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Extension des algorithmes imbriqués pour la résolution de problèmes d'optimisation convexe en imagerie

Les algorithmes explicite-implicite et de Douglas-Rachford appartiennent à la classe des algorithmes itératifs d'optimisation convexe qui ont démontrés leur efficacité dans la résolution de problèmes inverses de grande taille. Nous avons récemment proposé une imbrication de ces méthodes permettant d'étendre leur contexte d'application à la minimisation, sous contrainte d'appartenance à un convexe, d'une fonctionnelle composée d'un terme différentiable et d'un terme non lisse. Nous proposons dans cet article de généraliser cette classe d'algorithmes imbriqués à la minimisation d'un critère pénalisé constitué d'une somme de trois fonctions convexes dont une est différentiable, de gradient Lipschitz. Nous mettons en évidence l'intérêt de ce type de minimisation sur un exemple de restauration d'image nécessitant une double régularisation: une régularisation dans un domaine transformé (utilisation d'une représentation en ondelettes) et une régularisation dans le domaine image (favorisant la parcimonie spatiale).

Introduction

Pour restaurer des données dégradées, des approches variationnelles peuvent être mises en oeuvre. Elles sont basées sur la minimisation d'un critère non nécessairement differentiable permettant d'inclure un terme de fidélité aux données auquel s'ajoute un (ou plusieurs) terme(s) de régularisation (indicatrice d'ensemble de contrainte convexe, norme ℓ 1 , variation totale, . . .). Dans le cas où un unique terme de régularisation est considéré, des études visant à accroître la qualité de reconstruction ont porté sur l'intégration de représentations parcimonieuses dans des algorithmes de type Expectation Maximization [START_REF] Figueiredo | An EM algorithm for wavelet-based image restoration[END_REF], puis dans des algorithmes tels que celui de Landweber seuillé [START_REF] Daubechies | An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[END_REF]. Dans [START_REF] Combettes | Signal recovery by proximal forwardbackward splitting[END_REF], les auteurs ont généralisé cette approche pour différentes fonctions de régularisation en utilisant la notion d'opérateur proximal. Cet opérateur a été initialement introduit par Moreau dans [START_REF] Moreau | Proximité et dualité dans un espace hilbertien[END_REF]. Il est défini pour une fonction f de Γ 0 (H) où H est un espace de Hilbert réel séparable et Γ 0 (H) correspond à la classe des fonctions convexes semi-continues inférieurement sur H prenant leurs valeurs dans ]-∞, +∞]. L'opérateur proximal associé à f en un point x ∈ H est noté prox f x et correspond à l'unique minimiseur de f + 1 2 x -. 2 . Cet opérateur généralise la notion de projection sur un convexe C fermé non vide (notée P C ) ; en effet, prox ιC = P C où ι C est la fonction indicatrice du convexe C (ι C (x) = 0 si x ∈ C et +∞ sinon). Dans [2], les auteurs présentent des formes explicites de cet opérateur proximal pour de nombreuses lois de probabilité log-concaves. Plus récemment, dans [START_REF] Chaux | Nested iterative algorithms for convex constrained image recovery problems[END_REF][START_REF] Combettes | A proximal decomposition method for solving convex variational inverse problems[END_REF], les problèmes d'optimisation ont été élargis à la minimisation d'une somme de plus de deux fonctions. Par exemple, l'ajout de l'indicatrice d'un convexe a permis dans [START_REF] Chaux | Nested iterative algorithms for convex constrained image recovery problems[END_REF] de considérer une classe de bruit de dégradation plus large. La r ésolution de ce type de problème de minimisation plus complexe passe par l'imbriquation de différents algorithmes (expliciteimplicite [START_REF] Combettes | Signal recovery by proximal forwardbackward splitting[END_REF], Douglas-Rachford [START_REF] Combettes | A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery[END_REF], Dykstra [START_REF] Bauschke | A Dykstra-like algorithm for two monotone operators[END_REF]). Les preuves de convergence de ces algorithmes imbriqués et les conditions d'initialisation permettant d'améliorer leurs performances (en terme de vitesse de convergence) ont été données dans [START_REF] Chaux | Nested iterative algorithms for convex constrained image recovery problems[END_REF]. Dans ces algorithmes composés, deux conditions sont nécessaires : l'une des trois fonctions doit être l'indicatrice d'un convexe fermé non vide C et une autre doit être de gradient β-Lipschitz. Par ailleurs, dans [START_REF] Combettes | A proximal decomposition method for solving convex variational inverse problems[END_REF][START_REF] Bioucas-Dias | An iterative algorithm for linear inverse problems with compound regularizer[END_REF][START_REF] Bect | A l 1 -unified variational framework for image restoration[END_REF] les auteurs se sont intéressés à une régularisation hybride composée d'un terme de variation totale et d'une norme ℓ 1 et, plus généralement dans [START_REF] Combettes | A proximal decomposition method for solving convex variational inverse problems[END_REF], à la minimisation d'une somme finie de fonctions de Γ 0 (H). Une condition restrictive sur l'emploi de cette méthode est cependant de pouvoir calculer l'opérateur proximal de chacune de ces fonctions.

Comme il est parfois plus adéquat de calculer le gradient d'une fonction plutôt que son opérateur proximal (opérateur de dégradation de grande taille, opérateur proximal non explicite,. . . ), l'idée de cet article consiste à étendre la classe des algorithmes imbriqués que nous avons proposé dans [START_REF] Chaux | Nested iterative algorithms for convex constrained image recovery problems[END_REF], afin de minimiser la somme de trois fonctions où aucun des termes n'est pas nécessairement l'indicatrice d'un convexe. Cet article a ainsi pour objectif de développer un algorithme adapté à la minimisation de

min x∈H g(x) + f (x) + h(x) (1) 
où g, f et h sont des fonctions de Γ 0 (H) et g est une fonction de gradient β-Lipschitz avec β ∈]0, +∞[.

Problème de minimisation

Parmi les algorithmes existant pour minimiser une fonction objectif non-différentiable composée d'une somme de trois fonctions de Γ 0 (H), dont l'une d'entre elles est de gradient β-Lipschitz, celui qui paraît le plus approprié est l'algorithme explicite-implicite (forward-backward) [START_REF] Combettes | Signal recovery by proximal forwardbackward splitting[END_REF]. Cet algorithme, robuste aux erreurs numériques, construit une suite (x n ) n≥1 par les itérations, ∀n ∈ N,

x n+1 = x n + λ n prox γn(f +h) (x n -γ n ∇g(x n )) + a n -x n
où γ n > 0 est le pas de l'algorithme, λ n > 0 est le paramètre de relaxation et a n représente une erreur autorisée dans le calcul de l'opérateur proximal. De plus, (x n ) n∈N converge faiblement vers une solution du Problème (1) sous les hypothèses suivantes :

Hypothèse 2.1 (i) 0 < inf n∈N γ n < sup n∈N γ n < 2β -1 (ii) (∀n ∈ N) λ n ∈ ]0, 1] and inf n∈N λ n > 0 (iii) +∞ n=0 a n < +∞.
Dans cet algorithme, la principale difficulté réside dans le calcul de prox γn(f +h) . Dans le cas où h est la fonction indicatrice d'un convexe, des propriétés liées au calcul de prox ιC+f ont été énoncées dans [START_REF] Combettes | A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery[END_REF][START_REF] Chaux | Nested iterative algorithms for convex constrained image recovery problems[END_REF]. Il est démontré dans [START_REF] Combettes | A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery[END_REF] que si prox f ∈ C, prox ιC +f = prox f . De plus, si l'espace de Hilbert considéré est H = R, alors prox ιC +f = P C • prox f . Cette propriété s'étend au cas où f et C sont séparables [START_REF] Chaux | Nested iterative algorithms for convex constrained image recovery problems[END_REF].

Si maintenant ces hypothèses ne sont pas vérifiées, le calcul de cet opérateur peut être effectué par deux approches. Soit en considérant la définition de l'opérateur proximal et, par conséquent, en résolvant un nouveau problème de minimisation convexe. Dans [START_REF] Chaux | Nested iterative algorithms for convex constrained image recovery problems[END_REF] les auteurs réalisent ce calcul en utilisant l'algorithme de Douglas-Rachford proposé dans [START_REF] Combettes | A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery[END_REF]. Une autre solution passe par utilisation de l'algorithme de Dykstra proposé dans [START_REF] Bauschke | A Dykstra-like algorithm for two monotone operators[END_REF] permettant de calculer l'opérateur proximal d'une somme de deux fonctions. Cet algorithme possède le principal avantage d'avoir des hypothèses moins fortes sur les conditions de qualification des fonctions. Dans le problème de minimisation que nous considérons ici, nous cherchons à généraliser ce calcul au cas où h n'est pas nécessairement égale à ι C .

Dans un premier temps, optons pour l'algorithme de Douglas-Rachford et revenons à la definition de l'opérateur proximal, ∀x ∈ H,

prox γn(f +h) x = arg min y∈H 1 2 y -x 2 + γ n f (y) + γ n h(y) (2) 
L'algorithme de Douglas-Rachford permet de minimiser une somme de deux fonctions de Γ 0 (H), que nous dénoterons g 1 et g 2 où différentes combinaisons sont envisageables :

g 1 = 1 2 . -x 2 + γ n f et g 2 = γ n h g 1 = γ n h et g 2 = 1 2 . -x 2 + γ n f g 1 = 1 2 . -x 2 + γ n h et g 2 = γ n f g 1 = γ n f et g 2 = 1 2 . -x 2 + γ n h.
L'algorithme construit les itérations suivantes, ∀m ∈ N,

(z m+ 1 2 , z m+1 ) = DR g1,g2 (z m ) ⇔ z m+ 1 2 = prox ϑg2 (z m ) z m+1 = z m + τ m prox ϑg1 (2z m+ 1 2 -z m ) -z m+ 1 2 ,
où ϑ > 0 et (τ m ) m∈N est une suite de réels positifs.

Hypothèse 2.2

(i) (∀m ∈ N), τ m ∈]0, 2].
(ii) g 2 est une fonction fortement convexe.

Sous les hypothèses 2.2, la suite (z m+ 1 2 ) m>1 converge fortement vers le minimiseur de prox γn(f +h) x. Par conséquent dans les choix précédemment considérés, seuls et assurent la convergence forte de l'algorithme Douglas-Rachford nécessitant que g 2 soit une fonction de Γ 0 (H) fortement convexe. L'opérateur proximal associé à g 2 dans est

prox ϑg2 = prox ϑγn 1+ϑ f . + ϑx 1 + ϑ . (3) 
Si l'on s'intéresse maintenant au calcul de l'opérateur proximal de f +h en utilisant l'algorithme de Dykstra, les conditions à satisfaire pour obtenir la convergence forte vers prox γn(f +h) sont la connaissance des opérateurs proximaux de f et h (également nécessaires pour l'utilisation de l'algorithme de Douglas-Rachford). L'algorithme est le suivant : soit r 0 ∈ H et p 0 = q 0 = 0, les suites (r m ) m≥1 et (s m ) m≥1 sont générés par les routines telle que : ∀m ∈ N, (s m , p m+1 , r m+1 , q m+1 ) = D γnf,γnh (r m , p m , q m )

⇔          s m = prox γnf (r m + p m ) p m+1 = r m + p m -s m r m+1 = prox γnh (s m + q m ) q m+1 = s m + q m -r m+1 .
Alors (r m ) m∈N et (s m ) m∈N convergent fortement vers la solution de prox γn(f +h) (r 0 ) [12, Theorem 3.3].

Algorithme proposé

Deux algorithmes imbriqués sont alors envisageables ; l'algorithme de Douglas-Rachford ou celui de Dykstra intégrés dans les itérations de l'algorithme explicite-implicite. Une fois l'imbrication effectuée, voici la forme des algorithmes :

Algorithme 2.1 (i) Choisir x 0 ∈ H et n = 0. (ii) Choisir λ n ∈]0, 1], γ n ∈]0, 2β -1 [ et ϑ > 0. (iii) Poser d n = x n -γ n ∇g(x n ). (iv) Pour m = 0, . . . , M n a) Choisir τ m ∈]0, 2] et z n,0 ∈ H b) (z n,m+ 1 2 , z n,m+1 ) = DR g1,g2 (z n,m , d n ) c) Si z n,m+1 = z n,m , aller en (v). (v) Faire x n+1 = x n + λ n z n,Mn -x n . (vi) Incrémenter n (n ← n + 1) et aller en (ii). Algorithme 2.2 (i) Choisir x 0 ∈ H et n = 0. (ii) Choisir λ n ∈]0, 1] et γ n ∈]0, 2β -1 [. (iii) Poser r n,0 = x n -γ n ∇g(x n ).
(iv) Poser p n,0 = q n,0 = 0 et s n,-1 = 0.

(v) Pour m = 0, . . . , M n a) (s n,m , p n,m+1 , r n,m+1 , q n,m+1 ) = D γnf,γnh (r n,m ) b) Si r n,m+1 = r n,m , aller en (vi). (vi) Faire x n+1 = x n + λ n r n,Mn -x n . (vii) Incrémenter n (n ← n + 1) et aller en (ii).

Il faut remarquer que pour l'Algorithme 2.2, le test en (v) b) peut également s'effectuer entre s n,m et s n,m-1 . Dans ce cas la suite (s n,m ) m>0 converge vers la solution de prox γn(f +h) (r n,0 ) dans l'algorithme de Dykstra.

Proposition 3 Sous les hypothèses 2.1 et 2.2 pour l'Algorithme 2.1 et sous les hypothèses 2.1 pour l'Algorithme 2.2, il existe une suite d'entiers positifs

(M n ) n∈N telle que, si (∀n ∈ N) M n ≥ M n alors, (x n ) n∈N converge

faiblement vers une solution du Problème (1).

Une idée de la démonstration de convergence des Algorithmes 2.1 et 2.2 peut être trouvée dans [START_REF] Chaux | Nested iterative algorithms for convex constrained image recovery problems[END_REF]. Celle-ci est essentiellement basée sur la convergence forte de l'algorithme de Dykstra ou de Douglas-Rachford.

Résultats

Pour illustrer l'intérêt de ces algorithmes, nous effectuons la restauration d'une image (figure 1(a)) composée d'une planète et d'un fond étoilée. Elle est dégradée par un opérateur de convolution A (ici un flou uniforme de taille 3×3) et un bruit de Poisson. Cette image dégradée (figure 1(b)) est notée y ∈ G avec G = R N où N représente la taille de l'image. La fonctionnelle à minimiser associée à notre problème est la suivante : L'image reconstruite dans le cas où κ = 0.08 est représentée figure 1(d). Pour mettre en évidence l'intérêt de la fonction h proposée en (4), nous examinons à l'aide d'un zoom sur une zone de l'image, les effets des trois types de restauration. La figure 2(b) correspond au cas où l'image est restaurée avec κ = 0 (régularisation uniquement dans le domaine transformé H). Puis, la figure 2(c) illustre l'effet de cette même régularisation lorsqu'on l'applique seulement sur la zone centrale. Enfin la figure 2(d) correspond au zoom de la figure 1(d) (régularisation des éléments de la zone centrale dans le domaine transformé et régularisation dans G pour les élements appartenants à S). Pour les différentes approches, il n'y a pas de différence significative en ce qui concerne la restauration de la partie centrale mais on peut constater que le choix de h préconisé permet une bonne détection des étoiles sur l'arrière plan.

∀x = (x (k) ) 1≤k≤K , D KL (AF * x, y) + f (x) + κ i∈S (F * x) (i) + ι C (F * x).
(x) = K k=1 χ k |x (k) | + ω k |x (k) | p k où χ k > 0, ω k > 0 et p k ∈ {4/3, 3/2, 2} sont adaptés par sous-bandes. Enfin, h = κ i∈S (F * •) (i) + ι C • F * introduit d'
Sur la figure 3, nous présentons les courbes de convergence des algorithmes 2.1 et 2.2 en fonction du temps. Il en ressort que les itérations imbriquées du Dykstra semblent converger au moins aussi rapidement voir plus rapidement que les itérations du Douglas-Rachford sans avoir de paramètres supplémentaires à ajuster comme τ m et ϑ. 

( 4 )

 4 Dans cet exemple, D KL représente la divergence de Kullback-Leibler souvent utilisée dans le contexte d'une dégradation poissonienne et F * : H → G est un opérateur de synthèse de trame avec H = R K et K ≥ N . On utilisera une version d'une représentation en arbre dual [14] conduisant à une trame ajustée (F * • F = ν Id avec ν = 2) et utilisant des filtres symlets de longueur 6. La fonction f correspond à une régularisation dans le domaine transformé H telle que f

  une part, un terme favorisant la parcimonie dans le domaine spatial, sur une zone S ⊂ G et d'autre part, une contrainte dure sur l'appartenance à un convexe C ⊂ G (dans notre exemple, lié à la dynamique de l'image : C = [0, 255] N ). Dans notre exemple, le support S correspond à la zone entourant la planète représentée figure 1(c). Nous utilisons l'extension quadratique proposée dans[START_REF] Chaux | Nested iterative algorithms for convex constrained image recovery problems[END_REF] pour gérer le caractère non β-Lipschitz differentiable de la divergence de Kullback-Leibler.
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