−T)| ≤ 1

σ8t

(

k2
σ2

(

1 +
k1
σ2

)2

P1

(

1

σ2

))

(78)

wherek2 =
2LCsup

k0
supt{r/t} < +∞.

Eventually, (76) and (78) yield
∣

∣EH

[

Tr
(

T − S
)]∣

∣ ≤
1
σ8tP

(

1
σ2

)

for t > t0, where the coefficients of the polynomial

P
(

1
σ2

)

= P0

(

1
σ2

)

+ k2
σ2

(

1 + k1
σ2

)2
P1

(

1
σ2

)

are real positive
coefficients and do not depend onσ2 nor ont. This completes
the proof of Proposition3.

APPENDIX E
DIFFERENTIABILITY OF Q 7→ δ(Q), Q 7→ δ̃(Q) AND

Q 7→ I(Q) – PROOF OFPROPOSITION5

We prove in this section that for allP,Q ∈ C1 functions
δ and δ̃ are Gâteaux differentiable at pointQ in the direction
P−Q, whereδ, δ̃ are defined as the solutions of system (9).
The proof is based on the implicit function theorem.

Let P,Q ∈ C1. We introduce the functionΓ : RL+ × R
L
+ ×

[0, 1] → R
2L defined by

Γ(δ, δ̃, λ) =

[

δ − f(δ̃)

δ̃ − f̃(δ,Q+ λ(P−Q))

]

,

with f(δ̃) =
[

f1(δ̃), . . . , fL(δ̃)
]T

and f̃(δ,Q) =
[

f̃1(δ,Q), . . . , f̃L(δ,Q)
]T

, where thefl and thef̃l are de-
fined by (10). Note thatδ(Q+λ(P−Q)) andδ̃(Q+λ(P−Q))
are defined byΓ(δ, δ̃, λ) = 0. We want to apply the implicit
theorem on a neighbourhood ofλ = 0; this requires the dif-
ferentiability ofΓ on this neighbourhood, and the invertibility
of the partial JacobianD(δ,δ̃)(Γ(δ, δ̃, λ)) at pointλ = 0.

We first note thatfl : δ̃ 7→ 1
σ2tTr

[

C(l)
(

Ir+
∑

k δ̃kC
(k)
)−1]

is clearly continuously differentiable onRL+. Concerningf̃l,
we first need to use the matrix equality(I + AB)−1B =
B(I+BA)−1, with A = Q1/2 andB = C̃Q1/2:

f̃l(δ,Q) =
1

σ2t
Tr

[

Q1/2C̃(l)Q1/2
(

It +Q1/2C̃(δ)Q1/2
)−1

]

=
1

σ2t
Tr
[

C̃(l)Q(It + C̃(δ)Q)−1
]

. (79)

Recall thatC̃(δ) =
∑

k δkC̃
(k). Function(δ, λ) 7→ f̃(δ,Q+

λ(P−Q)) is therefore clearly continuously differentiable on
R
L
+ × [0, 1]. Nevertheless, as we want to use the implicit

theorem for λ = 0, we need to enlarge the continuous
differentiability on an open set includingλ = 0. Note that
for λ < 0, Q + λ(P − Q) might have negative eigenvalues.
Yet, det

[

It + C̃(δ)(Q+ λ(P−Q))
]

> 0 for δ = δ(Q) and
λ = 0. Therefore it exists a neighbourhoodV of (δ(Q), 0)
on which det

[

It + C̃(δ)(Q + λ(P − Q))
]

> 0. Defining
f̃l by (79), the functions(δ, λ) 7→ f̃l(δ,Q + λ(P − Q))
are continuously differentiable onV . Hence,Γ(δ, δ̃, λ) is
continuously differentiable onRL+ × V .

We still have to check that the partial Jacobian
D(δ,δ̃)(Γ(δ, δ̃, λ)) is invertible at the pointλ = 0.

D(δ,δ̃)Γ(δ,δ̃,0) =

[

IL −Dδf(δ̃) −Dδ̃f(δ̃)
−Dδ f̃(δ,0) IL −Dδ̃ f̃(δ,0)

]

=

[

IL −σ2A(T)

−σ2Ã(T̃) IL

]

= M(T, T̃),

where Akl(T) = 1
tTr(C

(k)TC(l)T) and Ãkl(T̃) =
1
tTr(Q

1/2C̃(k)Q1/2T̃Q1/2C̃(l)Q1/2T̃), and with T =

T(δ̃(Q)) and T̃ = T̃(δ(Q)) respectively defined by (11)
and (12). MatricesA(T), Ã(T̃) and M(T, T̃) correspond
to those defined in Lemma1, but in which C̃(l) is replaced
by Q1/2C̃(l)Q1/2. Lemma 1 item (i) therefore gives the
invertibility of D(δ,δ̃)Γ at pointλ = 0.

We now are in position to apply the implicit function
theorem, which asserts that functionsλ 7→ δ(Q+ λ(P−Q))
and λ 7→ δ̃(Q + λ(P − Q)) are continuously differentiable
on a neighbourhood of0. Hence, δ and δ̃ are Gâteaux
differentiable at pointQ in the directionP−Q. As I(Q) =
log
∣

∣Ir +
∑

l δ̃l(Q)C(l)
∣

∣ + log
∣

∣It + Q
(∑

l δl(Q)C̃(l)
)∣

∣ −
σ2t
(∑

l δl(Q)δ̃l(Q)
)

it is clear thatQ 7→ I(Q) is as well
Gâteaux differentiable at pointQ in the directionP−Q.
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