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ABSTRACT schitz continuous gradient [10]. To alleviate this restric

During the last five years, several convex optimization altion, the authors in [11, 12] considered algorithms mixing
gorithms have been proposed for solving inverse problemdorward-backward [10] and Douglas-Rachford algorithms.
Most of the time, they allow us to minimize a criterion com- First, Dupé et al. [11] investigated an elegant adaptation
posed of two terms one of which permits to “stabilize” thethe Anscombe approach and then, in [12] a quadratic exten-
solution. Different choices are possible for the so-catkgt  sion technique was introduced.

ularization term, which plays a prominent role for solving ~ One of the drawbacks of the approaches based on wavelet
ill-posed problems. While a total variation regularizatio- ~ representations is that they may introduce visual artsfact
troduces staircase effects, a wavelet regularization magb €.9. some lack of regularity in homogeneous areas or ring-
other kinds of visual artefacts. A compromise can be envising artefacts along edges. Alternative solutions basedhen t
aged combining these regularization functions. In the conuse of the total variation can be employed but they often lead
text of Poisson data, we propose in this paper an algorithrip so-called staircase effects. To circumvent these pneble

to achieve the minimization of the associated (possibly conand take advantage of both approaches, authors have sug-

strained) convex optimization problem. gested in [13, 14] to jointly take into account thgnorm
of the wavelet coefficients and the total variation penaliza
1. INTRODUCTION tion, which resulted in a significant improvement of the vi-

. . , L sual restoration quality. These works are however restlict
Different algorithms in convex optimization have been pro-tg qata corrupted by Gaussian noise.

posed to minimize regularized qriteria used to provide solg The purpose of this paper is to extend the work in [13] so
tionsto ill-posed problems. In this paper, we are more S$peci 4 14 solve linear inverse problems in the presence of Roisso

ically interested in restoring degraded images when themoi \5ise et be a real separable Hilbert space correspond-

is Poisson distributed. . _ _ ing to the frame coefficient space. We aim at finding
A way to take into account Poisson noise consists of ap-
plying a pre-processing on the data (like the Anscombe [1] ; £ h
or the Haar-Fisz [2] transforms) in order to stabilize théva rxryg g03) + () +h(x) )

ance and then to apply standard restoration tools [3, 4].

One of the first restoration method aiming at maximiz-whereg, f andh are assumed to be in the cldsg(.#") of
ing the Poisson likelihood is the Richardson-Lucy algarith lower semicontinuous convex functions o#f taking their
[5, 6]. However, the main drawback of this method is that itvalues in] — oo, 4-0o] which are proper (i.e. not identically
does not allow us to incorporate information about the targeequal to+o). h is related to a total variation penalization
solution, except the positivity constraint in an impliciam  andC is a nonempty closed convex subsetsf. From a
ner. An improved form of this algorithm involving a total Bayesian interpretation wheéh = 7, f +h can be viewed
variation [7] regularization was recently proposedin [Bue  as an a priori term on the frame coefficients of the original
to the equivalence between the maximization of the Poissoinage,g corresponds to the Poisson anti log-likelihood (fi-
likelihood and the mimization of a Kullback-Leibler diver- delity term) and the main difficulty is to minimize (1) when
gence, other forms of multiplicative iterative algorithiveve  the degradation is a combined effect of a linear operatgr (e.
been proposed in order to take into account specific forms at blur) and a Poisson noise. These three functions will be
regularizations [9]. detailled in Section 2.

However, during the last decade, much interest has been The proposed method is based on recent developments
gained in introducing a priori information about the targetin convex optimization. Its main advantage is that it does no
image in a transformed domain. Actually, wavelets are ofrequire any approximation of the noise distribution unlike
ten used due to their ability to provide sparse represamsti the Anscombe approach [11] or the quadratic extension
for many classes of regular signals. In this respect, redurin [12]. The main contribution of our work consists of
dant frames (overcomplete transforms) constitute more flexdaking advantage of the structural properties of the linear
ible tools than orthonormal bases for building linear repre degradation operator so as to design an efficient algorithm.
sentations of images. A number of recent works [10] have
emphasized the interest in using specific tight frames forpe  In Section 2, we formulate the minimization problem
forming geometrical analyses of images. associated with the restoration of data corrupted by Poisso

Existing works for solving inverse problems in a frame noise. A hybrid regularization combining a wavelet sparsit
are often restricted to noise with log-likelihood havingipL  promoting term and a total variation term is considered.



The optimization algorithm used to solve this problem iswhere(fj)1<j<j are functions of o(#") where.# = RK.

also described based on the work in [13]. In Section 3, we In restoration methodd,is usually equal to 2. One func-
briefly recall the definition of the proximity operator which tion is a smooth term related to the observation model and
is the building block of this algorithm. The main difficulty the second one is a regularization term. In the case of data
to be addressed here is that the proximity operator of theegraded by a Poisson noise, a standard choice for the first
Kullback-Leibler divergence term does not have an explicifunction is a Kullback-Leibler divergence term [15]. More
expression. A way of solving this problem is then proposedprecisely, we employ the Kullback-Leibler divergeriag,
Finally, in Section 4, we provide numerical examples as welfrom T F*x to z, for everyx € .

as algorithm implementation details.

Dk (TF*x,z) = W(TF*X) 9
2. PROBLEM FORMULATION where,

The degradation model is the following, N

? ? (Vu=U")cnen €9), WU =3 da®). (10)

2= P4(Ty) 2) n=1

wherey € RY is the original data of siz&l degraded by and
a non-negative valued convolutive operafoand contam- Zn)
inated by a Poisson noise with scaling parameter R’ . av—z2"+7Z"n (—) if Z" > 0andu >0,
The vectoze NN ¢ ¥ = RN represents the observed data. Yn(V) = au av if Z0 —0andu >0
2.1 Frame representation Foo otherwise.
In inverse problems, certain physical properties of thgear Concerning the regularization function, in [16, 17, 10]

solutiony are most suitably expressed in terms of the coefthe authors consider a penalization in the wavelet domain
ficientsX = (&) )kexen (WhereK = {1,...,K}) of its repre-  corresponding to power functions of the coefficients with
sentationy = i & & With respect to a family of vectors €xponentsp, € {1,4/3,3/2,2,3,4}. Another type of reg-
(a)kexcn in a Hilbert space/. Recall that a family of vec- ularization that can be envisaged employs a total variation
tors (e )kek IN ¢ constitutes a frame if there exist two con- Measure. Recently, in [13], a hybrid regularization was pro

stantsv andV in ]0, o[ such that posed which gives good results in the context of an addi-
- tive white Gaussian noise. We thus propose to use a sim-
(Vye ) vy|* < > [y, &) ? < V|ly||* (3) ilar compound regularization in the case when the data are

Kek corrupted by Poisson noise. In this context, Problem (1)

is solved by settingy= Wo T o F* whereW is defined by
(10). The functionf corresponds to the regularization term
operatil(wkg)g in the wa{;;aleft domaig, whic?()is crr]losen]c such that
. 2K VX = (X e, T(X) =3 x\¥) where, for ev-
P = 80y = (380 deer ) eryk(e {1),1§k,§;<<} & is a(fi%itezfsﬁlcﬁg(n oﬂ)'o(IR{) such that
the adjoint of which is the surjective bounded linear opmrat M 0 o @&(x) = +o0 andh represents a total variation
F*: 2(K) = 9 (Ekex — Y e (5) termsuch thah=tvoF*, tv being the total variation oper-

Ex ator defined in [13, Experiment 2]. Hence, the considered
minimization problem in (1) becomes,

The associated frame operator is the injective boundediine
operator

Wheny =V = v in (3), (&)kex is said to be a tight frame.
In this case, we have {2';?7 Dk (TF*,2) + 3 f(X)+Ktv(F*X)+1c(x) (11)

* —

F*oF =vld, ©) wherelc is the indicator function of a closed convex €&t
where Id is the identity operator. A simple example of a tight(for example related to support or value range constraints)
frame is the union ofn orthonormal bases, in which case such that,

v =V =m. Considering a frame representation, Model (2) 0 it xcC
can be re-expressed as, x ()= 4% T XeEL, 12
(e ) ic(x) +oo,  otherwise. (12)

2= P4(TF*X) (7) N
—~ - . - Throughout the paper, it is assumed tHBC*)N]0, +oo[~ £
\'I:VD)%I’EX represents frame coefficients of the original dgta ( & with C* = F*C — {F'x | x € C}.
' The nonnegative real parametérandk control the de-
2.2 Convex optimization gree of smoothness in the wavelet and in the space domain,

_ _ respectively. Notice that, wheh = 0, the regularization re-
In the context of inverse problems, recent studies proptised duces to the standard total variation penalization anctkteat
restore the Orlglnal Slgnal by SOlVIng a convex OptImIZIatIO approach we propose in this paper thus provides also an ef-
problem of the form: ficient numerical solution to such a more classical pendlize
] optimization problem.
Find min Z f; (x) (8) In the class of convex optimization methods, to the best
xed &y of our knowledge, only one algorithm allows us to efficiently



minimize the sum of four terms, which are not differentiable Example 3.1 [10] Let w € ]0,+], x € [0,+|, and set
The algorithm was proposed by Combettes and Pesquet in

[13] and is summarized next. R — |, +oo] : 1) s —xIn(n)+wn, if n>0;

) . ' ’ ' +oo, if n<o.
Algorithm 2.1 Let y € |0,+[. For everyj € {1,...,J}, (15)
set(w))1<j<y €]0,1) such thaty]_; wj =1, (Yj0)1<j<s €  Then, for every) € R,

%J andxg = zle wjyjo- Let (aj)ien be a sequence int” PN
which corresponds to possible errors in the computation of prox,n = n n X, (16)
proximity operators. Then, the sequertgg) -1 is generated 2
by the following routine: for every € N, Our minimization problem being formulated in a frame
For i—1 representation, we will also need a property concerning the
] = J . . i
- _ _ calculation of the proximity operator of the compositioreof
LFQJJ = PrOXye;1;Yil +8j, function of[o(¢) and a linear operator:
P =2j=1WiPj|
A €]0,2 (13) Proposition 3.2 [19] Let 57 and¥ be real Hilbert spaces,
For j=1,..., let¢ € Mo(¥), and let L s# — ¢ be a bounded linear op-
T A (2 _ erator. Suppose that the composition of L arfdsatisfies
Yile1 =Yin + A (2P =% = pjy) LoL* = ¢ld, for someg € ]0,+o[. Thenp oL € [o(#) and
X1 =X +A(p—X)

ProXge = ld+ ¢ 'L* o (prox,s —Id)oL.  (17)

The prox operator introduced in the first loop will be de-

fined Section 3. The sequenpg);>1 converges to a solution 3.2 Case of a convolutive operatol

to Problem (8) under the following assumption. In order to solve Problem (11), we will be interested in de-
termining the proximity operator aj= Yo ToF*. As will

Assumption 2.1 be shown next, the proximity operator of this function can

(1) 1M oo F2(X) + -+ Fa(X) = o0, be determined in a closed form for specific cases only. How-

ever,g can be decomposed as a sum of functions for which
the proximity operators can be calculated explicitly. Wb-su
(i) YienM(2—A) = +e. sequently assume that:

(v) (Vie{l....d}) JienAllaj <+

The main difficulty in applying this algorithm to our
restoration problem is that it requires to compute the prox-
imity operators associated to each of the four terms in (11). Let us now focus on functiom. Let (Ii)1<i<) be a
Closed forms of these quantities are known for the indicapartition of {1,...,N} in nonempty sets. For evelye
tor function, the functiorf [10] and the total variation term {1,...,1}, let M be the number of elements ih and let
(through the decomposition method proposed in [13]). They; - RM. —10,4-00[ 2 (Nn)net; — Fner; Yn(Nn). We have then

main problem remains in the computation of the proximity X . : N
operator of the Kullback-Leibler divergence term. In thetne 9 R%i'ilY ol O'; v_vEeLeT. 'S the linear operator fror
section, we will recall the notion of proximity operator,-be 0 R™ associated with the matrix

(i) n)_srintdomf; # & (when.# is finite-dimensional)

Assumption 3.3 (&)1<k<k Is a tight frame of/ = RN with
frame constany > 0.

fore providing an answer to this question. ftoy -ty ]T
3. CONVEX OPTIMIZATION TOOLS: PROXIMITY with I; = {my, ... ,my, }. The following assumption will play
OPERATOR a prominent role in the rest of paper:

3.1 Definition and properties ) . ) .
Assumption 3.4 For alli € {1,...,1}, (tn)ner; is a family of

A fundamental tool in the study of the convex optimization . mrfﬁz .
methods is the proximity operator introduced by Moreau in®thogonal vectors having the same n with o; > 0.

1962 [18]. The proximity operator af < I'o(7’) is defined  Note that this assumption is obviously satisfied whenN,
by that is whervi € {1,...,1}, I reduces to a singleton.

1
prox, : " — ' — arg minz ly—X|+¢(y). (14)  Proposition 3.5 Under Assumptions 3.3 and 3.4, we have,
yes (Vi € {1,...,1}) (¥x e 2)
We thus see that proxreduces to the projectidf: onto the
convex seC. Other examples of proximity operators corre- ProXy .1 o+ (X) = X+ iFTi*(rq(n) _ nim))ndi (18)
sponding to the potential functions of standard Iog concav ! i
univariate probability densities have been listed in [10]. )
We now recall the proximity operator of the potential as-where(n; " )ner; = TiF*x and
sociated with a Ge}mma_dlstrlbutlon which is closely related
to the Kullback-Leibler divergence [19]. nel rg“‘) - m(n) —ava + \/mi(n) — avai2 + 4vaizn)
1The relative interior of a se$ of . is designated by rir§ and the ( < ') T 2 ’
domain of a functiorf : J# —] — ;4] is domf = {x € 2Z|f(x) < 4-c0}. (29)




Remark Proposition 3.5. Note that qalcula}tions for othe.r forms of
(i) Thisresultis a consequence of Proposition 3.2 by sgttin convolution operations (e.g. including zero-padding) ban
L = TiF* and by using Example 3.1 to derive pygx,. achieved in a similar way.

(i) 1t can be noticed that the application @for T;* reduces : . -

to standard operations in signal processing. The applica- Regarding Algorithm 2.1, thé proximity operators to
tion of T consists of two steps: a convolution with the P& Computed are: theproximity operators corresponding to
degradation filter and a decimation for selected location80X £ v;.T.r+» the four proximity operators associated with
(n€ ). The application off;* also consists of two steps: the total variation term [13], the proximity operator of the
an interpolation step (by setting zero everywhere exceptegularization functionf and also, the projection onto the
for indicesn € I;) followed by a convolution with the convex seC. To sum up,J = | 4 6 proximity operator com-
filter with conjugate frequency response. putations are needed in order to solve Problem (11).

To reduce the number of proximity operators to be com- 4. EXPERIMENTAL RESULTS
puted, we want to find the smallest integsuch that, for ev- ) ] o o
eryi € {1,...,1}, (tn)ner, is an orthogonal basis. Consider the In our S|mulat|_ons, our_objectl\(es are twofold: we WI|'| f|rs_t
particular case of a deconvolution problem for images a siz b€ interested in studying the influence of the combination
N1 x N> (N = N;Ny) involving a periodic convolution where of total variation and wavelet regularization terms anchthe
Q1 x Q2 is the kernel size. The operafbris associated with we will compare the results obtained by using the proposed
a matrix having a circulant-block circulant structure [20ld  algorithm with those corresponding to state-of-the-arttme

consequently, ods. Two test images\y = N, = 256) will be considered
r® O .. O Gui .. ©Or7 (see Fig. 1). For both exampleg,is a uniform blur with
. ) . ) kernel dimension®1 = Q2 = 3. Therefore, the partition car-
&1 © . r - : dinality I introduced in Section 3.2 is such tHat= 1, = 4.
T : L . o C is here defined ag~*)~1C* with C* = [0,255N. A tight
1 ' ' ' Tt frame version of the dual-tree transform (DTT) proposed in
|7 oo, o (20)  [21] (v = 2) using Symlets of length 6 has been employed
th _ over 3 resolution levels. Strictly convex non-differemiia
o potential functions are chosen, such that w|.|P< + Xk|-|
S .o where(a, xi) € ]0,+eo[* andpy € {4/3,3/2,2}.
L O .. O Ogi1 .. O 06 |

where O is the null matrix of size N, x N, and
(Vo € {0,...,Q1 — 1}) Og, is the matrix of sizeN, x N»
defined by

Oq, =
r qu,o 0 0 GQLQz*l e‘hrl 7
6,1 Oyo O : Figure 1:“Peppers” image (left) and “Sebal” image (right).
600,021
. . 4.1 Influence of each regularization term
61,021 : : 0 . . A
0 . : We present some numerical and visual results considering
. different adjustments of andk. This experiment allows us
: . . 0 to illustrate the influence of the wavelet regularizatior an
L O o 0 Byt 01 B0 the total variation one. In the images displayed in Figure 2,

@) it can be observed the artefacts related to the wavelet regu-
(6y,02)0<qy<Q1.0<qp<Q, denotes here the point spread |arization, the staircase effects which are typical of the t
function of the degradation filter. tal variation penalization and also the advantage of using a
hybrid regularization. Table 1 provides quantitative tesu

Let us definel; = min{iy > Qi [ Ny = 0 modii} and,  ajlowing us to evaluate the impact of the adjustement of the
o = mm{lz > Q2 | N2 =0 modiz}. In order to satisfy regularization factor® andk.
Assumption 3.4, we subsequently et I4l5.

.FOF all (il,iz).e {l,...,|1} X{l,...,|2}, seti =i, + | ” K =004 | K =002 | K =001 | K=0.005|
l2(i1 —1) and define T=1 20.6 21.6 21.0 21.0
3=02 21.4 22.6 22.9 225
]Ii:{n2+N2(n1—1)| (nl,nz)6{1,...,N1}X{1,...,N2} =01 1.6 278 531 251
andn; =iy modly,n; =i> modlz}.  (22) 3 =005 21.8 23.0 23.0 21.4
§ =001 21.8 22.8 22.1 19.1

Then, Assumption 3.4 holds and, for ale {1,...,1},

O = qullz_Ol quzzz—ol |6g,.q,] - Table 1:SNR for “Peppers” image witlr = 0.1. Iteration number
We have therefore defined sdff)1<i<; for which we can  (IN) lies between 100 and 200.
compute the associated proximity operators as expressed by



tages of the method are (i) to deal directly with Kullback-
Leibler divergence (without requiring any approximatipn)
(ii) to permit the use of sophisticated regularization teym
e.g. one promoting sparsity in a wavelet frame and a total
variation penalization. Numerical and visual results damo

(9 =01k=001)  (9—=1k—0005

Figure 2:Some results for “Peppers” image. [5]

4.2 Comparison with existing methods [e]
We now aim at comparing the proposed algorithm with [7]
existing methods such as the regularized Expectation-
Maximization proposed by Byrne [9], the Anscombe ap- [g]
proximation method proposed by Dupéal. [11] and the
guadratic extension proposed in [12] (for optimal paramete
values). The results are given in Table 2 for “Sebal” image
and for different noise intensity factor. Whatever the scal- [
ing parameter chosen, the proposed approach always gives
better results in terms of Signal Noise Ratio (SNR). In addi-[lo]
tion, the improvement in visual quality obtained by adding
the total variation penalization to the wavelet regulaiaa

is illustrated in Figure 3. [11]
| a [0.0I]0.05] 0.1 1 05]

EM-Reqg. [9] 4.12]6.87]8.12[ 111 1

Anscombe - DTTI1] || 7.93] 10.8| 11.7] 136| 2
Quadraticext. - DTT [12]]| 8.91| 11.0| 11.8] 13.6

Proposed algorithm - DTT| 10.1| 12.0| 13.3| 15.6 [13]

Table 2:SNR for “Sebal” image.

[14]

(15]

[16]

(17]

Degraded

Quadractic ext. Proposed approach

=01 (9 ,k)=(0.1,001)  [18]
IN =500 IN=120
[19]
Figure 3:Some visual results for “Sebal” image with= 0.1.
[20]
5. CONCLUSION
[21]

A new approach to restore data degraded by a convolution
and Poisson noise has been proposed. The main advan-

strate the effectiveness of the proposed approach.
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