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Abstract

We indicate that in a maximum entropy setting, the thermodynamicβ and the observation contraint are linked, so that fluctuations
of the latter imposes fluctuations of the former. This gives an alternate viewpoint to ‘superstatistics’. While a Gamma model for
fluctuations of theβ parameter gives the so-called Tsallis distributions, we work out the case of a Gamma model for fluctuations of
the observable, and show that this leads to K-distributions. We draw attention to the fact that these heavy-tailed distributions have
high interest in physical applications, and we discuss themin some details.
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1. Introduction

The technique of compounding, or mixing, is a standard technique for the interpretation or construction of distributions
[1, chapter 8]. A random variable may result of the mixing of different populations, or the source of the variable may be
unknown and the possible sources characterized by a probability density function. This technique has been employed
in [2,3] for recovering the Tsallis (Generalized Pareto) distribution and generalized as ‘Superstatistics’. This concept
that has met interest [4,5,6,7,8,9] consists in varying the natural parameterβ of a Boltzmann distribution according to
some densityfβ(β) for β. In particular, the Tsallis distribution is associated with a Gamma distribution. Interestingly,
this distribution had already been derived in such a way in [10].
The objective of this Letter is twofold. First, we relate fluctuations of the intensive parameterβ to fluctuations of an
observablēE, and indicate that the relevant distribution of the underlying system can be viewed as the maximum en-
tropy solution with randomized constraints. Second, we work out the case of a Gamma distribution for the observable
and draw attention to the physically relevant solution, a K-distribution, that is characterized and discussed.
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2. Maximum entropy with fluctuating constraints

Consider a Gibbs ensemble where each system of the ensemble is composed of equilibrated subsystems, cells, each
of them being described by the standard canonical factore−βE. The corresponding distribution can be regarded as the
distribution that maximizes the Shannon-Boltzmann entropy

S = −
∫

fE(x) log fE(x)dΓ (1)

subject to normalization and to the observation constraintĒ =
∫

xfE(x)dΓ, and wheredΓ is the infinitesimal volume
in the phase space. Resolution leads tofE(x|Ē) = e−βx−log Z(β), whereZ(β) =

∫

e−βEdΓ is the partition function
and whereβ, the Lagrange multiplier associated to the observation constraint is solution of

S(Ē) = max
β

{−βĒ − log Z(β)}. (2)

This relation simply indicates that the entropyS(Ē) and the potentialΦ(β) = log Z(β) are conjugated functionals
while Ē andβ are conjugated variables. This also gives the standard relationship

Ē = −dΦ(β)

dβ
= −d log Z(β)

dβ
. (3)

Hence, it is stressed that these variables are not independent, and that variations of the thermodynamicβ necessarily
implies variations of its dual variablēE and reciprocally. Thus, if the mean energy varies from subsystem to subsystem
(from cell to cell), and if these variations are modeled using a statistical distributionfĒ(Ē), then the global distribution
of the system under consideration will be

P (E) =

∫ +∞

0

fE(E|Ē)fĒ(Ē)dĒ, (4)

wherefE(x|Ē) is the Boltzmann distribution with mean̄E. Given a modelfĒ(Ē) of fluctuations ofĒ and the
relationship (3) linking β andĒ, we readily obtain the distribution forβ:

fβ(β) = fĒ

(−dΦ(β)

dβ

) ∣

∣

∣

∣

d2Φ(β)

dβ2

∣

∣

∣

∣

. (5)

Then, the system distribution can also be written

P (E) =

∫ +∞

0

fE(E|β)fβ(β)dβ. (6)

Of course this is similar to the ‘Superstatistics’ of Beck and Cohen [3], but with the supplementary ingredient of the
relationship between the intensive parameterβ and its dual variablēE, so that a model of fluctuations can be naturally
introduced forĒ. At this point, it can also be noted that the dimension ofβ is the inverse of an energyE.

3. Illustration in the canonical case

Let us now illustrate this point of view with a very simple example: the probability distributions of velocity and kinetic
energy for a macroscopic body consisting of a large number ofatoms. In the Gibbs distribution, the energyE(p, q)
can be decomposed in the sum of the kinetic and potential energy E(p, q) = K(p) + U(q), so thate−βE(p,q)dpdq =
e−βK(p)e−βU(q)dpdq, with p the momenta andq the coordinates. Then the probability for the momenta reduces
to Ae−βK(p)dp. We know that for an atom of massm the kinetic energy isK(p) =

(

p2
x + p2

y + p2
z

)

/2m, where
px, py, pz are the coordinates of the momentum, and one obtains the classical Maxwellian distribution. Expressing the
distribution in terms of the velocities, withp = mv andv2 = v2

x + v2
y + v2

z , we have

fV (v|β) = 4π

(

βm

2π

)3/2

v2e−βmv2/2 (7)
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for the magnitude of the velocity, and

fE(E|β) =
2√
π

β
3
2

√
Ee−βE (8)

for the magnitude of the kinetic energy, which is aχ2 distribution with three degrees of freedom. If the motion was
restricted to a single axis, we would have a single degree of freedom and an exponent1/2 for β instead of3/2 in the
previous relations. The partition function is given by

Z(β) =

∫ +∞

0

e−βK(p)dp =

[

π

2βm

]
3
2

, (9)

and we immediately obtain

Ē = − d

dβ
log Z(β) =

3

2β
. (10)

Therefore, in the canonical case, the mean value of the kinetic energy is simply proportional to the inverse of the
parameterβ. Fluctuations of this mean valuēE can be modeled through a distributionfĒ .

4. The example of K-distributions

It is well known, e.g. [2,10], that Gamma fluctuations of the ‘inverse temperature’β leads to a Tsallis distribution. Be-
cause of the relationship (10), this corresponds to an inverse-Gamma distribution forĒ. Another reasonable model for
fluctuations of the mean energȳE is a Gamma distribution since it proves highly flexible for modeling the distribution
of positive variables. It also appears as the distribution of the sum of squared Gaussian variables.

4.1. Derivation

Therefore, according to (10), β is distributed according to the inverse-Gamma distribution: fβ(β) = ba

Γ(a)β
−a−1e−

b
β .

Then,P (E) is given by

P (E) =
2√
π

ba

Γ(a)

∫ +∞

0

β
3
2

√
Ee−βEβ−a−1e−

b
β dβ. (11)

Formula [3.471.9] in [11] enables to perform the integration with respect toβ. This formula reads
∫ +∞

0 xν−1e−
β
x −γxdx =

2
(

β
γ

)
ν
2

Kν(2
√

βγ) with β, γ > 0, and whereKν is a modified Bessel function the of second kind of orderν. This

leads to

P (E) =
2

E

1

Γ (a) Γ (3/2)
(bE)

3/2+a
2 K− 3

2
+a

(

2
√

bE
)

. (12)

As far as the velocity is concerned, the variable changeE = 1
2mv2 gives

PV (v) =
4

Γ(3/2)Γ(a)
va+ 1

2 ca+ 3
2 Ka− 3

2
(2cv) (13)

with c =
√

bm/2.

4.2. Main properties and characterizations

These distributions are known as K-distributions. They areextensively used for modeling the statistics of interferences
of radiowaves, radar clutter, optical scintillation, ultrasound scattering, etc [12,13,14,15,16,17,18,19]. Interestingly,
a recent application of inverse-chi-square superstatistics in medical statistics has been proposed [20] with excellent
agreement with real data. The shape of distribution (12) and its evolution when the parametera varies is given in
Fig. 1. This distribution is derived in radar imaging as the mixture of a Rayleigh and Gamma distribution [18] and
competes with log-normal e.g. [15] or generalized Pareto (Tsallis) distributions e.g. [17] for fitting observed data. It is
worth mentioning that the estimation of the parameters of this distribution is well documented, e.g. [14,16,18].
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Fig. 1. Examples of K-distributions (12) with a = 0.1 to a = 10, and withb = 3a/2 chosen so that the expectation of all distributions is equal
to 1.

The case of general mixture of Gamma distributions was considered in [21] where is given a formula similar to (12). A
K-distribution was also obtained in [4] in the limit case of a ratio of two Gamma distributions (thatis a F-distribution)
for describing fluctuations ofβ. A model of inverse chi-square forβ was mentioned and its asymptotics predicted in
[22]. These asymptotics are easy to observe: formula [9.7.2] in[23] gives the limit form for the Bessel K function for
large arguments:Kν(z) ≈

√

π
2z e−z. Consequently,P (E) behaves as

P (E) ∼ 2

Γ (a)
(bE)

a−1

2 e−2
√

bE , (14)

and presents an exponential tail. The survival functionF̄ (x) = Pr(X ≥ x) then has the limit formF̄ (x) =
1

Γ(a)b

(

1
2

)a−1
Γ(a+1, 2

√
bx), whereΓ(a+1, 2

√
bx) is the upper incomplete Gamma function. It behaves as(2

√
bx)ae−2

√
bx

for large values ofx andlimx→+∞ eλxF̄ (x) = +∞ for all positiveλ, which means that the distribution is heavy-
tailed.
For small values of the argument, [23] again gives a limiting form, formula [9.6.9]:Kν(z) ≈ 1

2Γ(ν)
(

1
2z

)−ν
for ν > 0.

Fora > 3/2 we then have

P (E) ∼ Γ(a − 3
2 )

Γ (a) Γ (3/2)
b

3
2

√
E. (15)

The casea < 3/2 follows using the fact thatK−ν(z) = Kν(z):

P (E) ∼ Γ(3
2 − a)

Γ (a) Γ (3/2)
baEa−1. (16)

This last expression shows that the K-distribution presents an integrable singularity at the origin fora < 1, and
explains the behavior shown in Fig.1. In such a case, there is a preferential weighting of small values interrupted by
some rare large events, an interesting feature encounteredin many experiments. A typical realization obtained with
a = 0.5 is reported in Fig.2.
As a final comment, let us recall that the distribution of the ratio of a Gaussian variable and a Gamma variable is a Tsal-
lis distribution. Along the same line, a stochastic model ofK-distributed variates can be a simple multiplicative model.
Indeed, ifz is the product of two Gamma variablesx andy, the distribution ofz is pZ(z) =

∫

pX(x)pY (z/x)dx/x,
which reduces to a K-distribution.
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Fig. 2. A typical realization of a K-distribution witha = 0.5.

5. Conclusion

This Letter presents two contributions. First, we have highlighted the fact that within a maximum entropy setting, theβ
parameter and observable are conjugated, and linked by relation (3). Therefore, their fluctuations are also linked. This
gives an alternate viewpoint to ‘Superstatistics’, since the model of fluctuations can be introduced for the observable
rather than for the intensive parameter.
As an illustration and second contribution, we worked out the natural example of a Gamma distribution, and exhibited
the system distribution in the form of a K-distribution. We underlined that this interesting distribution is highly relevant
in some physical applications, and have emphasized some of its properties.
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