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Abstract

We show that Tsallis’ distributions can be derived from the standard (Shannon) maximum entropy setting, by incorporating a con-
straint on the divergence between the distribution and another distribution imagined as its tail. In this setting, we find an underlying
entropy which is the Rényi entropy. Furthermore, escort distributions and generalized means appear as a direct consequence of the
construction. Finally, the “maximum entropy tail distribution” is identified as a Generalized Pareto Distribution.
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1. Introduction

The maximizers of a special entropy, the Tsallis entropy [1], with suitable constraints, are often called Tsallis dis-
tributions. It is worth mentioning that the maximization ofany monotoneous transform of Tsallis entropy, with the
same constraints, leads to the same maximizers. This is in particular the case of Rényi entropy. In applied fields,
Tsallis distributions (q-distributions) have encountered a large success because of their remarkable agreement with
experimental data, see for instance [2,3] and references therein. These distributions are of very high interest in many
physical systems, since they can exhibit heavy-tails, and model power-law phenomena. Indeed, power-laws are espe-
cially interesting since they appear widely in physics, biology, economy, and many other fields [4]. Tsallis distributions
are similar to Generalized Pareto Distributions, which also have an high interest in other fields, namely reliability the-
ory [5], climatology [6], radar imaging [7] or actuarial sciences [8]. Hence, a remarkable feature of the maximum
Tsallis entropy construction is its ability to exhibit heavy tailed distributions. Furthermore, the essence of Pickands’
extreme values theorem [9] is that the distribution of excesses over a threshold converges, under wide conditions, to
a q-exponential [10]. Following the idea that an interest of Tsallis distributions is in facta tale of tails, in the words
of [11], we suggest that this kind of distributions can also be obtained from the familar (Shannon) maximum entropy
setting, by the introduction of an appropriate constraint.In this setting, we show that Rényi entropy appears naturally,
and also obtain a natural interpretation of nonextensive escort distributions, ‘generalized means’ and entropic index.
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2. Maximum entropy with ‘tail’ constraint

Jaynes’ maximum entropy principle [12,13] suggests that the least biased probability distribution that describes a
partially-known system is the probability distribution with maximum entropy compatible with all the available prior
information. The Kullback-Leibler information divergence D(P ||Q) measures the divergence of a distributionP to
another distributionQ.

2.1. Problem setting

We call ‘tail distribution’ the probability density function (pdf) of the excessesXu of a variateX over a thresholdu. It
is not only the tail part of the distribution, but is shifted by u toward the origin, and, as a pdf, is normalized to 1. Let now
P andQ be two probability density functions. As a guideline, we finduseful to imagineP as the tail distribution ofQ:
in such a case, these distributions are closely related. Ouridea is to account more generally for an existing relationship
between two distributions. Therefore, we propose to parametrize the relation between a candidate distribution and its
‘parent’ by the valueθ of the Kullback-Leibler divergence between them:D(P ||Q) = θ. This define a set of possible
distributions, and the solution is selected in this set, according to the maximum entropy principle, as the distribution
P with maximum entropy. This writes as follows:







maxP H(P ) = −
∫

P (x) log P (x)dx

s.t. D(P ||Q) =
∫

P (x) log P (x)
Q(x)dx = θ.

(1)

The definition ofD(P ||Q) requires thatP is absolutely continuous with respect toQ. It is understood, as usual, that
0 log 0 = 0 log 0/a = 0 log 0/0 = 0 and thata log(a/0) = +∞ if a > 0.
An alternative formulation, which leads to the same solution, could be to look for the distribution with minimum
divergence toQ, in the set of all distributions with a given entropy:







minP D(P ||Q)

s.t. H(P ) = θ′.
(2)

It is clear that the optimum distribution arising from this procedure will not be the ‘exact’ tail distribution, since the
distribution of the excessesXu = X − u|X > u, which readsXu = X − u if X > u (conditioned variable), has
the pdfPu(x) = Q(x + u)/Q̄(u), for x ≥ 0, and whereQ̄(u) =

∫ +∞

u
Q(x)dx is the so-called survival function. It

is rather the maximum entropy variant, when the “tail distribution” P is constrained to be at given divergenceθ to the
parent distributionQ. In fact, we do not need to rely on tails in this construction,but we simply introduce a constraint
on the Kullback-Leibler divergence to a ‘parent’ distribution in order to account for a general relationship between
these distributions.

2.2. The maximum entropy solution and first consequences

The solution of (1) is easily derived using standard maximum entropy results,e.g. [14]. In this case, we obtain

P (x) =
1

Z(λ)
eλ log P(x)

Q(x) (3)

with λ the Lagrange parameter associated to the constraintD(P ||Q) = θ, andZ(λ) the partition function. It can also
be reduced to

P (x) =
1

Z(λ)
1

1−λ

Q(x)
λ

λ−1 (4)

with

log Z(λ) = (1 − λ) log

∫

Q(x)
λ

λ−1 dx. (5)
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As usual in the maximum entropy setting, the constraint and partition function are linked by

d log Z(λ)

dλ
=

d

dλ
log

∫

eλ log
P (x)
Q(x) dx = θ. (6)

Let us now denote

q =
λ

λ − 1
. (7)

Then, it clearly appears on the one hand that the ‘maximum entropy tail’ (4), which can be rewritten as

P (x) =
Q(x)q

∫

Q(x)qdx
, (8)

is theescort distributionof nonextensive thermostatistics. On the other hand, the log-partition function (5) becomes

log Z(q) =
1

1 − q
log

∫

Q(x)qdx (9)

where the right-hand side has exactly the form of theRényi entropyof distributionQ. It shall be mentioned that the
Rényi entropy has no definite concavity forq > 1 and is not Lesche stable [15,16]. Its use in statistical physics has
been discussed, e.g. [17]. In our context, it appears as a by-product of our original problem (1) which involves the
maximization of the standard Boltzmann-Shannon entropy.
For the optimum distribution, we can also observe that the maximum (Shannon) entropy reduces to

H(P ) = −

∫

P (x) log P (x)dx (10)

= −

∫

P (x)

(

λ log
P (x)

Q(x)
− log Z(λ)

)

dx (11)

= −λ

∫

P (x) log
P (x)

Q(x)
dx + log Z(λ) (12)

= −λθ + log Z(λ) (13)

where the last relation is obtained using the definition ofθ in (1).
Therefore, we obtain that the maximum entropy problem (1) has for optimum value the Rényi entropy (9) with index
q, minus a linear function of the constraint.

2.3. Solution with an additional observation constraint

Suppose now that the original problem is completed by an additional constraint. Indeed, the definition of equilibrium
distributions usually need to take into account observation constraints. For instance, one often has to account for an
observable defined as a mean value under distributionP . This is very classical in maximum entropy approaches. The
constraint writes

m = EP [X ] . (14)

SinceP is the escort distribution (8) of Q, this mean constraint is also thegeneralized meanconstraint of nonextensive
thermostatistics:

m =

∫

xP (x)dx =
1

∫

Q(x)qdx

∫

xQ(x)qdx. (15)

WhenP is thought as the ‘tail’,m is the well-knownmean residual lifetime(in reliability theory), orexpected future
lifetime(in survival analysis).
Because of the additional constraint, determination of the‘maximum entropy tail’ distributionP amounts to further
maximize the entropy in (13) subject to that constraint. Using (9), we obtain







maxQ
1

1−q
log

∫

Q(x)qdx

s.t. EP [X ] = m,
(16)
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which leads to
Q(x) ∝ (1 − β(1 − q)(x − m))

1
1−q (17)

for the value of the parameterβ such thatEP [X ] = m, with P given by (8). As far as the latter is concerned, its
expression is simply

P (x) ∝ (1 − β(1 − q)(x − m))
q

1−q . (18)

This relation can also be rearranged as

P (x) ∝ (1 + β(q − 1)(x − m))
−

1
q−1−1

, (19)

which is exactly in the form of the Generalized Pareto Distribution [18], with shape factor(q − 1) and scale factor
β. Using (7), the exponent in (19) reduces to−λ, so that the distribution asymptotically behaves as a power-law with
exponent−λ.
Observe that withθ = 0 in (1), we readily haveP = Q andq = 1, andP in (19) reduces to the classical Boltzmann-
Gibbs canonical distribution.
As a final comment, let us note that the maximum entropy tail distribution isstablewith respect to thresholding, in
the sense that the result remains in the same family, with entropic indexq but a different scale parameter. Ifu is the
threshold, then the pdf of excesses overu, with P the parent distribution, is

Pu(x) ∝ P (x + u) ∝ (1 + β(q − 1)(x + u − m))
−

1
q−1−1

∝ (1 + β′(q − 1)(x − m))
−

1
q−1−1

, (20)

where the last term, withβ′ = β/(1 + βu), is obtained by factoring(1 + βu). This highlights the particular status of
the ‘maximum entropy tail distribution’ as a tail distribution.

3. Conclusion

In this Letter, we followed two ideas. First, that an important feature of Tsallis’ distributions is their ability to model
the tail of distributions, particularly of those with heavytails. The second idea is that these distributions should appear
in a standard maximum entropy setting. This led us to the introduction of a constraint on the divergence between
two distributions, one of them being imagined as the tail distribution. This constraint accounts for an existing general
relationship between two distributions.
We showed that within this construction, the escort distributions and generalized means of nonextensive statistics
appear very naturally. We also obtained that the original maximum (Shannon) entropy reduces to a maximum Rényi
entropy; or equivalently to the maximization of Tsallis entropy. As far as the entropic indexq is concerned, it is
simply associated to the value of the divergence between thedistributionQ and its escort distributionP . Finally,
the ‘maximum entropy tail’ distributions, in the sense adopted in this Letter, are found to be Generalized Pareto
Distributions, which have proved very useful for modeling heavy-tailed distributions in many applied problems. We
believe that this construction can be useful to workers in the field.
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