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Adapted Convex Optimization Algorithm for

Wavelet-Based Dynamic PET Reconstruction
Nelly Pustelnik, Caroline Chaux, Jean-Christophe Pesquet, Florent C. Sureau, Elodie Dusch and Claude Comtat

Abstract—This work deals with Dynamic Positron Emission
Tomography (PET) data reconstruction, considering time as an
additional variable (space+time). A convex optimization approach
closely related to a Bayesian framework is adopted. The objective
function to be minimized is expressed in the wavelet-frame
domain and is non-necessarily differentiable in order to promote
sparsity. We propose an adapted version of Forward-Backward-
Douglas-Rachford (FBDR) algorithm to solve the resulting min-
imization problem. The effectiveness of this approach is shown
with simulated dynamic PET data. Comparative results are also
provided.

Index Terms—Dynamic PET, wavelet-frame representations,
convex optimization, reconstruction.

I. INTRODUCTION

In Positron Emission Tomography (PET), a main challenge

consists of finding new reconstruction methods to improve im-

age quality degraded during the acquisition process. Iterative

reconstruction methods such as the Expectation Maximization

algorithms (which maximize the Poisson log-likehood asso-

ciated with PET data) have been proposed to achieve this

objective [1], [2]. Accelerated versions of these algorithms

have been suggested such as Ordered Subsets EM (OS-EM)

[3] and a modified form called RAMLA [4] for which the con-

vergence is established. A drawback of ML-EM approaches is

that they converge to noisy images and, in practice, it is thus

required to stop iterations before convergence. To overcome

this problem, Maximum A Posteriori (MAP) approaches have

been developed which take into account a prior controling

noise effects. The major difficulty is to find an appropriate

prior. Markov Random Fields (MRF) were first proposed,

which are well-adapted to image features. Multiresolution

models such as wavelet-based priors were also proved benefi-

cial. A MAP-EM algorithm based on a Gaussian fidelity term

and generalized Gaussian distributions to model the wavelets

coefficients have been proposed in [5]. The same authors [6]

adapted the RAMLA algorithm to solve a MAP estimation

problem under the constraint that the regularization term is

differentiable (BSREM algorithm [7]).

A new challenge consists of considering dynamic PET data

(space+t) to extract additional physiological parameters. For
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dynamic data, the acquisition duration per time-frame is short

and thus data noise is more severe. Usually, for dynamic

studies, each time-frame is reconstructed independently by

using the aforementioned methods. However, in [8], [9], [10]

the authors demonstrated the advantage of taking into account

time-frame characteristics. These methods can be divided

into two classes: on the one hand, methods which directly

reconstruct parametric maps [8], [9] and on the other hand,

methods reconstructing an image [10], [11], [12]. In parallel,

new convex optimization algorithms have been proposed in

[13], [14], [15] which are able to solve numerically MAP

estimation problems. The main advantages of these algorithms

are twofold: i) their ability to deal with a wide class of

problems and ii) guaranty of their convergence. In this paper,

we propose to apply one of these appealing methods to

space+t PET reconstruction. Previously, Verhaeghe et al. [10]

have suggested to use Forward-Backward-iterations [13] to

minimize a criterion with a Gaussian data fidelity term and

a wavelet spline regularization. In [11], the authors performed

TAC denoising before reconstruction by using the Douglas-

Rachford algorithm. In this paper, we propose to develop a

nested iterative algorithm (FBDR algorithm) [15] to directly

address a Poisson linear degradation model and to perform

denoising and reconstruction simultaneously. The convergence

proof of this kind of algorithm is given in [15]. This method

has another advantage: the possibility to constrain the dynamic

range of the image intensity.

This paper is organized as follows. In a first part, we

will present the degradation model and the associated objec-

tive function to be minimized. The use of multidimensional

wavelet representations will be motivated. Then, the FBDR

algorithm will be introduced in the case of dynamic recon-

struction (space+t) and the quadratic extension necessary to

use this algorithm will be presented next. Finally, we will

provide some results for simulated 2D + t PET data.

II. PET RECONSTRUCTION MODEL

A. Model

We consider the following degradation model:

(∀t ∈ {1, . . . , T}) zt = P(Ayt) (1)

where yt = (yi,t)1≤i≤N represents a finite parameterization

of the original image and corresponds to the spatial activity

distribution for a time-frame t. Here, zt = (zj,t)1≤j≤M is

the dynamic PET data corresponding to the number of coin-

cidences for each tube of response for a time-frame t. Finally,

A denotes the system linear operator associated with matrix

(Aj,i)1≤j≤M,1≤i≤N where each element Aj,i represents the
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probability for a voxel i to be detected in tube of response

j. During the acquisition process, data are contaminated by a

Poisson noise. The effect of the noise is denoted by P .

B. Maximum A Posteriori and Convex Optimization

Following a Bayesian approach, the MAP estimate can be

expressed as

ŷMAP = arg max
y

{
log p(z|y) + log p(y)

}
(2)

where, on the one hand, p(z|y) corresponds to the Poisson

likelihood such that p(z|y) =
∏T

t=1

∏M
j=1 p(zj,t|uj,t) with

uj,t =
∑N

i=1 Ajiyi,t,

p(zj,t|uj,t) =
(uj,t)

zj,t

zj,t!
exp

(
− uj,t

)
(3)

and on the other hand, p(y) is an a priori distribution on the

original image, which will be assumed to correspond to a log-

concave function.

In many convex optimization problems, the goal is similarly

to minimize a convex objective function by finding

ŷCO = arg min
y∈RN×T

g̃(y) + f̃(y) (4)

where f̃ and g̃ are functions in the class Γ0(R
N×T ) of lower

semicontinuous convex functions taking their values in ] −
∞, +∞] which are proper (i.e. not identically equal to +∞)

and defined on the Hilbert space R
N×T . In the context of

inverse problems, g̃ is considered as the data fidelity term and

f̃ is a regularizer. Actually, a link between (2) and (4) can

be established [16] by identifying g̃ with the Poisson antilog-

likelihood term and f̃ with the prior potential function.

Then, the main difficulty lies in the choice of the prior.

In the last decade, wavelet representations have demonstrated

their efficiency in modelling prior information for images

involved in general inverse problems and in PET particularly

[6], [10], [5]. In the following, the minimization problem (4)

is reformulated in the wavelet transform domain.

C. Wavelets representation and redundant representation

Let F ∗ : R
K → R

N×T represent a tight wavelet-frame

synthesis operator such that F ∗ ◦ F = νId with ν ∈]0, +∞[
and let x ∈ R

K denote the wavelet coefficients of a field

y ∈ R
N×T [16]. The field ȳ can be expressed as y = F ∗x =

(F ∗
t x)1≤t≤T and Model (1) becomes:

zt = P(AF ∗
t x) (5)

where x represents the unknown vector of wavelet-frame

coefficients. In this context, the minimization problem (4) can

be reformulated as

min
x∈RK

g(x) + f(x) (6)

where the noise related term g is such that g =
∑T

t=1 gt where

gt = Ψt ◦ A ◦ F ∗
t and, for every ut = (uj,t)1≤j≤M ∈ R

M ,

Ψt(ut) =

M∑

j=1

ψj,t(uj,t) (7)

with ψj,t(uj,t) = − log p(zj,t|uj,t), j ∈ {1, . . . , M}. For

the regularization term, previous studies have emphasized the

advantage of taking the l0 “norm” as a penalty term so as to

promote sparsity but the main difficulty is the non-convexity

of this “norm”. The l1-norm was then proposed as a penalty

term in [13]. Good performance was demonstrated in spite of

the possible non-uniqueness of the solution. In [16], authors

proposed to take a weighted combination of an l1-norm and

an lp-norm with p > 1 to regularize the solution, so ensuring

the uniqueness of the solution and a more accurate modelling

of wavelet-frame coefficients. In this work, we will consider

the latter regularizer. Futhermore, a positivity constraint on the

image is introduced. More generally, let C be a closed convex

in R
K allowing us to take into account the image range values,

then the minimization problem is reformulated as:

min
x∈RK

g(x) + f(x) + ιC(x) (8)

where ιC corresponds to the indicator function of the set C,

such that (∀x ∈ R
K), ιC(x) = 0 if x ∈ C and ιC(x) = +∞

otherwise.

III. FBDR ALGORITHM

To solve Problem (8), a nested iterative algorithm named

Forward-Backward-Douglas-Rachford (FBDR) was proposed

in [15], which consists of a Douglas-Rachford [14] inner loop

in each Forward-Backward iteration [17]. To guarantee the

convergence to a solution to Problem (8), a necessary condition

is the β-Lipschitz differentiability of the fidelity term which is

not guaranteed for g as defined in (7). A quadratic extension

was proposed in [15] to circumvent this problem.

A. Quadratic extension

The idea behind the quadratic extension approach is to

notice that the following inequality is satisfied for the sec-

ond derivative of function ψj,t with t ∈ {1, . . . , T} and

j ∈ {1, . . . ,M}:

(∀υ ∈]0, +∞[) 0 ≤ ψ′′
j,t(υ) ≤ θ ⇔ υ ≥ υj,t(θ) = (zj,t/θ)1/2

(9)

when θ ∈ ]0,+∞[. It is then possible to build a lower approx-

imation of ψj,t that is θ-Lipschitz differentiable, denoted by

ψθ,j,t. For every value over threshold υj,t(θ), ψθ,j,t is chosen

equal to the Poisson antilog-likelihood, whereas for values

lower than the threshold, ψθ,j,t takes a quadratic form. A lower

approximation gθ =
∑T

t=1 gθ,t with gθ,t = Ψθ,t◦A◦F ∗
t is then

obtained, which is (ν‖A‖2θ)-Lipschitz differentiable, where

(∀ut = (uj,t)1≤i≤M ∈ R
M ) , Ψθ,t(ut) =

∑N
j=1 ψθ,j,t(uj,t)

and (∀υ ∈ R), if zj,t > 0

ψθ,j,t(υ) =





υ − zj,t + zj,t ln
(

zj,t

υ

)
if υ ≥ υj,t(θ)

θ
2υ2 + ζj,t,1(θ) υ + ζj,t,0(θ) if 0 ≤ υ < υj,t(θ)

+∞ otherwise

(10)

and, if zj,t = 0, ψθ,j,t(υ) = υ, if υ ≥ 0, and +∞, otherwise.

Note that a different polynomial approximation of the

objective function was considered in [18].
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B. Application of FBDR to space+t PET reconstruction

The proposed reconstruction algorithm possesses some ap-

pealing features. At first, the gradient descent is performed

in the space domain based on a time-frame by time-frame

computation. Secondly, it is grounded on an adapted wavelet

decomposition performed along the space/time dimensions

taking into account the fewer number of available samples

in time.

Algorithm III.1

À Choose sequences (γn)n∈N and (λn)n∈N such that γn ∈
]0, 2/(ν‖A‖2θ)[ and λn ∈]0, 1]. Set τ ∈]0, 2].

Á Set n = 0 and x(0) ∈ C.

Â Compute y(n) = F ∗x(n).

Ã For each time-frame t ∈ {1, . . . , T}, compute d
(n)
t =

A∗∇Ψθ,t(Ay
(n)
t ).

Ä Set p(n) = x(n) − γnFd(n).

Å Set z(n,0) = 2proxγnfp(n) − p(n).

Æ For m = 0, . . . , Mn − 1

a) Compute z(n,m+ 1
2 ) = PC

(z(n,m) + p(n)

2

)
.

b) Choose τn,m ∈ [τ , 2].
c) Compute z(n,m+1) =

z(n,m) + τn,m

`

proxγnf (2z(n,m+ 1
2
)
− z(n,m)) − z(n,m+ 1

2
)´

.

d) If z(n,m+1) = z(n,m), then goto Ç.

Ç Set x(n+1) = x(n) + λn

(
z(n,m+ 1

2 ) − x(n)
)
.

È Increment n and goto Â.

In Step À, the step-size and relaxation parameters used in

the Forward-Backward iterations are chosen. Step Á initializes

the wavelet coefficient vector to an element of the convex

set C. Step Â to Ä correspond to the gradient descent.

The gradient of gθ is defined as: (∀x ∈ R
K) ∇gθ(x) =

F (A∗ ∇Ψθ,t(AF ∗
t x))1≤t≤T where (∀ut = (uj,t)1≤j≤M ∈

R
M ),

∇Ψθ,t(ut) = (ψ′
θ,j,t(uj,t))1≤j≤M , (11)

ψ
′

θ,j,t(uj,t) =

8

>

<

>

:

1 −
zj,t

uj,t
if zj,t > 0 and uj,t ≥ υj,t(θ)

θuj,t + ζj,t,1(θ) if zj,t > 0 and 0 ≤ uj,t < υj,t(θ)

1 if zj,t = 0 and uj,t ≥ 0.
(12)

Step Æ allows us to compute the proximity operator of

ιC + f at point p(n). Details on proximity operators can be

found in [17], [14], [16]. The corresponding Douglas-Rachford

procedure is mainly decomposed in two operations performed

iteratively: on the one hand, a projection PC onto the convex

set C, and on the other hand, the computation of proxγnf . In

practice, C is defined from a convex set C∗ ⊂ R
N×T allowing

us to incorporate constraints on the image range values, the

positivity constraint, in particular. The relation between the

two convex sets is C = {x ∈ R
K |F ∗x ∈ C∗}.

To compute PC , we use the following relation [14]:

PC(x) = x +
1

ν
F (PC∗(F ∗x) − F ∗x) (13)

For the computation of proxγnf , explicit forms are given in

[16]. Step Å represents the initialization of Douglas-Rachford

iterations and allows us to ensure its convergence in one

iteration when the proximity operator of f at p(n) belongs

to the convex set C [15]. Finally, Step Ç corresponds to the

relaxation part of the Forward-Backward algorithm.

IV. MATERIALS AND METHODS

Results are presented on two differents slices of the Zubal

brain phantom including two additional arteries. Each 2D + t
phantom consists of 256× 256 voxels. The generated activity

corresponds to a [18F]-FDG exam which was simulated and

divided in 16 time-frames with a duration varying between 50

seconds for the first time-frames to 5 minutes for the last ones.

288 (radial) × 144 (angles) sinograms with a radial sampling

of 2.247 mm were simulated by analytically projecting the

phantom in the presence of Poisson noise. Attenuation, random

and scattered coincidences were not simulated. The number of

events in Slice 1 varies from 3 for first time-frame to 647162
for the last time-frame. For Slice 2 the event number varies

from 47 to 331348.

The FBDR algorithm is run over 2000 iterations. The chosen

separable orthonormal wavelets correspond to Daubechies fil-

ters of length 6 on 2 resolution levels for spatial decomposition

and 1 level of Daubechies-6 on the interval [19] for temporal

decomposition. The latter choice is motived by the small

number of time-frames. The parameter θ is choosen equal to

10−4 and the parameters associated with the prior have been

determined by a maximum likelihood approach. We compare

this algorithm with EM stopped at the iteration that gives

the lowest MSE (here 10 iterations for Slice 1 and 2). EM

with post-reconstruction smoothing using a Gaussian kernel

adapted so as to minimize the MSE was also employed. The

EM iteration number in this approach is 120 and 100 for Slice

1 and 2, respectively, and a 4.7 mm x 4.7 mm full width at

half maximum (FWHM) Gaussian filter is used.

V. RESULTS

Figs. 1, 2, 3 and 4 display the different reconstruction results

for the 4th and 14th time-frames of each slice. As it can be

observed, structures are better recovered using the proposed

approach. The advantage of taking into account the temporal

aspect can be mainly observed for the first time-frames where

the noise level is relatively important (Figs. 1 and 3).

Temporal Activity Curves (TAC) are presented in Figs. 5

and 6 for two neighbouring voxels in the cortex (green area in

Fig. 1(a)) and arteries (red area in Fig. 3(a)), respectively. The

MSE values presented in Table I show the differences between

the reconstructed TAC and the original ones. In each situation,

the FBDR approach is the more accurate.

VI. CONCLUSION

We have proposed to employ the FBDR algorithm to restore

space+time PET data. This method is very flexible. It allows

us to consider non-necessarily differentiable priors, which can

be of main interest when using wavelet-frame representations.

The obtained results for 2D + t PET simulations are very

encouraging, and we are now working on 3D + t data.
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(a) EM Smoothing EM FBDR

Fig. 1. Slice 1 - time-frame 4.

(a) EM Smoothing EM FBDR

Fig. 2. Slice 1 - time-frame 14.

(a) EM Smoothing EM FBDR

Fig. 3. Slice 2 - time-frame 4.

(a) EM Smoothing EM FBDR

Fig. 4. Slice 2 - time-frame 14.
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Fig. 5. TAC extracted from Slice 1 for two neighbouring voxels. Original
(red), EM (cyan), Smoothed-EM (green) and FBDR (blue).
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