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Abstract

We discuss the interest of escort distributions and Rényi entropy in the context of source coding. We

first recall a source coding theorem by Campbell relating a generalized measure of length to the Rényi-

Tsallis entropy. We show that the associated optimal codes can be obtained using considerations on

escort-distributions. We propose a new family of measure of length involving escort-distributions and

we show that these generalized lengths are also bounded below by the Rényi entropy. Furthermore, we

obtain that the standard Shannon codes lengths are optimum for the new generalized lengths measures,

whatever the entropic index. Finally, we show that there exists in this setting an interplay between

standard and escort distributions.
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1. Introduction

Rényi and Tsallis entropies extend the standard Shannon-Boltzmann entropy, enabling to build gener-

alized thermostatistics, that include the standard one as a special case. This has received a very high

attention and there is a wide variety of applications where experiments, numerical results and analytical

derivations fairly agree with these new formalisms [1]. These results have also raised interest in the

general study of information measures and their applications. The definition of Tsallis entropy was orig-

inally inspired by multifractals whereas the Rényi entropy is an essential ingredient [2, 3], e.g. via the

definition of the Rényi dimension. For a distribution p of a discrete variable with N possible microstates,

the Rényi entropy of order α, with α ≥ 0, is defined by

Hα(p) =
1

1− α
log

N
∑

i=1

pαi . (1)

By L’Hospital rule, for α = 1, we recover the Shannon entropy

H1(p) = −
N
∑

i=1

pi log pi. (2)
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The base of the logarithm is arbitrary. In the following, we will denote logD the base D logarithm. The

Tsallis entropy is a simple transformation of the Rényi entropy, but is nonextensive. Often associated

to these entropies, and central in the formulation of nonextensive statistical mechanics is the concept of

escort distributions: if {pi} is the original distribution, then its escort distribution P is defined by

Pi =
pqi

∑N
i=1 p

q
i

. (3)

The parameter q behaves as a microscope for exploring different regions of the measure p [4]: for q > 1,

the more singular regions are amplified, while for q < 1 the less singular regions are accentuated. The

escort distributions have been introduced as a tool in the context of multifractals. Interesting connec-

tions with the standard thermodynamic are in [4, 5]. Discussion of their geometric properties can also

be found in [6]. It is also interesting to note that the escort distributions can be found as the result of a

maximum entropy problem with a constraint on the expected value of a logarithmic quantity, see [2, p.

53] in the context of multifractals, or [7] for a different view. We shall also point out that the ‘deformed’

information measure like the Rényi entropy (1) and the escort distribution (3) are originally two distincts

concepts, as indicated here by the different notations α and q. There is a lengthy discussion on this point

in [8].

In the information theory of communication, the entropy is the measure of the quantity of information in

a message, and a primary aim is to represent the possible messages in an efficient manner, that is to find

a compact representation of the information according to a measure of ‘compactness’. This is the role

of source coding. In this note, we discuss the interest of escort distributions and alternative entropies in

this context. This suggests possible connections between coding theory and the measure of complexity

in nonextensive statistical mechanics. Related works are the study of generalized channel capacities

[9], the notion of nonadditive information content [10], the presentation of a generalized rate distorsion

theory [11]. The first section is devoted to a very short presentation of the source coding context, and to

the presentation of the fundamental Shannon source coding theorem. In section 3, we describe a source

coding theorem relating a new measure of length and the Rényi entropy. In the next section, we show that

it is possible to obtain the very same optimum codes, as well as a practical procedure, using a reasoning

based on the nonextensive generalized mean as the measure of length. In section 5, we introduce another

measure of length, involving escort distribution, and obtain general inequalities for this measure, where

the lower bound, once again is a Rényi entropy. We show that the corresponding optimum codes are the

standard Shannon codes. Finally, in section 6 we discuss the connections between these different results.

2. Source coding

In source coding, one considers a set of symbols X = {x1, x2, . . . xN}, and a source that produces

symbols xi from X with probabilities pi where
∑N

i=1 pi = 1. The aim of source coding is to encode the

source using an alphabet of size D, that is to map each symbol xi to a codeword ci of length li expressed

using the D letters of the alphabet. It is known that if the set of lengths li satisfies the Kraft-Mac Millan

inequality
N
∑

i=1

D−li ≤ 1, (4)

then there exists a uniquely decodable code with these lengths, which means that any sequence ci1ci2 . . . cin
can be decoded unambiguously into a sequence of symbols xi1xi2 . . . xin. Furthermore, any uniquely de-
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codable code satisfies the Kraft-Mac Millan inequality (4). The Shannon source coding theorem (noise-

less coding theorem) indicates that the expected length of the code L̄ is bounded below by the entropy of

the source, H1(p), and that the best uniquely decodable code satisfies

H1(p) ≤ L̄ =
∑

i

pili < H1(p) + 1, (5)

where the logarithm in the definition of the Shannon entropy is taken in base D. This result indicates

that the Shannon entropy H1(p) is the fundamental limit on the minimum average length for any code

constructed for the source. The lengths of the individual codewords, also called ‘bit-numbers’ [5, p. 46],

are given by

li = − logD pi (6)

where logD denotes the logarithm in base D. Obviously these code lengths enable to attain the entropy

in the left of the inequality (5). The characteristic of these optimum codes is that they assign the shorter

codewords to the most likely symbols and the longer codewords to unlikely symbols. The uniquely

decodable code can be chosen to have the prefix property, i.e. the property that no codeword is a prefix

of another codeword.

3. Source coding with Campbell measure of length

It is well-known that Huffman coding yields a prefix code which minimizes the expected length and

approaches the optimum limit li = − logD pi. What is much less well known is that some other forms

of lengths have been considered [12], the first and definitely fundamental contribution being the paper of

Campbell [13]. Since the codewords lengths obey to the relation (6), low probabilities yield very long

words. But the cost of using a word is not necessarily a linear function of its length, and it is possible that

adding a letter to a long word cost much more than adding a letter to a shorter word. This led Campbell

to the proposal of a new average length measure, featuring an exponential account of the elementary

lengths of the codewords. This length, which is called a β-exponential mean or Campbell length, is a

Kolmogorov-Nagumo generalized mean associated to an exponential function. It is defined by

Cβ =
1

β
logD

N
∑

i=1

piD
βli , (7)

where β is a strictly positive parameter. The remarkable result [13] is that just as Shannon entropy is the

lower bound on the average codeword length of an uniquely decodable code, the Rényi entropy of order

q, with q = 1/(β + 1), is the lower bound on the exponentially weighted codeword length (7):

Cβ ≥ Hq(p). (8)

A simple proof of this result will be given below. It is easy to check that the equality is achieved by

choosing the li such that

D−li = Pi =
pqi

∑N
j=1 p

q
j

, (9)

that is

li = −q logD pi + (1− q)Hq(p). (10)

Obviously, the individual lengths obtained this way can be made smaller than the Shannon lengths

li = − logD pi, especially for small pi, by selecting a sufficiently small value of q. Hence, the pro-

cedure effectively penalizes the longer codewords and yields a code different from Shannon’s code, with

possibly shorter codewords associated to the low probabilities.
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4. Source coding with nonextensive generalized mean

In the standard measure of average length L̄ =
∑

i pili, we have a linear combination of the individual

lengths, with the probabilities pi as weights. In order to increase the impact of the longer lengths with

low probabilities, the Campbell’s length uses an exponential of the length. A different approach to the

problem can be to modify the weigths in the linear combination, so as to raise the importance of the

terms with low probabilities. A simple way to achieve this is to deform, flatten, the original probability

distribution and use the new distribution as weights rather than the pi. Of course, a very good candidate

is the escort distribution, which leads us to the ‘average length measure’

Mq =
N
∑

i=1

pqi
∑

j p
q
j

li =
N
∑

i=1

Pili, (11)

which is nothing but the generalized expected value of nonextensive statistical mechanics according to

the third mean values’ choice of Tsallis, Mendes and Plastino [14]. For the virtual source with distribu-

tion P , the standard expected length is Mq, and the classical Shannon noiseless source coding theorem

immediately applies, leading to

Mq ≥ H1(P ), (12)

with equality if

li = − logD Pi (13)

which is exactly the lengths in (10) obtained via Campbell’s measure. This easy result has also be

mentioned in [10].1

The simple relation li = − logD Pi for the minimization of Mq subject to the Kraft-Mac Millan inequal-

ity has a direct practical implication. Indeed, it suffices to feed a standard coding algorithm, namely a

Huffman coder, with the escort distribution P instead of the natural distribution p, to obtain as a result a

code tailored for the Campbell’s length measure Cβ or equivalently for the length measure Mq. A simple

example, with D = 2, is reported in Table 1: we used a standard Huffman algorithm with the original

distribution and the escort distributions with q = 0.7 and q = 0.4.

pi q = 1 q = 0.7 q = 0.4

0.48 0 0 00

0.3 10 10 01

0.1 110 1100 100

0.05 1110 1101 101

0.05 11110 1110 110

0.01 111110 11110 1110

0.01 111111 11111 1111

Table 1: Examples of codes in the binary case, for different values of q.

1In this interesting paper, another inequality is given for the generalized mean: Mq ≥ Sq(p), where Sq is the normalized

version of Tsallis entropy. In fact, this is only true under the condition
∑

i
expq(−li) ≤ 1, with the equality occuring for

li = − lnq(pi), where expq and lnq denote the standard nonextensive q-deformed exponential and logarithm. When these

lengths li also fullfill the Kraft-Mac Millan inequality we have Mq = Sq(p) > H1(P ).
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It is worth noting that some specific algorithms have been developed for Campbell’s length [15, 16, 12].

The remark above gives an easy alternative. An important point is that these new codes have direct

applications: they are optimum for minimizing the probability of buffer overflows [15], or, with q > 1
for maximizing the chance of the reception of a message in a single snapshot [17]. In the second case,

the choice q > 1 increases the main features of the probability distribution, then leading to select more

short codewords for the highest probabilities; this maximizes the chance of a complete reception of a

message in a single transmission of limited size.

5. Another measure of length with Rényi bounds

Given these results, it is now interesting to introduce a new measure of average length, similar to Camp-

bell’s length but mixing both a an exponential weight of individual lengths li and an escort distribution.

This measure is defined by

Lq =
1

q − 1
logD

[

N
∑

i=1

pqi
∑

j p
q
j

D(q−1)li

]

. (14)

Some specific values are as follows. It is easy to see that L0 = − logD
∑

iD
−li + logD N . When

q → +∞, the maximum of the probabilities, say pk = arg maxipi emerges, and L∞ = lk, where lk
is the length associated to pk, the maximum among the probabilities pi. By L’Hospital’s rule, we also

obtain that L1 = L̄ =
∑

i pili. As for Campbell’s measure, it is possible to show that Lq is bounded

below by the Rényi entropy.

As in Campbell’s original proof, let us consider the Hölder inequality

( N
∑

i=1

|xi|
p

)1/p ( N
∑

i=1

|yi|
p′
)1/p′

≤
N
∑

i=1

|xi yi| for all sequences (x1, . . . , xN ), (y1, . . . .yN ) ∈ R
N (15)

for p or p′ in (0, 1) and such that 1/p+ 1/p′ = 1. Note that the reverse inequality is true when p and p′

are in [1,+∞). Suppose that the li are the lengths of the codewords in a uniquely decodable code, which

means that they satisfy the Kraft inequality (4). If we let now xi = pαi D
−li and yi = p−α

i , it comes

( N
∑

i=1

pαpi D−pli

)1/p ( N
∑

i=1

p−αp′

i

)1/p′

≤

N
∑

i=1

D−li ≤ 1, (16)

where the last inequality in the right is the Kraft inequality.

If we let αp = 1, then α = −1/β, and −αp′ = α/(α− 1) = 1/(β + 1). Then, (16) reduces to

( N
∑

i=1

piD
βli

)

−1/β ( N
∑

i=1

p
1/(β+1)
i

)(β+1)/β

≤ 1. (17)

Taking the base D logarithm, we obtain the Campbell theorem Cβ ≥ Hq(p), with q = 1/(β + 1).

If we now take αp = q and choose −αp′ = 1, we obtain

( N
∑

i=1

pqiD
−pli

)1/p

≤ 1, (18)
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where we used of course the fact that the probabilities sum to one. The condition 1/p+ 1/p′ = 1 easily

gives p = 1 − q. Dividing the two sides by (
∑

i p
q
i )

1/(1−q), taking the logarithm and changing the sign

of the inequality, we finally obtain

1

q − 1
logD

( N
∑

i=1

pqi
∑

j p
q
j

D(q−1)li

)

≥
1

1− q
logD

N
∑

i=1

pqi (19)

which gives the simple inequality

Lq ≥ Hq. (20)

Hence we obtain that the new length measure of order q is lower bounded by the Rényi entropy of the

same order. Note that this result include Shannon result in the special case q = 1. Interestingly, it is easy

to check that we have equality in (20) for li = − logD pi, which is nothing but the optimal lengths in

the Shannon coding theorem. Hence, it is remarkable that the whole series of inequalities (20) become

equalities for the choice li = − logD pi which appears as a kind of universal value in this context.

This result can draw attention to alternative coding algorithms, based on the minimization of Lq, or

alternative characterizations of the optimal code. For instance, the inequality (20) shows, as a direct

consequence, that the Shannon code with li = − logD pi minimizes the length of the codeword associated

to the maximum probability. Indeed, when q → +∞, L∞ → lk the length of the codeword of maximum

probability, and L∞ is minimum when lk has its minimum value H∞ = − logD pk.

Since the Rényi and Tsallis entropy are related by a simple monotone transformation, inequalities similar

to (8) and (20) exist with Tsallis entropy bounds.

6. Connections between the different length measures

It is finally useful to exhibit an interplay between the two length measures, their minimizers, and the

standard and escort distributions. The Campbell measure in (7) involves the distribution p, an exponential

weight with index β. The optimum lengths that achieve the equality in the inequality (8) are the bit-

numbers associated to the escort distribution li = − logD Pi. On the other hand, the measure (14)

involves the escort distribution P instead of p, has an index q and the optimum lengths that achieve the

equality in the extended source coding inequality (20) are the bit-numbers li = − logD pi associated to

the original distribution. We know that the transformation q ↔ 1/q [14, p. 543] links the original and

escort distribution, that is the distribution p is the escort distribution with index 1/q of the distribution

P . This remark enables to find an equivalence between thermostatistics formalisms base on linear and

generalized averages [18, 19]. Here, when we substitute q by 1/q in (14), and therefore P by p, we end

with Campbell length (7) where q = 1/(β + 1). Concerning the entropy bound in (8) and (20), we shall

also observe that H 1

q

(P ) = Hq(p), so that we have finally equivalence between the two inequalities (8)

and (20). This is a new illustration of the duality between standard and escort distributions.

As a last remark, let us mention that if we apply Jensen inequality to the exponential function in the sum

defining Lq (14), we then obtain Mq ≥ Lq, where Mq is the generalized mean, taken with respect to the

escort distribution, and we have

Mq ≥ Lq ≥ Hq. (21)

The equality in Mq ≥ Lq means that the transformation in Jensen inequality is a straight line, which

means q = 1. In such case, we still obtain M1 ≥ H1(p), which is nothing but the standard Shannon

coding theorem.
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7. Conclusions

In this Letter, we have pointed out the relevance of Rényi entropy and escort distributions in the context

of source coding. This suggests possible connections between coding theory and the main tools of

nonextensive statistical mechanics. We have first outlined an overlooked result by Campbell that gave the

first operational characterization of Rényi entropy, as the lower bound in the minimization of a deformed

measure of length. We then considered some alternative definitions of measure of length. We showed

that Campbell’s optimum codes can also be obtained using another natural measure of length based on

escort distributions. Interestingly, this provides an easy practical procedure for the computation of these

codes. Next, we introduced a third measure of length involving both an exponentiation, as in Campbell’s

case, and escort distributions. We showed that this length is also bounded below by a Rényi entropy.

Finally, we showed that the duality between standard and escort distributions connects some of these

results.

Further work should consider the extension of these results, namely the new lengths definitions, in the

context of channel coding. With these new lengths, we also intend to investigate the problem of model

selection, as in Rissanen MDL (Minimum Description Length) procedures.
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