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Abstract This article deals with synchronization in the Enboth efficiency and linearity. In radiocommunication stan-
velope Elimination and Restoration (EER) type of transmitiards, the quality of the transmitted signal is well defined,
ter architecture. To illustrate the performances of such agsually in terms of output spectrum, Adjacent Channel Power
lution, we choose to apply this architecture to a 64 carrieRatio (ACPR) and Error Vector Magnitude (EVM). When
16QAM modulated OFDM. We first introduce the problemthe modulated signal presents an envelope variation,aimil
atic of the realisation of a highly linear transmitter. Werth to an amplitude modulated signal, the compression effect of
present the Envelope Elimination and Restoration solutitihe Power Amplifier (PA) generates intermodulation prod-
and draw attention to its major weakness: a high sensitiviigts which directly impact the three mentioned figures of
to desynchronization between the phase and envelope signatit. This implies that with a classic class A PA, the in-
paths. To address this issue, we propose an adaptive synchu signal would have to present a mean power (depending
nization algorithm relying on a feedback loop, a Least Meam the type of modulation) lower than the input compres-
Square formulation and involving an interpolation step. #ion point: the difference is quantified in terms of back off.
enables the correction of delay mismatches and trackingloforder to gain in efficiency, a linearization system is ofte
possible variations. We demonstrate that the quality of tpeeferred to a linear amplification.
interpolator has a direct impact on Error Vector Magnitude this paper, we deal with thEnvelope Elimination and
(EVM) value and output spectrum. Implementation detaiRestoratiofEER) principle, and illustrate it in the case of a
are provided along with an analysis of the behaviour ad®QAM 64 carriers OFDM modulation. The EER principle
performances of the method. We present HPADS and Matas proposed by Kahn in 19524] and is based on the split-
lab simulation results and then focus on the enhancementinf of a modulated signal into two signals. The first one is
the transmitter performances using the proposed algoritha constant envelope phase modulated signal, while the sec-
ond one is the envelope of the original signal. In the origina
EER transmitter, the splitting is realized in an analog way u
1 Introduction ing a limiter and an envelope detector. The phase modulated
signal is the input of an efficient PA whereas the envelope
Recent radiocommunication systems aiming at high data régnal is sent to a switching power supply which feeds the
are based on efficient modulation schemes in which Quadi@st stage of the PA. The transmitter now evoluates toward a
ture Amplitude Modulations (QAM) are obviously preferredully digital transmitter P3] as shown in Fig1l.
to frequency or phase modulation. While the 3GPP standard

employs QPSK and 16QAM, higher data rate are achieved Envelope mMV\WW

(in WLAN system for example) using Orthogonal Frequency : Supply

Data Multiplexing (OFDM) modulation. Although these mod- J m
ulations are suitable for signal processing, the reabpati Modatatr b

the RF front end, particularly the transmitter, becomesamor Q Rout
and more complex. T %

In the conception of a transmitter, it is essential to aahiev | : Frequensy -
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The digital creation of the two signals is achieved usingTable 1 ACPR obtained for different delay mismatches. It is evalu-
CORDIC processorZ]. The principle of this processor re-ated for the full 64 carriers 20MHz OFDM modulation, with sacimel

lies on the rotation of a vectdiX,Y;) to a new vector. In SPacing of 25MHz.

our case, the final vector &, 6), wherez; is the magni- [ Delay [T/27 [ T/A3] T/5 [ T/3 |

tude of the vector and the rotation angle is our phase. VLSI [[ACPR(dB) [ -37 [ -29.7 ] -20.7 [ -15.7 ]
implementation can profit from of a suitable iterative formu

lation. The phase signal is sent to the PA amplifier using a ) )

modulated PLL. This solution is preferred to a I/Q RF modS equal to the number of carriers, which corresponds to
ulator in order to reduce transmitted spurious emissioas. ¥0109(64) = 18dB in our simulation case. A few results have
limit distortion, the envelope signal is usually amplifieditw already been presented on the study of the whole transmit-
a class S modulator using'a\ modulator rather than a clas-ter with this modulation] and this paper indicates that the
sic PWM. The final amplification is realized by a high efficritical specification is the synchronization of signalig. 2
ciency amplifier. As the input signal is a constant envelogéd Fig.3 present the impact of delay mismatch in the range
signal, switched class of power amplifiers are preferred dab+ 3, with T the time symbol, on the output spectrum and
to their high efficiency. As demonstrated (], the class E ©on the EVM. Table 1 gives the values of ACPR for these
power amplifier is very suitable for this application sinbe t delays. The symbol rate is 20MHz.

expression of the output voltage is directly proportiorioal

its power supply. This property is mandatory as we intend to
reinject the envelope variation through the modulatiortof i 20
power supply. 1
However the main drawback of this architecture is its sensi- 0|
tivity to delay mismatch between the two signals.

The delays introduced by the two paths can be mismatched
due to pipeline differences in the paths and the delay in
the anti-alias filter (amplitude path), as well as small con-
tributions from other analog delay&1]. Furthermore, in a
production environment, delays should be matched to varia- p "W"‘WW"H' %J,\lﬂmw "

tions in process including supply voltage, frequency, atitp 1 AN W
power and temperaturaﬂ;]. This usually reqUireS careful >802300 ‘ 23‘20 ‘ 23‘40 ‘23‘60 ‘ 23‘80 ‘ 24‘00 ‘ 24‘20 ‘24‘40 ‘ 24L30 ‘ 24‘80 ‘ 25‘00
factory calibration procedures. The mismatch deterigrate

both the EVM and the output spectrum of the transmitted
signal §; 24] and has to be corrected. A linear interpolarig. 2 Impact of the delay mismatch on output spectrum (taken in
tion was suggested iri]] to compensate for the mismatch200kHz bandwidth)

while a group delay equalizer was proposedlif[In these

two cases, it still remains to identify the delay mismatct an

track its possible variations. In this article, we propose a
scheme and an associated algorithm that covers the whole
calibration problem: identification, correction and trangk

In the first part, we demonstrate the sensitivity of EER ap- 0.15
plied to a 16QAM 64 carriers OFDM modulation and bring
forward the maximum tolerable delay mismatch for this mod-
ulation. The second part presents an efficient algorithnekwvhi
corrects this default. We then focus on the implementation
of the algorithm and on the importance of the interpolation ]
filter used to resynchronize the signals. In the final part, an

analysis of the behaviour and performances of the algorithm ~ ®*® [ 777 Do P frr [ [T [
is provided. Simulation results performed on HPADS are
presented and show the performances achieved with this so-
lution in terms of output spectrum, EVM and ACPR. Fig. 3 Impact of the delay mismatch on the EVM

T T/3
/5
. 13
T T/27

Output spectrum
|

Frequency

EVm rms
L

Delay

2 Impact of delay mismatches on an OFDM modulation

Itis important to notice that the EVM calculation for OFDM
Using a 16QAM 64 carriers OFDM modulation is an inmodulations must be realized on each carrier separately and
teresting case study for the validation of this kind of athen averaged. Fig.shows that the effect of the desynchro-
chitecture because of its high Peak to Average Power Razation on the first subcarrier for delay$27 andT /5 acts
tio (PAPR). In fact, for an OFDM modulation, the PAPRas additional noise.
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Let us denot&¢ () andS( f) the spectra of (t) andx(t),

0 N wl ey @es W &% thatis the Fourier transforms of the autocorrelation fiomst
Eel e e e e : MR IRCEREIRE Rz (1) andRux(T). WhenS;¢ () is symmetric with central
Basf ot e foof B2 B2 R frequencyfo, the in-phase and quadrature componeqits

SOt S andy(t) are uncorrelated, that Ry(7) = 0. The baseband

PTG sEfggggesEaiaza spectrumS(f) is generally proportional to the square of

the transfer function of the emission filter, which shall be
Fig. 4 Impact of the delay mismatch on the constellation for T/2d areh@ped as a square-root Nyquist filter. Consequently, the au
T/5 tocorrelation functiorRe(T) = Ryy(T), which is the inverse
Fourier transform of the baseband spectrum, is the impulse
responseh of a (full) Nyquist filter. The procesg(t) can
also be written as

As a guideline, we take specifications from 802.11.a stan-

dard: the rms EVM is specified at a maximum of.22% §(t) = p(t) cos(at — @(t)) ®)

and the output spectrum has to remain under -40dBc ab ; ;

a 30MHz frequency offset from the carrier measured inWITﬁrep(t) 's the envelope ang(t) is the phase process,

1MHz resolution bandwidth. When analysing the EVM re- X(t) = p(t) cod (t))

sults, we can observe that a desynchronizatiom 8 pro- { (t) B p(t)sin( (P(t)) ’

duces an EVM value of 14% and when considering the out- y=p o).

put spectrum, in 1IMHz bandwidth, the value at 30MHz fronh the case of a complex gaussian process, it is well known

the carrier is about -7.5dBc. In fact, the value of -40dBc igat the envelope and phase are independerihe same

only obtained for a delay df /27 which gives an EVM value instant and respectively distributed according to the Ray-

of about 06% This demonstrates that the synchronization @igh and uniform distributions. The case of delayed enve-

signals impacts so strongly on the output spectrum that itjhe and phase is less known. In fact, it appears that for

mandatory to implement a correction algorithm. gaussian processes, the envelggt) and phasep(t — A)

are also Rayleigh and uniform distributed, and akgays

independent (seet]) with no reference to the correlation

3 The correction algorithm coefficient, whatever the delay between envelope and phase
components. In consequence, the output do not convey any

This paper is an extended version BI\[vhere we presented information on the time alignment or mismatch petween the

a preliminary version of the algorithm. In this version, thenvelope and phase components. As a result,ribtgos-

algorithm is presented in more details and implementati§iple to correct the relative delay between the envelope and

issues are discussed. More specifically, we discuss the r@lease components from the sole observation of the system

performances and implementation of the interpolation stégtput. Calibration then needs to rely on a feedback loop and

and provide a detailed analysis of the algorithm perforreanévolve a direct comparison between the initial “aligned”
signal and the observed signal.

In a calibration step without data transmission, we can also
modify the modulation scheme and design non-gaussian se-
guences with some dependence between envelope and phase.

According to the central limit theorem, for complex moduln Such a situation, a ‘contrast’ based on the output proper-

lation schemes such as the OFDM, when the number of sti§S May be devised in order to align the components. How-

carriers is large, the emitted signal can be approximated®§"» We will focus here on the feedback solution that pre-
rves the data and modulation technique.

a gaussian distributed complex random variable. For a naf
rowband stationary signal written as

3.1 Envelope and phase alignment

& (t) = x(t) coq awnot) + y(t) sin(wot) (1) 3.2 The compensation algorithm

it is well known thatRe(T) = Ryy(T) and thatRy,(T) = Letus denote(t) the output of the system. Due to the delays
—Ryx(T), whereRy and Ryy are respectively the autocor-A; and A, that affect the envelope and phase components,
relation and intercorrelation functions. The processg$s we have

andy(t) are always uncorrelated at the same instant, that is

Rey(0) = 0. If £(t) is normal, ther(t) andy(t) are indepen- Z(t) = p(t — A1) cos(wnt — p(t — 42))

dent at the same instant. The complex gaussian prddéss = p(t —Az)cos(@(t — Az)) cos(wnt)

is completely characterized by its mean and autocorrelatio +p(t — A1) sin(@(t — Az)) sin(apt) .

function
We propose here to correct the delays using an adaptive pre-

Ree (T) = Rx(T) cog anT) +Ryy(T) sin(apT).  (2) compensation. The synchronization algorithm relies on the
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idea of introducing two advances andp in order to prec- T | /
ompensate the delays, as illustrated in Bign such a case, Lo o L LY R Transmitter | P87
the output becomes P oltwuz) oltuz2)

2(t) = p(t+ g1 — A1) cos(awot — @t + o — 42))  (4) \ ‘\
and we will adjust the advances and i, in order to min- plcosto®) 1 pltsur-Aq)cos(o(truz-g) \
imize a statistical distance betweg() andé (t). A natural pWsino®)) T pltaug-Aqsino(thiz-az)
criterion is the minimization of the quadratic distance

Fig. 5 Principle of delays correction.
Ik, p2it) = E[|E (1) —z(t) ], (5)

where He| is the statistical expectation operator. This ex:-6t us consider the criteriak(pu, pi2) in (9) on the in-phase
pression can also be rewritten as component. Developing and taking into account the inde-

pendence betwegn(t;) andg(ty) lead to
J(H1, toit) = E[ex(t)?] cogawnt)? + E[ey(t)?] sin(apt)?
+E[ex(t)gy(t)] in(2axt) (1, H2) = 2C«(0,0) — 2Cx (1 — Ay, 2 — Lp)  (11)

where g(t) and g(t) are the errors for the in-phase andvhere

guadrature components respectively,
Cx(T1,T2) = E[p(t) cog@p(t))p(t — T1) cos(@(t — 12))]

t) = (p(t)cosp(t) — p(t1) cose(t 6a 12)
ek(t) - (p(t)sinS(p(t ) p<tl)sin (pi 2)) ((6b)) with 1 =1= ;3 — A1 andt, = U — Ay, is a kind of ‘correla-
&(t) = (p(t)sing(t) — p(tr) sing(tz)) tion function’. The tern€,(0,0) simply reduces t€4(0,0) =
- P - E [p(t)?] E [cog @(t))?] = Rux(0), the variance of the in-phase
and where, in order to simplify the expressions, we notedx(t) component. It is important to note thex(T, 1), ob-
tained withty = 72 = 1 is nothing else but the correlation
tp =t — Ay andt, =t — A, 7 1=12 g
1=ttt —Arandp =t =25 0 functionRx(T). Since we know that the correlation function
After time averaging, this simply reduces to is proportional to the shaping filtéx, it appears that the be-

haviour of the criterionl(p1, 2) is closely related to the
1 shaping filter. Regarding the quadrature component and cri-
I(H1, p2) = > {I(p1, o) + Jy(Ha, 12) } (8) terionJy (L4, L2), the same conclusions and formulas found
in (11,12) are easily obtained by substitutimdpy y and cos
with by sin.
In the case of an OFDM modulation, the criteridfr;, 72)
Je(pia, t2) = E[ec(t)?] anddy(us, i2) = E[ey(1)?].  (9) was evaluated numerically by Monte-Carlo simulations with
a square root Nyquist filter (square root raised cosine with
The global criterion equals the sum of two elementary cii.5 roll-off). This is illustrated in Fig6 for delays (advances)
teria on the in-phase and quadrature components. We g@fiveen—4T and 4. We can recognize here the general
readily obtain the same criterion (up to a factor) using thfhape of the (inverted) impulse response of a raised cosine,
demodulated, baseband, version of the signal. somewhat distorded and modulated. The criterion does not
In practice, we indeed work in baseband with digital signalgnly present a global minimum at = 0, 7> = 0, but also
After sampling, we compare the digital input signal to thgeveral other minima. Derivation of a closed-form formula
sampled baseband output. In the following, we will kéep for criteria ©) involving (12) is a challenging if not impos-
for the symbol period and nofl the sampling period. Con- sible task. However, in Fig, where the criterion for delays
sequently, we will note the different discrete time indeass |ess than 1.5 is shown, we clearly observe that any descent
follow algorithm will avoid local minima for delay#\;,4, < T,
t(n) =nTs with initial conditions set to zero.
ti(n) =nTs+ 1 — & (10)
tz(n) =nNTs+ o — Ay.

The output sampling clock does not need to be synchronous

to the input: it may be a divided version of the input clock,

and any propagation delay will be absorbed in the correction

procedure. 3.3 Gradient algorithm

Since itis simpler to generate delayed signals than addance

signals, we introduce a small processing dédein Fig.5.  Since we do not have a closed-form for the criterion nor a
direct explicit solution for its global minimizer, we neeal t
exhibit the solution using a descent algorithm. We simply
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and we readily obtain

dJX(“l: I‘l2) dp(“)
— = =—F cosp(tz2(n))ex(t(n))
0[-11 L du u=ty(n)
(15a)
9Jy(11, k2) dp(u) -
L2 = E sing(t2(n))ey(t(n))
dph L du u=ty(n) N
(15b)
and
Phase delay w4 Envelope delay
0J , dcosp(u
| N M _E j‘“ ' p(ta(n)edt(m)
Fig. 6 Shape of the criterion for the envelope and phase defays H2 u u=ty(n)
[—4T,4T], with T the symbol period. The shape of the criterion is re- ) (16a)
lated to the impulse response of the shaping filter and preseceal -
minima. 0Jy(U1, k2) dsing(u)
= = —E | ———|  p(ta(n))ey(t(n))
Otz BT P
(16b)

with g, andey defined by 6a6h).

The update equations are obtained using these gradients in
(13). However, we do not have the analytical expressions
of the statistical expectations involved in these formulas
Therefore, we have to resort to using a stochastic approx-
imation of these theoretical recursions. A popular sotutio

in adaptive filtering is théeast Mean Squards MS) algo-

rithm that simply consists in omitting the statistical egpe
tation. The LMS then involves thimstantaneous gradient

0 rather than the (correct) statistical average. Furthesntbe
Phase delay Envelope delay equations are updated at each new sample. This gives
Fig. 7 Shape of the criterion for the envelope and phase detays dp(u)
(3T /2,3T /2], with T the symbol period. Hi(n+1) = () +ya(n) =4 X
ta(n)

(cos(@(ta(n))) ext) + sing(ta(m)ey(t()) )~ (17)
use a gradient algorithm that consists in iterating the{oll
ing formulas:

p2(n+1) = p2(n) + yo(n)p(t2(n)) x
dcosp(u)

du

dsing(u)
&(t) + —5—
to(n) du

e\/(t(”))> . (18)
tz(n)

pi(n+1) = pa(n) —ya(n) 03%,1#2)
pz2(n+1) = pa(n) — yo(n) 03({;‘;72“2)

pa=p1(n) (13)
Practical implementation of formula&®) and (L8) requires

p2=p2(n)
— computation of the errorg,(t(n)) andey(t(n)) defined
in (68 and @b) which results from the comparison of
the system input and output,

whereyi (n) andy,(n) are two adaptation steps that possibly~ computation of the derivatives that can be simply ap-
depend on the iteration index The gradients are given by~ Proximated by finite differences pf(t1 (n)) and cog ¢(t2(n))).-

Of course, the algorithm can be simplified by considering
a sole error component rather than two. For instance, one
can simply put, = 0 in the previous equations. In practice,
simulations show that the gain associated with the second
component is extremely small.

0I(H1s o) 1 [0%(Ha, H2) | 9dy(H1, H2)
Je 2 Je + Je (14)
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For formulas {7) and (L8), the computational load is about 8lescribed by FIR filters. They can be implemented very ef-
real multiplications per iteration. However, since theiger ficiently in hardware, and their coefficients can be computed
tives must be computed at timig(n) andty(n), that is at in real time rather than taken from a table. An efficient struc
the output of the corrected systep(t) and cogg(t)) must ture was devised by Farrow;[15] and improvements to the
be separately accessible. This implies a quadrature demsttucture can be found ir2§; 7; 5]. In this structure, the de-
ulation before the feedback loop. Furthermore, with this afay is directly adjustable without modification so that it is
proach, we need to adjust two advangasp, and apply suitable for our adaptive synchronization problem.
them to the input signal. Adopting very high sampling freA related problem is Sample Rate Conversion (SRC) which
guencies in order to get the required precision may not I¥eoften considered in digital front end$Q 9]. In SRC, a
an efficient solution. Digital interpolation is a more effecdigital signal has to be converted into another digital sig-
tive solution as it keeps reasonable sampling frequenaigs @al but with a different sampling frequency. Caution must
save consumption. be exercised to avoid aliasing in the operation. In this-situ
ation, polynomial interpolators are usually disqualifiest b
cause they do not provide enough anti-aliasing. In the last
4 Impact of the interpolator decade, followingZ27], many solutions have been developed
for the synthesis of adjustable fractional delay filtershwit
Contrary to what we indicated i8], the interpolation pro- larger bands and better anti-aliasing capabiliti#s; L.3; 12,
cedure has a significant impact on the performances of #& 32].
algorithm in terms of the EVM and output spectrum. It is worth mentioning that adjustable fractional delay fil-
According to the Shannon-Nyquist sampling theorem, viers can also be obtained using programmable allpass Infi-
know [29 that any band-limited signal(t) can be recov- nite Impulse Response (IIR) filter&f; 31]. However, such
ered exactly from its sampleg§m) = x(mTs) taken at the filters are more sensitive to quantization, transients ntay o

sampling frequency /T by the formula cur when changing coefficients, and synthesis is complicate
by the stability issues.
X(t) =Y x(m)sinc(ri(t —mT) /Ts), (19) In our application, interpolation operates directly on dig
m

ital input signal, without any rate change. Aliasing cali sti
where sinc is the cardinal sine. This indicates that, in-prifccur due to the sampling operation of the output, which is
ciple, the samples convey enough information to recorstriteeded for our feedback loop. However, the system specifi-
the original signal at any desired time. In particular, jjis- cations, in particular the power Il_mltatlon in adjaC(_ent cha
sible to reconstruck(t — 1), for any 1, and therefore new nels, severely constrain the design and limit the images of

shifted samplex(kTs — 1) from the original samples(kT), the original band-limited spectrum. Furthermore, since th
according to over-sampling ratid /Ts is typically greater than 5, an anti-

aliasing filter can be easily designed.

X(kTs—1) = ZX(mTS)sino(n(kTs— T—mT)/Ts). (20) The over-sampling ratio being high is an important factor

m since it allows the use of very low-order interpolators. In-
eed, the frequency response of the corresponding filters is
Imost flat in magnitude and linear in phase in the band of in-
rest. This is illustrated in sectienl Then, in sectior.2,
e examine and compare the performances of the different
interpolators in terms of interpolation error and EVM at the
Qutput of the transmitter.

The above expression is in the form of a digital convoILf1

tion and can be implemented as a filtering operation. Ho

ever, because the underlying filter has an infinite (sinc) i

pulse response, and is non causal, practical implementa

introduces truncation and delay. Another possibility isse

a convenient approximation of the ideal interpolator me

tioned above. The MMSE FIR interpolatdtd] is the min-

imum mean square error approximation of the ideal filter

with finite impulse response. Although optimum implemer#.1 The interpolators and their frequency responses

tations of these interpolators exi§i,[the coefficients shall

be pre-computed and tabulated for each possible fractiofrathis section, we choose to compare four interpolatbys [

delay and these types of structures should be reservedfor@hapter 25]: Linear, Bessel, third and fifth order Lagrange

interpolation with fixed delays. interpolators. We first give the expressions of these igterp
lators and then compare their frequency responses.

Another class of interpolators relying on polynomial appro The first interpolator, the forward linear interpolatortlie

imation can be used instead. Indeed, the Weierstrass apprimplest, and is given by:

imation theorem states that every continuous function de-

fined on an interval can be uniformly approximated as closely X(M, 1) = x(m) + T (x(m+ 1) — x(m)) (21)

as desired by a polynomial function. We can then use a poly-

nomial to approximate the value of the function, given a setherex(m, ) represents the interpolated value of the input

ries of samples, at the desired delay. Such interpolaters salue at the timém+ 7)Ts.

especially interesting for our application since they can Fhe second interpolator studied is the third order Lagrange
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interpolator:

X(m, 1) = X(m) + T (X(m) —x(m— 1)) -
+HT (x(m+ 1) — 2x(m) +x(m— 1)). (22) L

This interpolation uses three successive points. The farst p
of the expression is similar to the linear interpolator amel t

second part is a correction term calculated using the point “sf | - - o agange
before and after the central one. e
The third interpolator we looked at is the Bessel central dif
ference interpolator, fourth order, described as follow: -

[N Bessel

magnitude (dB)

-10f DR

0.05 0.1 015 0.2 0.25 0.3 035 0.4 0.45 05
Normalized frequency

X(m, T) = x(m) + 7 (x(m+ 1) —x(m))

(=1

41 - (X(m+ 2) _ X(I’TH— 1) . X(m) + X(m— 1)) Fig. 8 Magnitudes of the frequency responses of the four intetpala

This interpolation uses four successive points and is also
similar to the linear interpolation with an additional cecr

tion term. Compared to the third order Lagrange formula-
tion, the correction term is not symmetrical.

ol \
The last interpolator is the fifth order Lagrange interpmiat 3 ;

15F | Bessel ™

- — — Linear

Phase (degrees)

X(m1) = M’lg#x(m—Z)
(12 4érfl)rx(m_ 1)+ (12—1)4r2—4) x(m)

)
et ) 2 )

_oob | - — -3rdLagrange

sth Lagrange

Ideal
_25

(23) Normalized frequency
These different interpolators can be clearly viewed as FFRy. 9 Phases of the frequency responses of the four interpolators
filters, where impulse responses can be deduced from the
above equations. Therefore, itis certainly interestingio-
pare their frequency responses to the frequency respoasegiginal. Performances of the different interpolators aes pr
pure delay. This comparison is shown in Rigor the mag- sented in Fig10in terms of the rms quadratic error, given
nitude and in Fig9 for the phase. With the exception ofin percent. These experimental results are confirmed by the
the linear interpolator, it appears that the interpolatarge theoretical analysis in sectigh4.
interesting performances for normalized frequenciesvelo
0.2 (over-sampling ratio greater than 5). While the two La-et us noteTs the sampling period and c&f, the original
grange interpolators show the flattest magnitude, the Bessgnal,E; the interpolated signal. The quadratic error (rms)
interpolator exhibits a better phase linearity. This infar is expressed as:
tion will be completed by other measures of performances,
namely interpolation error and EVM at the output of the

Err(A) = 100\/

Sk(Eo(KTs—A) — Ei(KTs— A))?

transmitter. -
Sk(E§(KTs—A)

(24)

4.2 Comparison of performances

error (ims) in %

In order to evaluate interpolation errors, we compare agt ori :
inal signal to a reconstructed one. This comparison is real- i .
ized on the envelope of the OFDM modulated signal previ- J D
ously introduced. Starting with an original signal with 300 ~ Ls77 7®
samples per time symbol, we subsample it by a factor of 100.
This gives an over-sampling ratio of 3. The signal is then reig. 10 Comparison of the normalized quadratic error (rms) between
constructed by interpolating the missing 200 values betwetbe four interpolators.

x(m—1) andx(m+ 1), and the interpolated values at a delay

A from the sample, are compared to the value of the original

4 2 9 oz o4
Normalized delay AT
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When the interpolators are used betwgém) andx(m+1), 3.0
their rms quadratic errors are similar with a maximum error 5|
in the middle of the two samples. The Bessel and 5th order
Lagrange interpolators achieve similar results with a maxi
mum error of about @%, while the two other interpolators
present less than®@%o. However, a problem arises when the

interpolator is used in the range xfm— 1) andx(m). The Ts=T/5 N Y

linear interpolator is obviously not up to par with &% of R T e S NG R s S B
error followed by the Bessel with2%. The asymmetry can 00— et e
degrade the quadratic error performances. During iterafio -0.10 -0.08 -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08 0.10
positive as well as negative valuesofmay indeed appear. Advance or delay in term of time symbol

The best solution remains certainly the two Lagrange for-

mulas which are quasi symmetrical and more appropriatefig. 12 EVM values for the 5th order Lagrange interpolator with dif-
our problem. The order of the interpolator can also make@ent sampling periods.

difference in terms of the complexity of the implementation

Using HPADS, the interpolators can be validated with th
study of the EVM (computed for the OFDM after FFT de-
modulation) and the output spectrum. The simulationisre
ized differently than with the previous quadratic errorlava
ation. Here the signal sampledfat3 is delayed or advanced
by Tt taken betweer-1 and resynchronized using the inter-
polator. This is a complementary analysis to the previo
analysis and is better suited to standard transmitter sisaly
Fig. 11 shows the EVM at the output of the transmitter an

presents the same profile as the error quadratic curves in -1
Fig. 10. yi(m= % hi(kx(m-k). (25)
=—M

Ts=T/3

EVM rms in %

¥3 Implementation using the Farrow structure

% polynomial interpolator can efficiently be implemented
using a Farrow structur@] or its extensions47; 13; 5]. We
only describe here the original Farrow structure but other
ossibilities will deserve further investigation. The feav
tructure relies on the parallelization NfFIR filters which
%an be expressed as

The output of these filters are combined so that the output
signal can be expressed as

Linear N—1 N—1 _

157; ‘ y(mT) = I; 7 yi(m i; Z hi (K)x(m—k) (26)

E Bessel

EVM rms in %

*x
1 T €
] X
X
Xoxop

For instance, rewriting the equations of the 5th order La-
grange interpolator3) gives

5 3rd L agranqe XXXX =
Bl X,

] ~ 5th Lagrange>< By | o2
T T R S

10 08 06 04 02 to.o 02 04 06 08 ‘ 1.0 Yo (m) — %Xz(m , ,
au y1(m) = —3—4(m+2)+§2x(m+ 1)
Fig. 11 Comparison of EVM values for the different interpolators. _élx(m_ 1) - 7 (m—2) .
Y2 (m) = ~% (M+2) + gx(m+1) — Zx(m)
+ex(m—1) — 4 (m-2)
y3(m) = %(m—k 2)— %x(m—k 1)+ %x(m— 1%— 2 (m-2)
The main problem is the relatively high values of the EVMY4 (M) = 5z (M+2) — gX(M+ 1) + zx(M) — gx(M—1)

Values reach a maximum of 2% for the 5th order Lagrange +54(M=2
interpolator and %% for the 3rd order Lagrange interpola-
tor. The latter is not acceptable for our application. Wenthe
need to sample the signal to a higher rate.

Fig. 12 presents the EVM values when changing the sa
pling period of the signal fronT /3 to T /9 (odd values are
here preferred to facilitate the demodulation of the OFD
signal in simulation). Th& axis of the curve is normalized to
symbol duration. The difference between sampling§ 8
andT /9 is dramatic, going from 2% to. 0%.

The sampling rate not only has an impact on the EVM valu
it also affects the output spectrum.

and can be implemented on HPADS as presented inlBig.

rEor the 5th order Lagrange filter, this implementation uses 5
ultiplications, 20 additions and 15 arithmetic divisioAs

or the 3rd order Lagrange interpolator, the implementatio
leads to only 2 multiplications, 5 additions and simpler di-
visions that only requires to divide by 2. This can certainly
lée an argument for the choice of the interpolator, not only
in' terms of performances but also in terms of simplicity of
implementation.
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Fig. 13 Farrow structure for the 5th order Lagrange interpolator.

4.4 On the interpolation noise

If the interpolator were perfect, the algorithm, in the atzse
of observation noise, would find thexactsolution. How-
ever, as illustrated in Fig40, 11and12, the system is char-
acterized by an internal “self-noise” associated with the i
terpolator. Indeed, for equally spaced poittds, . . .ts, the

remainder of the Lagrange interpolation polynomial of de-

green for estimatingx(to+ 1T) is [28]

X(n+l)(E)

(n+1)!
with (1) =T(T—1)...(T—n), and where is an unknown
point in the intervalto,tn]. Thus, we can evaluate the vari
anceo? (1) = E [ni(to+ 1T)?] of this interpolation noisei (t)
and obtain

ni(to+1T) = T e(1) (27)

il T2(n+1)
(n+1)!

|w(n)PRE" Y (0)
(28)
using the relation %\xm*l) (t)|2} = (—)™REMY) ().

E[ni(to+1T)?]

(-1)

5 Analysis of the algorithm and results

Typical results for delays 0.18and 0.47 for envelope and
phase respectively, are shown in Fi§. The measured EVM
after convergence is only 0.7% compared to 14% without
correction. The resulting spectrum is reported in Hig.

It shows very interesting performances: the spectrum is im-
proved by 30dB compared to the uncorrected case. The re-
maining noise floor at -50dBc in 200kHz bandwidth corre-
sponds to the interpolation errors. Surprisingly, it appea
that the spectrum obtained with the values at the output of
the correction algorithm is slightly better than the specttu
obtained with the true values of delays. This is commented
in 85.2

Phase delay

Envelope Delay

0S5 —
00l —
051 —
00Z —
052 —
00€ —
0S¢ —
00¥ —
05y —
005 —
0SS —
009 —
059 —
004 —
052 —
008 —
0S8 —
006 —
056 —

0001

Number of symbol

Fig. 15 Convergence ofi; and iy to the true delay#; = 0.47T and
Ay =0.18T.

As a result, the variance of the interpolation noise is non-
stationary since it depends on the interpolation pigitzT.
With this formula, it also appears that the higher the sam-
pling rate and the higher the interpolation order, the lower
the variance. To illustrate this, Fifi4 compares the theoret-
ical formula £8) to simulation results (see also the results in
Fig. 10).

Without correction

40— 1
AN

W wwh'«w

60— f )

With exact values

1
Mg

output spectrum

o8l With correction

0.6

-80 I L L L L

0.4

0.2

0 L L
05 1 15 25 3 35

2
Delay T

2300 2320 2340 2360 2380 2400 2420 2440 2460 2480 2500
Mega_Hertz

Fig. 16 Comparison of ideal, uncorrected and corrected spectthagin
case of delaya; = 0.47T andA, = 0.18T.

Fig. 14 Standard deviation of the interpolation noise for a Lageang

5 order interpolator. Theoretical formulag) (plain line) is compared
to simulation results (dashed line).

However interesting these results are, it is important to ex
amine the role of the interpolator, the impact of the values
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of the adaptation step and to study figures of merit such as
the settling time (convergence speed), the bias and varianc
of results as well as the overall EVM. We evaluated these
different points by Monte-Carlo experiments for a varying 200 T S vasrange | ]
adaptation step and for all delays less thah. In the study, 0 Theoretica
we took the same adaptatign= y1 = y» step for both adap-
tations. Furthermore, the signal power was normalized to
one in order to be independent of signal scales.
To analyse these different characteristics, we use a simpli
fied ‘toy’ model that is simpler to analyse than our original
problem. Letz(t) = x(t —A) be an observed, delayed version
of an original signak(t). In order to identify and correct the
delay, we adopt the following recursion 107 w0 10°
Y
X
p(n+1)=p(n)+y dd(tf)

2500

q = = = Bessel
Linear

1500

Symbols

1000

500 -

[X(t) =Xt —A+ u(n))] Fig. 17 Settling times for the different interpolators, as a fuoetof
u=t—A-+pu(n the adaptation step, fady; = 0.36T andA, =0.12T .

(29)
with X(t — A 4 p(n)) the interpolated value at time— A +

p(n)).

5.1 Settling time

The convergence speed is an important issue for the prhctica 2
use of such algorithm. With i(n) = (u(n) —A) small, we
have

X(t) —K(t+Ap(n) = AL +n(t),  (30)
wherex(t) is the derivative of processt) and wheren;(t) Phase delay Envelope delay
represents the interpolation noise. Then, Fig. 18 Settling time for all possible delays (less ti3f with y = 0.2.

Ap(n+1) = A(n) — yAuMK(E + Ap(n)X()
+yx(t+Ap(n)ni(t) (31)
Therefore, the mean trajectory is

5.2 Bias

. B A careful examination of the results shows that both enve-
Eldu(n+1)]=E[Au(m)] (1_ yRXX(A“(n)))’ (32) lope and phase are often affected by a small, but undeni-
with E[%n] = 0. Considering thaRig = Ry, and since we able, bias. In addition, we have observed in practice thet th

supposedA p(n) small, so thatRu(AL(N)) ~ Rex(0), the quadratic error associated with the biased estimates &rlow

. . ; than the error obtained with the true values. Similarlypit a
revious equation can be solved recursively and we get L o CE
P q y 9 pears that the spectrum with identified values is slightly be

. n . . .
E[Au(n+1)] ~ <1+ YRxx(O)) E[Au(0)], (33) ter than the spectrum associated with the true values. This
can be explained as follow. The erret) is
with Rx(0) < 0. This means thati(n) converges exponen-
tiallyto A, with a time constartt = —1/log (14 yRux(0)) ~ e(t) =x(t) =Xt —A+pu(n)) = (x(t) —X(t —A+I~l(n))) +ni(t),
1/ (YR«(0)). This is illustrated in Fig17, where are pre- (34)
sented the settling times for the algorithm measured as $einat its variance is
rise from 0 to 95% of the final valués = 3tc. This figure
shows that the convergence speed is clearly independent of 21 N2
the interpolator and the simulation results are in line \thth o =E [e(t) ] =E Kx(t) —X(t-A+ u(n)))} +E [n, t) ] ’

above development. _ (35)
that is

We also examined the variation of the convergence speesl _ g [e(t)?] = 2(Rx(0) — Rex(H () — A)) + G ((n)),

with respect to the valued;,A,. The results reported in (36)
Fig. 18 clearly indicates that the convergence speed is ijhereg;(u(n)) = E [ni(£)2] is the variance of the interpo-
dependent of the final values. lation noise that depends on the value of the advar(cg,

see the discussion iM&. The purpose of the algorithm is
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to find a valuey minimizing o2. The first term clearly de- —y?R(0). At convergence, we finally obtain

creases whep(n) — A while the second term may increase. S

Therefore, the procedure will find the best values that mini- g2 — E [Bn] o _ yo? (40)
mize the sum of the two terms, realizing a trade-off between O 1-E[AZ] 24 yEX(1)4 /R«x(0)’

bias and variance of the interpolation noise. The solutson_i, . ) . . .
theoretically given by This expression shows that the variance of the estimates in-

creases linearly witly and that it is only associated to the
. do?(u(n ‘self-noise’ in the system. Despite using approximatians i
R(H(n) —A4) = —W- (37)  the derivation, the simulation results are once more in line

with this formula. Fig20 gives the variance of the estimates

Fig. 19 presents the bias measured for the envelope and phafdbe envelope and phase delays as a functign dhe lin-
component with respect to the adaptation parameter. We figai dependence can be clearly seen.
that the bias still exist and do not depend on the adaptation
parametey as it was indicated by the analysis. The bias is a
function of the interpolator type and order. psX10°

-
Bessel .

= = = Linear .

== 3rd Lagrange

0.015 '+ 5th Lagrange

0,01+ e e

0.005 . Syppp—

:Dee.o_o‘—o-‘-s-—e‘-- o Q== ===
OW
-0.005
7001"‘900000 0 00 0.0 ) g
~0015p - - ';_;__e-_-o-_—e-:-e—-_-_-;— ------ e----o0- -‘- ---
Bessel . . .
002g°° e ] Fig. 20 Variancea} of delays estimateg); = 0.36T, Az = 0.12T, for
~0.025); == 3 Lagrange || the different interpolators, as a function of the adaptagiarametey.
| S Lagrange Phase (indicated by- o —) and envelope variances increase linearly

L L L L L L I
0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1 With y
y .

Fig. 19 Bias u — A for the different interpolators, as a function of the
adaptation parametgr Phase (indicated by o —) and envelope bias
are almost constant with respectyto

5.4 EVM - Quadratic error

The EVM is a crucial parameter in digital communications.
As we will observe, it sums up some of the other proper-
ties. In the case of a single carrier modulation, the EVM is
gdefined by H|Ze— Zo|?] /E[|Zo|?] whereZe = pee!® and
= po€'® stand for the complex envelope of the emit-
ted signal and the original signal respectively. Let ussinsi
on the fact that the situation is more complicated for multi-
Jgarrier modulations. In our setting, the expression besome

5.3 Variance

Variations after convergence are also an important isdues
variations can be modeled as an additive noise on the e
mates. With our toy model, we obtained expressigt) for

the trajectory of the algorithm. This expression is onlyidial
on average, il (n+ 1) has a zero mean. Thus, taking no
Au(n+1) = u(n+1) — u, wherep is the value at conver-

2 2
gence and rearranging the terms, we get EVM — E 05+ P& — 200peCOS(@ — @) ] .

E[od]
Ap(n+1) = Ap(n) (1_ yx(t +Au(n))>'((t)) Therefore, ifAQ = @ — @ is small, codg ~ 1— A¢?/2,
) the expression becomes
+yX(t+Au(n)ni(t). = AnApu(n) +Bani(t) (38)

E[(po—pe)?+ E[Ap?+p2A
Taking the square and the expectation and making the, gleaEVM = [(po PeE) > Poped (pz] o~ [ pE f" (pz]
false, hypothesis tha, andA u(n), B, andn;(t) are uncor- (5] (5] (42)
related, we obtain

(41)

or
E[Ap?
af(n+1) = E[AZ] ofi(n) +E[B] of (39) EVM ~ 7E[ [p@]] +E[A¢?] (43)
(o]
with o (n) the variance oft at stem. We also find EAZ] =~ assuming thap, and A are independent. As a result, the
1+ 2yRx(0) + y?E [X(t)*] (with 4 —A ~0), and E[B3] = EVM is a function of the quantities we previously studied.
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We already established that the estimates are biased @ndTthisle 3 Settling times of the algorithm and EVM rms (in %) for the
their variances, which are proportional to interpolatioise, output, for different interpolators and several valueshef adaptation
increase linearly witty. Therefore, the EVM behaves as ~ S®PY-

g2 B2 | [ Settling time ]| [ EVMTms % | |
Yi_"e 2 p 2 3rdL Bessel | 5thL
EVM ~ = o B 44 y rd Lag esse ag
2 [E[pg} Tt E[pZ] Bl (44) 0.05 228 1.045 0.89 0.815
0.1 127 1.07 0.9 0.84
Whereag ando% are the variances of interpolation noise far 0.5 45 124 1.05 1.009

the envelope and phase, a@glandB, the bias terms. Since

1+ ax~1+ax/2,the EVM rms may also show the sam
behaviour. This is the case in Figl where we clearly see
a linear slope and an offset value. It also shows that the I]:%—

85 Summary of the results

e previous developments we have examined the behaviour
of our algorithm according to the choice of interpolatord an
adaptation steps. Using specific examples, we have demon-
strated a vast improvement can be achieved in terms of EVM
P and output spectrum, as shown in figut&and16. Further-

- - = Linear cmmmmmmmmmmm T more, using an approximate ‘toy’ model of the algorithm, we

“““ 3rd Lagrange

-~ 5t Lagrange have shown theoretically and checked numerically, that

grange and Bessel interpolators have the best performan

25

— the settling time decreases exponentially with the adap-
tation step (Figl7),

— a small estimation bias exists that does not depend on
the adaptation parameter but rather of interpolation order

o o1 o2 o0s 04 05 06 o7 08 09 1 (Fig. 19). The presence of this bias is explained as a way

to reduce the whole quadratic error,
Fig. 21 EVM rms (in %) at the output of the algorithm, for delays — the variance40) behaves approximately as a linear func-
A1 =0.36T,4, = 0.12T as a function of the adaptation parameter tion of the adaptation parameter (F2§),

— the EVM (44) increases linearly with the adaptation step
y (Fig. 21).

It is also interesting to look at the EVM with respect to alhg 5 consequence, a trade-off has to be made between the
possible delays and with a fixed Fig. 22 presents these yyg important parameters that are the settling time and the
results fory = 0.05. We can observe a ‘modulation” whicheyp. The choice of the order of the interpolation is also
|s_related to the variable variance of the mterpolatlor_sem important with respect to performances and implementation
with respect to the delay (see Fil¥). Here, as in previous costs. The main values for the bias and variance can be found
examples, we took /Ts= 5 and indeed notice error minimajp, Taple 2 for different interpolators and several values of
atinterpolation nodes. the adaptation step. The results for the settling time and
the EVM are reported in Table 3 for the same conditions.
In order to ensure independence in signal scales, the signal
power was normalized to one.

0.5

6 Conclusion

In this paper, we proposed and analysed a new synchro-
nization algorithm tailored for an EER architecture. Perfo
mances are indeed severely degraded in case of delay mis-
match between envelope and phase paths. The proposed al-
gorithm is based on an adaptive LMS structure. We studied
the influence of the adaptation on the quadratic error, EVM
Phase delay 0 Envelope delay and output spectrum. The algorithm uses an interpolation

procedure that is characterized in terms of performances an
Fig. 22 EVM at output of the algorithm witly = 0.05, for all possible jn terms of implementation. We also examined the influence
gg!gé’sthlp\‘fam:ﬁ:s'a;ﬁﬂtésrggllgtti%i tr?ot(;‘eesﬁon'Stat'onm"p‘)'at'on of the sampling rate. These studies demonstrated the strong

interest of such a mandatory correction algorithm and the
enhancement of transmitter performances.
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Table 2 Bias(u—A) and varianceJﬁ of the estimates of delays, for different interpolators aederal values of the adaptation step

| [ 1 | Bias x10° | I | Variancex10® | |
y 3rd Lag Bessel bthLag [[ 3rd Lag Bessel 5th Lag

0.05( p -15.5 8 -9 6.2 10 5.8
0.05| @ -19 2 -9 5.8 6.59 5.75
01 | p -15 8 -8 11.5 21 115
01 | o -28 4 -8 4.5 4.6 4.5

05 | p -14 8 -7 56.5 89 56

05 | o -17 4 -9 13 11.5 115

Regarding the algorithm, a few points can be further investi  architecture. In: Proceedings of the 2004 IEEE Radio anéMés
gated: adopting different adaptation steps for the tworrecu_ Conference, pp 283-286

; ; ; Candan C (2007) An efficient filtering structure for Laggarnn-
sions, decrasing the number of adaptation steps and aiterna terpolation. IEEE Signal Processing Letters 14:17-19

ing the two recursions. Higher system view point has to bg  crochiere R, Rabiner L (1975) Optimum fir digital filter itep
taken into account in order to define the best use of the pro- mentations for decimation, interpolation, and narrowebéher-
cedure: full tracking of delays or training periods. A foeth  ing. [EEE Transactions on Acoustics, Speech, and Signaki3es

i i ifi imi ing 23(5):444-456
Ismhg{i:jnggt?gr?;‘dg}(;%lﬁed and optimized Farrow Strucwre§. Dempster A, Murphy N (2000) Efficient interpolators andefil

banks using multiplier blocks. IEEE Transactions on Sidghal-
cessing 48:257-261

This solution has drawbacks. For instance, it requires #Q d 8. Farrow CW (1988) A continuous variable digital delay etem
modulation and uses a Cordic processor to split the envelope In: Proc. IEEE Int. Symp. Circuits Systems, pp 2641-2645

and phase of the PA output signal (derivative computation). ngtlzcggg;gzggtzgc‘?‘amﬂge?ﬁIgﬂg‘r’grs'o” in Softwardigzon

We are currently working on these issues to improve our sy, Hentschel T, Fettweis G (2002) The Digital Front-End idge

tem. Between RF-and Baseband-Processing. In: Software Defined R
dio Enabling Technologies, John Wiley & Sons Ltd, pp 151-198

; ; Jau JK, Horng TS (2001) Linear interpolation scheme &on-c
Other concerns are the behaviour of the system with further pensation of path delay difference in an envelope elimimadind

mismatches such as a complex gain in the feedback 100p, restoration transmitter. In: Proceedings of Asia-Pacificibivave
non-linear distortions and quantization noise. Prelimina  Conference, 2001. APMC 2001, vol 3, pp 1072—1075 vol.3
results show that the algorithm is robust against the gdi# Johansson H, Gustafsson O (2005) Linear-phase FIRpaiter
and noise mismatch, in the sense that the optimum solution tion. decimation, andnth-band filters utilizing the Farrow struc-

. h d, Evidentlv furth . tches imol ture. IEEE Transactions on Circuits and Systems | 52:219072
remains unchanged. cvidently further mismatches 1mply,8 - jonansson H, Lowenborg P (2003) On the design of adjestab
degradation of performances so future work will include at-  fractional delay FIR filters. IEEE Transactions on Circuatsd

tempts to also correct these mismatches with the same feed-Systems Il 50:164-169
back loop. 14. Kahn L (1952) Single-sideband transmission by enve&jei-
nation and restoration. Proceedings of the IRE 40(7):808—8
15. Laakso TI, Valimaki V, Karjalainen M, Laine UK (1996) 8phg
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