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Maximum entropy with fluctuating constraints
The example of K-distributions

J.-F. Berchet

Laboratoire des Signaux et Systéemes, CNRS-Univ Paris Quele®, 91192 Gif-sur-Yvette cedex, France
and Université Paris-Est, LabInfo-IGM, 5 bd Descartes, #Marne la Vallée Cedex 2, France

Abstract

We indicate that in a maximum entropy setting, the thermadyio 5 and the observation contraint are linked, so that fluctaatio
of the latter imposes fluctuations of the former. This givesaliernate viewpoint to ‘superstatistics’. While a Gammadsi for
fluctuations of thed parameter gives the so-called Tsallis distributions, wekwait the case of a Gamma model for fluctuations of
the observable, and show that this leads to K-distributigvesdraw attention to the fact that these heavy-tailedibdigions have
high interest in physical applications, and we discuss tiresome details.
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1. Introduction

The technique of compounding, or mixing, is a standard tieglafor the interpretation or construction of distribunso

[1, chapter 8]. A random variable may result of the mixing ofetiént populations, or the source of the variable may be
unknown and the possible sources characterized by a piipaleinsity function. This technique has been employed
in [2,3] for recovering the Tsallis (Generalized Pareto) distiitouand generalized as ‘Superstatistics’. This concept
that has met interest[5,6,7,8,9] consists in varying the natural parametenf a Boltzmann distribution according to
some density3(3) for 5. In particular, the Tsallis distribution is associatedhmtGamma distribution. Interestingly,
this distribution had already been derived in such a wayL@h [

The objective of this Letter is twofold. First, we relate fiuations of the intensive paramefeto fluctuations of an
observable”, and indicate that the relevant distribution of the undagysystem can be viewed as the maximum en-
tropy solution with randomized constraints. Second, wekveart the case of a Gamma distribution for the observable
and draw attention to the physically relevant solution, distribution, that is characterized and discussed.
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2. Maximum entropy with fluctuating constraints

Consider a Gibbs ensemble where each system of the ensendadmposed of equilibrated subsystems, cells, each
of them being described by the standard canonical factéf . The corresponding distribution can be regarded as the
distribution that maximizes the Shannon-Boltzmann entrop

- / fie(2) log f(a)dT 1)

subject to normalization and to the observation constraiat \([ xfp(z)dl, and wherell is the infinitesimal volume
in the phase space. Resolution lead§t¢z|E) = e~ ~108 Z(5) whereZ =[e” PEAL is the partition function
and where3, the Lagrange multiplier associated to the observat|0|sknarmt is solution of

S(B) = max{~E ~ log Z(3)}. )

This relation simply indicates that the entrofyE) and the potentia®(3) = log Z(/3) are conjugated functionals
while E andg are conjugated variables. This also gives the standartioreship

dp dp
Hence, it is stressed that these variables are not indepgradiel that variations of the thermodynamicecessarily
implies variations of its dual variable and reciprocally. Thus, if the mean energy varies from ssiesy to subsystem
(from cell to cell), and if these variations are modeled gsirstatistical distributioffiz ( E), then the global distribution
of the system under consideration will be

“+oo _ _ _
P(E) = /0 f5(E|E) f3(E)dE, ()

where fz(z|E) is the Boltzmann distribution with meaf. Given a modelf;(F) of fluctuations of £ and the
relationship 8) linking 3 and E, we readily obtain the distribution fat:

—dd d*®
120 = 15 (“52) || ©
Then, the system distribution can also be written
+oo
PE)= [ (BB 010 ©)

Of course this is similar to the ‘Superstatistics’ of Beckia@ohen ], but with the supplementary ingredient of the
relationship between the intensive paramgtand its dual variablé’, so that a model of fluctuations can be naturally
introduced forFE. At this point, it can also be noted that the dimensio @f the inverse of an energy.

3. lllustration in the canonical case

Let us now illustrate this point of view with a very simple exale: the probability distributions of velocity and kineti
energy for a macroscopic body consisting of a large numbatarfis. In the Gibbs distribution, the energyp, q)
can be decomposed in the sum of the kinetic and potentiayg&(p, ¢) = K (p) + U(q), so thate P ®9) dpdq =

e PE(P)e=PU) dpdq, with p the momenta ang the coordinates. Then the probability for the momenta regduc
to Ae=PK®)dp. We know that for an atom of mass the kinetic energy i< (p) = (p2 + p2 + p2) /2m, where
Dz, Py, P~ are the coordinates of the momentum, and one obtains tmiaaaMaxwellian distribution. Expressing the
distribution in terms of the velocities, with= mv andv? = v2 + v +v2, we have

3/2
rtol) =t (52) 7 reims @
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for the magnitude of the velocity, and
2 s
fﬂix/Ee’[’E (8)

™

fe(E|B) =

for the magnitude of the kinetic energy, which isdistribution with three degrees of freedom. If the motiorswa
restricted to a single axis, we would have a single degreeeefibm and an exponeht2 for 3 instead of3/2 in the
previous relations. The partition function is given by

T 8K K
= —BE®) g = | ——
20)= [ o= 2 ©
and we immediately obtain
_ d 3

Therefore, in the canonical case, the mean value of theikireergy is simply proportional to the inverse of the
parametep. Fluctuations of this mean value can be modeled through a distributigp.

4. The example of K-distributions

Itis well known, e.g. 2,10], that Gamma fluctuations of the ‘inverse temperatygri2ads to a Tsallis distribution. Be-
cause of the relationshif.(), this corresponds to an inverse-Gamma distributiorffoAnother reasonable model for
fluctuations of the mean enerdyis a Gamma distribution since it proves highly flexible foraeting the distribution
of positive variables. It also appears as the distributicthe sum of squared Gaussian variables.

4.1. Derivation

Therefore, according td.Q), 5 is distributed according to the inverse-Gamma distributit(5) = Fl{;) 6*“*16_%.
Then,P(E) is given by

7 2 pe +oo
Vv I(a) Jo
Formula[3.471.9]in]1] enables to perform the integration with respegt1d his formula read;foﬂ>O eV le= 21 dy =

2 (%) R K, (2+/3v) with 8,y > 0, and wherekK, is a modified Bessel function the of second kind of ordeThis
leads to

P(E) B2VEe PER—"1e7 5 4. (11)

2 1 3/2+4a
P(E) = EW (bE) K—%-&-a (QVbE) . (12)
As far as the velocity is concerned, the variable chakige %mv2 gives
4 1B
Pr(v) = ——— 0" BT K, 4 (2 1
V(U) F(B/Q)F(a;)v c afi( CU) ( 3)

with ¢ = \/bm/2.
4.2. Main properties and characterizations

These distributions are known as K-distributions. Theyeattensively used for modeling the statistics of interfersm
of radiowaves, radar clutter, optical scintillation, akound scattering, etd?,13,14,1516,17,1819]. Interestingly,
a recent application of inverse-chi-square superstedigti medical statistics has been propos#d jvith excellent
agreement with real data. The shape of distributib?) @nd its evolution when the parametewaries is given in
Fig. 1. This distribution is derived in radar imaging as the migtof a Rayleigh and Gamma distributiobd and
competes with log-normal e.dL}] or generalized Pareto (Tsallis) distributions eI/ [for fitting observed data. It is
worth mentioning that the estimation of the parametersisfdistribution is well documented, e.d.4,16,18].
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Fig. 1. Examples of K-distributionsl®) with a = 0.1 to @ = 10, and withb = 3a/2 chosen so that the expectation of all distributions is equal
to 1.

The case of general mixture of Gamma distributions was densd in 1] where is given a formula similar td.@). A
K-distribution was also obtained id]in the limit case of a ratio of two Gamma distributions (tie& F-distribution)
for describing fluctuations gf. A model of inverse chi-square fgr was mentioned and its asymptotics predicted in
[22]. These asymptotics are easy to observe: formula [9.7 [Z3hgives the limit form for the Bessel K function for
large argumentsk, (z) ~ \/4-e*. ConsequentlyP(E) behaves as

P(E) ~ (bE)T e~2VOF, (14)

I (a)
and presents an exponential tail. The survival functioix) = Pr(X > x) then has the limit formf'(z) =
oD (3)7' T(a+1,2vbx), wherel'(a+1,2v/bz) is the upper incomplete Gamma function. It behaveg @b )*e ~2Ve=

for large values ofc andlim,_. | o, e**F(z) = +oo for all positive \, which means that the distribution is heavy-
tailed.

For small values of the argumer23 again gives a limiting form, formula[9.6.9K, (z) ~ 3I'(v) (42) ™" forv > 0.
Fora > 3/2 we then have

I'(a—3) 4
P(E) ~ W(;/Q)bz VE. (15)
The case: < 3/2 follows using the fact thak'_, (z) = K, (2):
r—-a ., .
P(E) ~ Wb Bt (16)

This last expression shows that the K-distribution presamt integrable singularity at the origin far < 1, and
explains the behavior shown in Fiy. In such a case, there is a preferential weighting of smélleginterrupted by
some rare large events, an interesting feature encouriteradny experiments. A typical realization obtained with
a = 0.5 is reported in Fig2.

As a final comment, let us recall that the distribution of thiéxr of a Gaussian variable and a Gamma variable is a Tsal-
lis distribution. Along the same line, a stochastic modeé{afistributed variates can be a simple multiplicative mode
Indeed, ifz is the product of two Gamma variablesandy, the distribution otz isp(z) = [ px (x)py (z/x)dz/z,
which reduces to a K-distribution.
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Fig. 2. A typical realization of a K-distribution witlh = 0.5.

5. Conclusion

This Letter presents two contributions. First, we have lggted the fact that within a maximum entropy setting, the
parameter and observable are conjugated, and linked kiore(&). Therefore, their fluctuations are also linked. This
gives an alternate viewpoint to ‘Superstatistics’, sife@model of fluctuations can be introduced for the observable
rather than for the intensive parameter.

As an illustration and second contribution, we worked oatriatural example of a Gamma distribution, and exhibited
the system distribution in the form of a K-distribution. Wederlined that this interesting distribution is highlyeehnt

in some physical applications, and have emphasized sontemfiperties.
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